Eficiencia en la primera vuelta de LaLiga1 y LaLiga2 2018-2019

Autores: Julio del Corral y Carlos Gómez González

Una forma de medir lo bien o lo mal que lo han hecho los equipos en una liga es comparar los resultados obtenidos con los resultados esperados. Los resultados esperados pueden obtenerse a partir de los datos de las casas de apuestas. En concreto, nosotros hemos desarrollado una medida de eficiencia que se calcula como el inverso de la probabilidad de haber obtenido más puntos que los realmente obtenidos. Así, si un equipo obtiene muchos más puntos que los esperados su valor de eficiencia será próximo a 1, mientras que si obtiene una puntuación mucho menor que la esperado el índice tomará un valor cercano a 0. Esta metodología está validada en varios artículos científicos como éste.

La Liga 1: Los equipos modestos revientan la liga de la eficiencia

Hasta 6 equipos con los presupuestos más bajos de la primera división ocupan las posiciones más altas de la clasificación de la eficiencia. Mención especial para el Alavés de Abelardo Fernandez, que con 12 puntos más de los que predecían las casas de apuestas ocupa la primera posición. Muy meritorio también el cuarto puesto del recién ascendido Valladolid. En el polo opuesto encontramos los pésimos números de equipos muy consolidados: Real Madrid, Valencia, o Villareal. El primero destituyo a Julen Lopetegui a mitad de esta primera vuelta, y contrato a Solari, mientras que el Villareal ha despedido recientemente a Javier Calleja, y Luis Garcia Plaza ha ocupado su puesto.

 

La Liga 2: Se aprieta y el Alba tiene licencia para sonar

El Albacete de Luis Miguel Ramis, con permiso del Granada, es hasta la fecha el líder indiscutible de la liga de la eficiencia en La Liga 2. Con 11 puntos por encima de las predicciones de las casas de apuestas, el equipo de Luis Miguel Ramis es la gran sorpresa de la competición. No obstante, la liga está muy apretada, como es habitual, tanto en los puestos de cabeza como en los puestos que condenarían a los equipos a la 2B. La decimosegunda y decimotercera posición de los recién ascendidos Rayo Majadahonda y Extremadura mantienen a ambos con esperanzas de repetir al año que viene en la competición. Los peores números de eficiencia los registran Zaragoza, Tenerife y Córdoba, dejándose hasta 8 puntos en el camino con respecto a las previsiones.

La eficiencia en liga se cobra 4 entrenadores y el peor Real Madrid de lo que va de siglo

Autores: Julio del Corral y Carlos Gómez González

Este lunes se completaba la primera vuelta de La Liga a expensas del partido aplazado por el Mundialito de clubes entre el Leganés y el Real Madrid. Con la primera vuelta finalizada es un buen momento para hacer balance de situación de los equipos.

Por ejemplo, en Internet es fácil encontrarse con encuestas para que los aficionados puntúen la actuación de los equipos hasta la fecha. Desde esta tribuna llevamos tiempo abogando por el uso de criterios objetivos para estos análisis. Por ejemplo, la diferencia entre el rendimiento esperado según las casas de apuestas y los puntos realmente conseguidos. El artículo titulado “Are former profesional athletes and native better coaches? Evidence from Spanish basketball” publicado en la revista académica más importante de Economía del Deporte desarrolla una metodología para obtener las puntuaciones más probables de los equipos de acuerdo a su potencial. En entradas de blog anteriores se pueden encontrar más detalles y ejemplos sobre este método.

En resumen, para calcular la puntuación esperada de cada equipo, basta con multiplicar las probabilidades de las posibles puntuaciones en cada jornada y realizar una suma hasta el final de temporada (1ª vuelta en este caso). El siguiente gráfico muestra el rendimiento del Real Madrid en la primera vuelta con una puntuación esperada de 44,8 puntos.

La eficiencia de los equipos de La Liga, que se calcula como el inverso de la suma de la probabilidad de obtener más puntos que los realmente obtenidos, se muestra en la siguiente tabla:

El campeón de la liga de la eficiencia en esta primera vuelta es el Valencia de Marcelino, que con 40 puntos ha conseguido su segunda mejor puntuación en la jornada 19, sólo superada por el Valencia de Benítez de la temporada 2003-2004. Se esperaba que obtuviese 30 puntos y consiguió estar 10 por encima. Como diría un amigo che “el murciélago sobrevuela la liga”.

Medalla de plata para el invicto Barcelona de Ernesto Valverde y Lionel Messi con una nota también de sobresaliente: 9,5. De hecho, si los culés repitiesen estos 51 puntos en la segunda vuelta lograrían el récord histórico de puntuación en La Liga. Cerrando el pódium está un clásico de esta clasificación, el milagroso Atlético de Madrid de Simeone. Los rojiblancos no se cansan de competir por encima de sus posibilidades.

Por el contrario, el farolillo rojo y, por tanto, líder indiscutible de la ineficiencia es el Real Madrid con un 0. Eso sí, con un partido menos, que en cualquier caso no le sacaría del pozo. Las valoraciones que las haga cada uno. ¿La culpa es del entrenador? Quién sabe. Lo cierto es que Zidane se ha ganado a pulso el crédito que le dan las dos últimas ligas de campeones. Casos similares se encuentran en la NBA, donde a los equipos les cuesta un mundo rescindir el contrato de entrenadores que consiguieron el anillo.

Los entrenadores de Las Palmas (Pako Ayestarán), Deportivo (Pepe Mel), Sevilla (Eduardo Berizzo) y, recientemente, Málaga (Míchel) corrieron distinta suerte y fueron destituidos. Estos equipos buscaron en el cambio de entrenador el revulsivo necesario, aunque ya sabemos que esto no siempre funciona. De hecho, el Sevilla despidió a Berizzo con una eficiencia de 0,8 y ahora el equipo hispalense ronda el 0,5. ¡A veces, más vale lo malo conocido que lo bueno por conocer!

Finalmente, tenemos que destacar la meritoria primera vuelta del recién ascendido Girona, que en estos momentos ocupa la cuarta posición, y del Eibar, que con uno de los presupuestos más bajos de la primera división ocupa puestos europeos. La línea del aprobado la marcan el Alavés y el Celta de Vigo.

En resumen, una apasionante primera vuelta para los analistas. ¡Hablamos al final de temporada!

El Liberbank Ciudad Encantada uno de los equipos más eficientes en la primera vuelta de ASOBAL

Hoy 10 de enero se ha celebrado el sorteo de la cuarta ronda de la Copa del Rey de balonmano. El equipo de Cuenca, que tanto orgullo lucen el logo de la UCLM en su camiseta, no salió muy bien parado pues le tocó el Anaitasuna, uno de los rivales en teoría más fuertes con los que se podía enfrentar. Este mes de enero hay un parón en la Liga ASOBAL debido a la disputa del Campeonato de Europa, por lo que es buen momento para evaluar el rendimiento de los equipos en la primera vuelta de la liga.

Hace años desarrollé una metodología que permite obtener la eficiencia de los equipos en una liga comparando los resultados reales con los resultados previstos según las casas de apuestas. La idea es sencilla, los equipos que saquen más puntos que los esperados según las casas de apuestas serán eficientes (como hasta ahora el Valencia de Marcelino en La Liga) mientras que los equipos que obtengan menos puntos que los esperados según las casas de apuestas serán ineficientes (como hasta ahora el Real Madrid de Zidane). La eficiencia se calcula como el inverso (1-p) de obtener más puntos que los realmente obtenidos. Vamos a aclararlo con el ejemplo del Liberbank Ciudad Encantada.

El gráfico muestra la probabilidad de obtener cada una de las posibles puntuaciones según las casas de apuestas. La tabla por su parte muestra las probabilidades de obtener más puntos que 18 que fueron los realmente obtenidos. Si se suman estas probabilidades da 0,21, y por tanto 1-0,21=0,79 que es la eficiencia para este equipo. Cuanto más próximo a el valor de la eficiencia mejor la actuación del equipo, mientras que cuanto más se acerque a cero peor el rendimiento del equipo.

Esta metodología está publicada en un artículo publicado en Journal of Sports Economics, que es la principal revista en Economía del Deporte.

Los resultados son los siguientes:

El equipo más eficiente es el Quabit Guadalajara, que ha conseguido 20 puntos mientras que las casas de apuestas creían que iba a conseguir 15,3. Le sigue el Bada Huesca, que encabeza el grupo de los equipos que han conseguido el notable hasta ahora: Bada Huesca, MMT Seguros Zamora, Liberbank Ciudad Encantada, FC Barcelona Lassa y Fraikin BM. Granollers. Por el contrario BM Logroño La Rioja encabeza los equipos con peor rendimiento.

Veremos que nos depara la segunda vuelta. Desde la UCLM estaremos empujando para que el equipo conquense logre la clasificación para competiciones europeas así como los #Hispanos consigan una buena clasificación en el Europeo.

Myth: To play Champions League weakens some teams in domestic leagues. FALSE!!

Authors: Julio del Corral and Carlos Gómez-González

In January, Javier Ares, who is a well-known Spanish sport journalist wrote a tweet saying: “Is it just a coincidence that Chelsea and Liverpool (first qualified teams in Premier League) are not playing European competitions? The idea behind this question is reasonable because the teams that do not play European competitions can focus on the domestic league and obtain better results. For instance, Celta de Vigo was relegated to the second division while playing Champions League in the 2003-2004 season. This article shows that although some examples can point in this direction, statistical analyses shows the opposite during the period 2005-2016: the teams playing Champions League have a better performance in La Liga. However, the improvement is marginal when using advanced statistical models.

The database includes the following leagues: Belgium, Germany, England, France, Greece, Italy, the Netherlands, Portugal, Scotland, Spain and Turkey. The seasons analyzed go from the 2005-2006 to the 2015-2016.

In order to include a measure of performance in the league, this analysis uses the measure of efficiency published in del Corral, Gallardo, and Maroto (2017) in the Journal of Sports Economics, which can be downloaded in this link. This measure is calculated as the inverse of the probability of obtaining more points than the actual ones using betting odds data. Thus, the teams having a performance above expectations, e.g., Leicester in the 2015-2016 season, show values close to 1. Leicester obtained a value of 0,9998 in that season. In contrast, the teams having a performance below expectations, e.g., Mourinho’s Chelsea in the 2015-2016 season, show values close to 0. Chelsea had a coefficient of 0.021 (Further explanations and applications of this methodology can be found in the following links for the Spanish football: and for the basketball league ACB)

A first step is to compare the efficiency of the teams playing European competitions (any), or Champions League (group phase), and the teams playing the domestic leagues only.

Observations Efficiency
Play Europe Champ. 1,385 0.50
Do not play Europe Champ. 717 0.58
Play Champions League 1,843 0.51
Do not play Champions League 259 0.63
Total 2,102 0.52

 

Please notice that the differences are statistically significant in both cases. The following box plots show graphically these differences, where the middle line is the median and the box represents the upper and lower quartiles.

A complementary approach is to analyze the number of observations that are above and below the mean (0.52). Regarding the teams playing Champions League, 167 teams obtained higher efficiency values than the mean, while 92 were below. However, regarding teams that do not play Champions League, 906 teams obtained an efficiency above the mean, while 937 were below.

Thus, this preliminary analysis shows that playing European competitions is not counterproductive for performance in domestic leagues, but rather beneficial.

Nevertheless, impact evaluation techniques are necessary to better understand the real effect that the participation in Champions League has on teams’ performance. Specifically, the most similar team that do not participate in Champions League is used to match the team participating in Champions League. This would be the most similar team in terms of quality (using Transfermarkt values) from the same domestic league. In this case, some teams will never have an appropriate match. For example, a team that is similar to Real Madrid in terms of quality and do not play Champions League cannot be found in La Liga in the season 2015-2016. The difference between Real Madrid and the first best team that do not play Champions League is too much. In order to avoid this problem, the observations of teams that have played too many times in Champions League (ECL) are omitted. The results are as follows:

Observations Ef. team ECL Ef. team no ECL
Complete sample 259 0,63 0,60
Omit team 11 ECL 215 0,63 0,60
Omit team >9 ECL 195 0,63 0,60
Omit team >8 ECL 177 0,61 0,59
Omit team >7 ECL 153 0,60 0,60

 

In fact, when the methodology of the most similar neighbor is implemented, the effect of the policy (to participate) in Champions League is 0.003. Therefore, participating in Champions League does not have neither a negative nor a positive effect on the efficiency in the domestic league.

In short, it is believed that participating in European competitions is counterproductive for the performance of teams in the domestic leagues. However, the evidence suggests that if any, the effect is positive. Therefore, supporters of teams qualified for Champions League (Sevilla, hopefully) can sleep peacefully as the participation in Champions League will not directly affect the performance in the league.

Mito: Jugar la Champions perjudica a algunos equipos para la Liga. FALSO!!

Autores: Julio del Corral y Carlos Gómez-González

En Enero uno de los mejores periodistas deportivos de España, Javier Ares, lanzaba un tuit que decía: ¿Será casualidad que Chelsea y Liverpool, los dos primeros de la Premier, no estén jugando competición europea? La idea que hay detrás de esta pregunta es razonable, los equipos que no juegan competición europea pueden centrarse en la liga doméstica y así pueden obtener mejores resultados. Otro ejemplo bien recordado es el del Celta de Vigo en la temporada 2003/2004 que descendió a Segunda División en una temporada que disputó la Champions League. En este artículo se muestra que a pesar de que se pueden encontrar ejemplos en esta dirección, la estadística indica, que entre las temporadas 2005-2006 y 2015-2016, la dirección es la opuesta: los equipos que juegan Champions tienen un mejor rendimiento en la liga, si bien cuando se usan modelos avanzados de estadística la mejora es marginal.

La base de datos se compone de las ligas belga, alemana, inglesa, francesa, griega, italiana, holandesa, portuguesa, escocesa, española y turca. Las temporadas analizadas van desde la 2005-2006 hasta la 2015-2016.

Para tener una medida de la actuación en la liga se usa la medida de eficiencia desarrollada en el artículo publicado en Journal of Sport Economics del Corral, Gallardo y Maroto (2017) y que puede descargarse en este enlace. Esta medida se construye como uno menos la probabilidad de obtener más puntos que los realmente obtenidos, según las casas de apuestas. Así, los equipos que tienen un rendimiento muy superior al esperado como el Leicester en la temporada 2015-2016 tienen un valor muy próximo a uno, el del Leicester en esa temporada fue 0,9998, mientras que los equipos que tienen un rendimiento muy inferior al esperado como el Chelsea de Mourinho en la temporada 2015-2016 tienen un valor muy próximo a cero, en ese caso fue 0,02.[1]

Una primera aproximación es comparar la eficiencia de los equipos que juegan competición europea (cualquiera) o Champions (la fase de grupos) con los que no la juegan.

Observaciones Eficiencia
No juega c. europea 1.385 0,50
Juega c. europea 717 0,58
No juega Champions 1.843 0,51
Juega Champions 259 0,63
Total 2.102 0,52

 

Es importante destacar que las diferencias son significativas estadísticamente en ambos casos. Estas diferencias pueden verse gráficamente en estos gráficos de cajas, donde la línea del medio representa la mediana y la caja representa los cuartiles inferiores y superiores.

Un análisis complementario es ver el número de observaciones que están por encima y por debajo de la media (0,52). De los equipos que jugaron Champions 167 obtuvieron una eficiencia mayor que la media mientras que fueron 92 los que obtuvieron una media inferior. Sin embargo, de los equipos que no jugaron Champions 906 obtuvieron una eficiencia por encima de la media mientras que 937 la obtuvieron inferior.

Así, en un primer análisis se ve como jugar competiciones europeas no sólo no es perjudicial para el rendimiento en liga, sino que es muy beneficioso.

Sin embargo, para conocer el efecto real de la participación en Champions para los equipos una forma más adecuada es utilizar las que se llaman técnicas de evaluación del impacto de políticas. En concreto, para cada participante en Champions puede buscarse al individuo más parecido que no participa, que sería el equipo de su misma liga con la calidad de equipo medida como valor en Transfermarkt más parecida. Así, puede verse el efecto de participar en Champions. Como algunos equipos no van a tener un buen contrafactual como por ejemplo el Real Madrid para la temporada 2015-2016 en la diferencia de calidad entre el Real Madrid y el mejor equipo que no juega Champions es tan grande que no sería un buen contrafactual. Una forma de evitar este problema es ir quitando observaciones de los equipos que participan muchas veces en Champions (ECL). Los resultados son los siguientes:

Observaciones Ef. eq. Champions Ef. Eq. no ECL
Toda la muestra 259 0,63 0,60
Quitar eq. 11 ECL 215 0,63 0,60
Quitar eq. >9 ECL 195 0,63 0,60
Quitar eq. >8 ECL 177 0,61 0,59
Quitar eq. >7 ECL 153 0,60 0,60

De hecho cuando se implementa la metodología del vecino más parecido el efecto de la política (participar) en Champions es 0,003. Así el participar en Champions no tiene efecto ni positivo ni negativo sobre la eficiencia en la liga.

Resumiendo, hay una creencia que participar en competiciones europeas perjudica al rendimiento de los equipos en las ligas nacionales. Sin embargo, la evidencia empírica sugiere que de haber efecto éste es positivo, es decir que participar en competiciones europeas no sólo no perjudica sino que beneficia al rendimiento en liga. Así, los aficionados al Sevilla si se clasifica para la Champions pueden estar tranquilos, su rendimiento en liga no va a ser peor por el mero hecho de jugar Champions.

[1] En estos enlaces puede verse aplicada y explicada dicha metodología para el fútbol español: enlace1, enlace2, enlace3 y en estos otros para la liga ACB: enlace4, enlace5.

¿Fue tan mala la actuación española en los Mundiales de atletismo de Londres 2017?

Hace unos días se publicaba un artículo de mi cosecha (junto con Carlos Gómez-González y José Manuel Santos-Sánchez) titulado “A country-level efficiency analysis of the 2016 Summer Olympic Games in Rio: A complete picture”, aquí el enlace a la revista y aquí el enlace a una versión completa de acceso no restringido. Las tres contribuciones principales de dicho artículo son considerar el número de deportistas en los JJ.OO. como uno de los outputs para calcular la eficiencia de los países, una metodología para calcular la ineficiencia de los países que no obtienen ninguna medalla así como resaltar la importancia de estimar las funciones entre similares (e.g., países del mismo continente). España, en los Mundiales de Londres 2017, no ha conseguido ningún metal por primera vez en la historia de los Mundiales de Atletismo. Desde luego es un retroceso, pero a continuación voy a presentar los resultados replicando la metodología de dicho artículo.

Una de los argumentos que se ha usado en contra de la Federación Española, es que si el atleta cumplía los (duros)requisitos impuestos por la IAAF y el atleta demostraba encontrarse en forma el atleta sería seleccionado. Así, para quitar el sesgo de selección de atletas por parte de los países, también incluyo en el análisis un cuarto output: atletas con mínima y potencialmente participantes.[1]

En competiciones como los Juegos Olímpicos o Mundiales de atletismo es habitual usar como input (o predictor en función del objetivo) el PIB de los países. A continuación se muestran las correlaciones entre las medallas de los países en los Mundiales de Atletismo 2017, la puntuación obtenida según la IAAF (8 puntos por victoria, 7 punto segundo puesto, …, 1 punto octavo puesto), los atletas  y el PIB de los países.

Medallas Puntos Participantes Atletas con mínima
Medallas
Puntos 0.94
Participantes 0.60 0.76
Atletas con mínima 0.77 0.85 0.95
PIB 0.22 0.32 0.63 0.70

 

Como puede verse la correlación entre las medallas y el PIB es positiva pero no muy alta, relativamente normal pues el atletismo es dominado en varias disciplinas por países de renta baja como Jamaica, Kenia, Etiopía. Sin embargo, la correlación entre el número de participantes y el PIB es mucho más alta, y aún mayor respecto a los atletas con mínima. Los países que tengan una cantidad superior de medallas o participantes a los esperados dado su PIB serán considerados como más eficientes mientras que los países que tengan menos medallas de las esperadas. El nivel de eficiencia se encuentra entre 0 y 1, así cuanto más cerca a uno más eficiente. Más detalles técnicos sobre el cómputo de la eficiencia pueden verse en el citado artículo.

Antes de analizar los resultados de las funciones de producción que se estiman usando los datos de los países europeos, se muestra el gráfico que relaciona atletas con mínima para Londres 2017 y el PIB. Como puede verse España es uno de los países que más atletas con mínima tiene. En concreto se sitúa en sexto lugar detrás de Estados Unidos, Reino Unido, Alemania, Francia y Polonia. Si bien la distancia con Francia es nimia. Así España parece que tiene un sistema atlético capaz de generar muchos atletas con mínima. Buena señal.

A continuación se presentan los gráficos que relacionan los cuatro outputs: medallas, puntuación IAAF, número de participantes, y atletas con mínima con el PIB para los países europeos mostrando la función de producción que indica la máxima cantidad de output que se puede producir dado el PIB. Como la frontera es estocástica es posible que algún país se sitúe por encima de la frontera.

El país más eficiente en cuanto al número de medallas es Polonia con una diferencia bastante notable respecto al siguiente país que sería la República Checa. Para ver cual es la probabilidad que dado el PIB España no saque medalla, esta probabilidad puede interpretarse como eficiencia de los países con cero medallas. Esta cifra es de 0,13, lo cual sugiere que España debería sacar al menos una medalla y que desde luego hay que intentar salir de este bache en medallas.

Como se ha podido ver antes la correlación entre el número de medallas y la puntuación IAAF es muy alta. La ventaja es que hay muchos más países con puntuación que con medallas así se pueden ver todos juntos. España nuevamente resulta muy ineficiente, con una eficiencia de 0,22. Al igual que en medallas España debería ver como mejorar en el número de atletas que se sitúen entre los 8 mejores de un mundial.

Sin embargo, España tanto en atletas en Londres como en atletas con mínima para Londres se sitúa como segundo país más eficiente dentro de los 15 países con mayor renta europeos sólo por detrás de Polonia. En este sentido, puede verse como un éxito. Para poder tener muchos atletas con medallas en eventos futuros es importante tener muchos atletas del nivel suficiente como para clasificarse para un mundial.

 

País y1 y2 y3 y4 Ef. y1

(probit)

Ef. y1

(SF)

Ef. y2 Ef. y3 Ef. y4
Alemania 5 78 76 76 0.72 0.59 0.65 0.69
Reino Unido 6 105 92 77 0.76 0.70 0.69 0.71
Francia 5 68 55 51 0.73 0.59 0.63 0.64
Italia 1 9 37 32 0.37 0.12 0.59 0.55
España 0 14 59 49 0.13 0.22 0.70 0.71
Países Bajos 4 40 28 30 0.75 0.62 0.63 0.65
Turquía 2 21 27 24 0.61 0.40 0.63 0.60
Suiza 0 9 19 18 0.40 0.19 0.58 0.53
Suecia 1 8 32 26 0.46 0.20 0.69 0.67
Polonia 8 86 51 52 0.85 0.83 0.75 0.79
Bélgica 1 13 18 14 0.47 0.32 0.61 0.51
Noruega 2 14 13 16 0.65 0.37 0.57 0.57
Austria 0 3 5 5 0.60 0.09 0.38 0.28
Dinamarca 0 0 4 4 0.65 0.37 0.26
Irlanda 0 1 12 12 0.68 0.04 0.60 0.56
Finlandia 0 4 12 10 0.69 0.15 0.61 0.51
Portugal 2 17 21 24 0.69 0.55 0.71 0.74
Grecia 1 11 20 16 0.53 0.40 0.70 0.66
República Checa 3 37 27 24 0.77 0.78 0.74 0.75
Rumanía 0 0 15 10 0.72 0.67 0.55
Hungría 2 16 16 15 0.72 0.62 0.71 0.70
Ucrania 1 15 48 42 0.58 0.64 0.83 0.85
Eslovaquía 0 0 5 3 0.77 0.56 0.32
Luxemburgo 0 0 1 0 0.78 0.30
Bielorrusia 0 8 16 23 0.78 0.52 0.77 0.82
Azerbayán 0 8 4 4 0.78 0.52 0.57 0.46
Bulgaria 0 2 8 8 0.79 0.16 0.69 0.66
Croacia 2 19 9 7 0.76 0.78 0.71 0.63
Eslovenia 0 0 7 6 0.79 0.68 0.60
Lituania 1 10 15 14 0.64 0.64 0.78 0.78
Serbia 0 5 8 8 0.79 0.42 0.72 0.69
Letonia 0 0 12 8 0.80 0.78 0.72
Estonia 0 5 14 5 0.80 0.51 0.80 0.64
Chipre 0 0 5 4 0.80 0.70 0.60
Islanda 0 0 3 3 0.80 0.64 0.54
Bosnia-Herzegovina 0 0 3 4 0.80 0.65 0.62
Georgia 0 0 1 1 0.80 0.46 0.28
Albania 0 0 1 1 0.80 0.48 0.30
Armenia 0 0 1 0 0.80 0.49
Macedonia 0 0 1 0 0.80 0.50
Moldavia 0 1 5 5 0.81 0.22 0.78 0.76
Kosovo 0 0 1 0 0.81 0.55
Monaco 0 0 1 0 0.81 0.56
Montenegro 0 0 1 0 0.81 0.60
Andorra 0 0 1 0 0.81 0.62
San Marino  0  0  0 0 0.81  —  —  —

y1-medallas, y2-puntuación IAFF, y3-atletas participantes en Londres 2017, y4-atletas con mínima para Londres 2017

 

En resumen, la actuación de España en cuanto a número de medallas y puntuación IAAF fue mala siendo uno de los países más ineficientes, sin embargo en cuanto a participación tanto en participación efectiva como en atletas con mínima España es uno de los países más eficientes. Yo, que modestamente creo que algo de deporte sé, un buen sistema organizativo genera una gran cantidad de buenos atletas, que esos buenos atletas se conviertan en atletas excelentes (posibles ganadores de medalla) depende de muchos factores donde la suerte, en forma de atletas

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[1] Para obtener el número de atletas con mínima se ha consultado el ranking de la IAAF 2017. Si un país tenía más de tres atletas con mínima se consideraban sólo 3. Además, no se incluyen los relevos. Así puede haber pequeñas diferencias entre las cifras de atletas con mínima y la cifra de atletas potencialmente participantes.

Detrás de la mala prensa de la universidad española se esconde un buen sistema universitario: Ranking de Shangái 2017

Hoy se ha publicado los resultados de uno de los rankings globales de universidades más influyentes, el ARWU (Academic Ranking of World University) más conocido como ranking de Shanghái. Este es el enlace: www.shanghairanking.com/ARWU2017.html.

Como es habitual la prensa del día está llena de titulares negativos hacia el sistema universitario español. Y no les falta razón, el sistema universitario español no es capaz de tener universidades entre las mejores de las mejores. No hay ninguna universidad española entre las 50 primeras, ni entre las 100, hay que llegar al rango 201-300 para encontrar a las primeras universidades españolas: la Universidad de Barcelona, que según mis cálculos a partir de la información que proporciona el ranking, estaría en la posición 201, la Pompeu Fabra en la 262 mientras que la Universidad de Granada se situaría en la posición 252.

Sin embargo, con un análisis más completo se ve que el sistema universitario español a pesar de no ser capaz de generar universidades excelentes sí es capaz de generar un buen número de universidades muy buenas (top-500) y universidades buenas (top-800) es más es uno de los pocos países eficientes en el número de universidades Top-800.

La correlación que hay entre el PIB de los países y el número de universidades entre las 800 primeras según el ranking de Shanghái es 0,89 y de 0,84 entre el PIB y el número de universidades.[1] Es decir, el número de universidades entre las mejores del mundo está muy correlacionado con el PIB. La pregunta que surge, es ¿cómo se sitúa España en número de universidades dado el PIB?

 

Es habitual que para responder a esta pregunta se calcule lo que se conoce producto medio, que consiste en dividir el output, número de universidades en Top-500 o Top-800, entre el input, el PIB. Sin embargo, esto sólo sería adecuado si la función de producción presentase lo que los economistas conocemos como rendimientos constantes a escala, en caso contrario como ocurre en este caso se pueden obtener resultados incorrectos, como que Estados Unidos es uno de los peores países. Una forma más adecuada es calcular la eficiencia de los países a través de una función frontera como por ejemplo a través del Análisis Envolvente de Datos.

España cuenta con 26 universidades (todas públicas) en el Top-800 y 11 en el Top-500. Un primer indicio positivo del sistema universitario español es que los Países Bajos es el único país que con un menor PIB supera a España en el número de universidades Top-500. Un segundo es que España se sitúa en novena posición en cuanto a número de universidades en Top-800, teniendo una cifra similar a países como Francia, Cánada, Corea del Sur y Australia, todos ellos países con renta superior a la española.

A continuación puede verse la tabla con estos datos así como los niveles de eficiencia de los países en un modelo DEA de rendimientos variables orientado al output usando como input el PIB del país y como outputs el número de universidades en Top-500 y en Top-800. Así mismo pueden verse los gráficos que relacionan estas variables teniendo color rojo los países que delimitan la frontera según el modelo DEA. En el modelo Top-800 España es uno de los seis países eficientes junto con Islandia, Nueva Zelanda, España, Italia, Reino Unido y Estados Unidos. Sin embargo, España presenta un índice de eficiencia medio en el modelo Top-500.

Nota: Estados Unidos se ha eliminado del gráfico para que sea más claro.

Nota: Estados Unidos se ha eliminado del gráfico para que sea más claro.

 

País PIB (millones $) Nº univ.

Top 800

Nº univ.

Top 500

Eficiencia

Top 800

Eficiencia

Top-500

EE.UU. 17,947,000 190 135 1.00 1.00
China 10,866,400 91 45 0.73 0.50
Japón 4,123,260 36 17 0.58 0.37
Alemania 3,355,770 46 37 0.84 0.90
Reino Unido 2,848,760 50 38 1.00 1.00
Francia 2,421,680 30 20 0.67 0.59
India 2,073,540 7 1 0.17 0.03
Italia 1,814,760 37 16 1.00 0.58
Brasil 1,774,720 13 6 0.36 0.22
Cánada 1,550,540 26 19 0.81 0.76
Corea Sur 1,377,870 28 12 0.96 0.51
Australia 1,339,540 27 23 0.95 1.00
Rusia 1,326,020 4 3 0.14 0.13
España 1,199,060 26 11 1.00 0.52
China Taipei 1,156,440 13 7 0.52 0.34
Méjico 1,144,330 2 1 0.08 0.05
Países Bajos 752,547 13 12 0.73 0.82
Turquía 718,221 7 1 0.41 0.07
Suiza 664,738 10 8 0.62 0.60
Arabia Saudí 646,002 4 4 0.25 0.30
Argentina 548,055 3 1 0.22 0.08
Suecia 492,618 11 11 0.85 1.00
Polonia 474,783 6 2 0.48 0.19
Bélgica 454,039 7 7 0.57 0.69
Irán 425,326 8 2 0.69 0.21
Tailandia 395,282 3 1 0.27 0.11
Noruega 388,315 4 3 0.36 0.34
Austria 374,056 8 4 0.75 0.47
Egipto 330,779 3 1 0.30 0.13
Sudáfrica 312,798 8 5 0.84 0.68
Hong Kong 309,929 6 5 0.63 0.69
Malasia 296,218 5 2 0.54 0.29
Israel 296,075 7 6 0.76 0.86
Dinamarca 295,164 6 5 0.65 0.72
Singapur 292,739 2 2 0.22 0.29
Chile 240,216 4 2 0.49 0.34
Irlanda 238,020 5 3 0.61 0.52
Finlandia 229,810 7 5 0.87 0.89
Portugal 198,931 6 5 0.80 1.00
Grecia 195,212 3 3 0.41 0.61
Rep. Checa 181,811 4 1 0.56 0.22
Nueva Zelanda 173,754 7 4 1.00 0.90
Eslovenia 42,747 1 1 0.50 0.64
Serbia 36,513 1 1 0.57 0.70
Estonia 22,692 1 1 0.81 0.88
Islandia 16,599 1 1 1.00 1.00

 

En resumen, España no tiene universidades excelentes por lo que debe mejorar en este aspecto. Sin embargo, España cuenta con un número adecuado de universidades en el Top-800 si bien es mejorable en el Top-500. Así, si España quiere que sus universidades pasen de ser buenas a excelentes en los rankings internacionales la primera medida a adoptar es apostar por la universidad y la investigación y esto implica entre otras muchas cosas más recursos. Si las universidades españolas con recursos comparables a las que aparecen en los primeros puestos España no consigue colocar a ninguna entre los primeros puestos entonces dígase y bien alto: LA UNIVERSIDAD ESPAÑOLA ES UN DESASTRE, hasta entonces, si bien mejorable, la universidad española desde luego no es ningún desastre pues consigue que la mayoría de sus universidades públicas sean reconocidas en los principales rankings internacionales de universidades.

[1] Se quita Estados Unidos y China pues con su inclusión aumenta la correlación de forma algo ficticia.

Análisis del entrenador del año 2017 en la ACB

Autores: Andrés Maroto (@jazzandmar) y Julio del Corral (@jdelcorraltm)

Ahora que los equipos de la Liga Endesa están preparando sus plantillas de cara a la próxima temporada es buen momento para analizar los resultados de la temporada finalizada. Y como siempre desde este blog nos gusta hacerlo desde el punto de vista de la eficiencia de los entrenadores. Este año el galardón para el mejor entrenador de la ACB ha recaído en Txus Vidorreta, entrenador del Iberostar Tenerife, que ha llevado a los insulares a la fase final de la Copa del Rey y de los Play-Off de la Liga, consiguiendo el récord de victorias de la franquicia (22), así como a conquistar su primer título europeo tras vencer en la FIBA Champions League.

Al contrario que en años anteriores, en esta edición el premio se votaba entre los propios entrenadores de la Liga Endesa así como los miembros de la AEEB (Asociación Española de Entrenadores de Baloncesto) y, seguramente por esta razón, esta vez el galardón no ha recaído en el entrenador del equipo que ha logrado la primera plaza en liga regular (Pablo Laso) como ocurría en años anteriores. Por nuestra parte, en este blog siempre hemos creído que el premio debería llevárselo el entrenador que más rendimiento haya sacado a su plantilla y por eso llevamos tiempo haciendo análisis de la eficiencia de los mismos. ¿Qué tiene más mérito como entrenador? ¿Ganar 25 partidos de 32 con el Real Madrid o 22 con el Tenerife?

La cuestión seguro que no es fácil de responder y muchos usaran su percepción para decantarse por una u otra opción. Sin embargo, pueden usarse medios objetivos para responder a esta pregunta, así como para establecer un ranking de los entrenadores en una temporada. Una opción para ello es comparar los resultados obtenidos y los resultados esperados para un equipo a partir de las cuotas de apuestas deportivas. A partir de las cuotas de apuestas para un determinado partido se puede obtener la probabilidad de que suceda cualquiera de los dos resultados posibles (i.e., victoria del equipo local o victoria del equipo visitante) y a partir de las cuotas de todos los partidos de una temporada se puede calcular la probabilidad de obtener cada uno de los posibles número de victorias. Este método científico está validado dentro de la comunidad especializada y los resultados para temporadas anteriores pueden verse en un artículo que se publicó en el Journal of Sport Economics.

Para obtener una medida objetiva de la actuación de los entrenadores puede calcularse la probabilidad de haber obtenido más victorias que las realmente obtenidas. Entonces para calcular una medida objetiva del rendimiento del equipo lo único que hay que hacer es calcular el inverso de esa probabilidad para dar el rendimiento o eficiencia final en una escala entre 0 y 1. La siguiente tabla muestra el rendimiento de los entrenadores con la metodología descrita anteriormente para la presente campaña 2016/17 y que demuestra que, efectivamente, el entrenador que más rendimiento ha sacado a su equipo ha sido Txus Vidorreta (con una eficiencia técnica del 98%, la más alta de las últimas temporadas). El siguiente en el ranking sería Joan Plaza (con un 87% de eficiencia en el Unicaja Málaga) y completaría el podio de la fase regular Joan Peñarroya (77%) que ha llevado al Morabanc Andorra a la fase final de la Copa del Rey y a los Play-Off de la ACB.

*Sustituido por A. Martínez en la jornada 29

**Sustituido por L. Guil en la jornada 24

En la tabla anterior también se puede observar como Pedro Martínez, que finalmente consiguió ganar la liga ACB contra todo pronóstico al vencer al Real Madrid en la final, ocupa la quinta posición con una eficiencia del 72% (que no tiene en cuenta los resultados del play-off), justo por detrás de Sito Alonso que después de llevar al Baskonia a la 2ª posición de la fase regular y los cuartos de final de la Euroliga ha cambiado Vitoria por Barcelona este verano. Conviene resaltar que este tipo de indicador de la eficiencia no sólo coincide en la parte alta con el mejor entrenador de la temporada, sino que también lo hace en los puestos más bajos ya que los 3 entrenadores con peor rendimiento han sido los de los 3 equipos con menos de 10 victorias en la última temporada. Dos de ellos, además, fueron los únicos sustituidos a mitad de temporada (Tabak en el Real Betis y Casadevall en el Zaragoza).

Para los interesados pueden leer los análisis de eficiencia de los entrenadores de la Liga Endesa para la temporada anterior o para el período 2007-2014, así como uno similar para el caso de la NBA, en http://blog.uclm.es/juliocorral/blog/

 

 

Análisis alternativo de La Liga 2016-2017. ¡Ánimo pues, Alavés!

Julio del Corral y Carlos Gómez-González 

Con el final del campeonato nacional de liga en primera división se ha abierto la caja de Pandora y un sinfín de rumores con respecto al futuro de muchos jugadores colapsan las líneas editoriales.

Los directores deportivos son los encargados ahora de tomar decisiones sobre los objetivos de los equipos para la próxima temporada. Para ello, se requiere un análisis exhaustivo del rendimiento de los equipos y la actuación de entrenadores y jugadores. En este caso, ¿son los puntos una variable totalmente fiable para analizar el rendimiento?

Desde la Universidad de Castilla-La Mancha pensamos que es interesante utilizar otras medidas que nos den pistas sobre el rendimiento de los equipos en base a su potencial. Para ello, como venimos haciendo desde hace ya algunas temporadas, hemos llevado a cabo un análisis alternativo que utiliza las cuotas de apuestas para extraer probabilidades de victoria y ofrecer una imagen completa de La Liga 2016-2017.

Las cuotas de apuestas, que llevan información implícita sobre el potencial de los equipos y las expectativas sobre el rendimiento, son convertidas a probabilidades de victoria. Este primer paso permite obtener los puntos esperados de los equipos y calcular la eficiencia de los mismos como: 1 – la probabilidad de haber obtenido más puntos que los realmente obtenidos. Para obtener información detallada sobre esta metodología consulta este artículo en el Journal of Sports Economics.

La tabla que se muestra a continuación contiene tres clasificaciones alternativas para la temporada 2016-2017 en La Liga:

 

La Liga esperada

¡Qué sorpresa…! Ahí están, un año más, el Barcelona y el Real Madrid acaparando todas las expectativas de ganar el título liguero. A base de méritos propios el Atlético de Madrid ha conseguido consolidarse como el tercero en discordia, seguido por un Sevilla algo alejado. El Athletic de Bilbao y el Villareal aspirarían a competir en la Europa League, mientras que Sporting, Granada y Osasuna estarían peleando por esquivar el infierno de 2ª división con Alavés, Leganés y Betis.

La Liga actual

La temporada 2016-2017 en La Liga nos ha dejado estos resultados. El Real Madrid ganó el título en la última jornada con un Barcelona que no dejó de apretar el acelerador hasta el final. El Atlético y el Sevilla cierran los puestos que dan acceso a la Champions League 2017-2018. Por abajo no ha habido sorpresas esta vez. Sporting, Granada y Osasuna dijeron adiós a su andadura en la máxima categoría, quizá incluso mucho antes de lo esperado. Sólo el Sporting remó hasta el final contra un Leganés que mantuvo el pulso y repetirá al año que viene en 1ª división.

La Liga eficiencia

En el análisis de la primera vuelta, el Sevilla se consagró como campeón de invierno y se anticipó el buen papel de algunos equipos: “La liga de los equipos extraordinarios la completan en esta primera vuelta Real Sociedad, Alavés y Eibar ¡No se puede dar más con menos! ¡Enhorabuena!”.

Ahora, al final de temporada, la eficiencia se rinde a los pies del Alavés. El equipo blanquiazul que no ha podido conquistar la Copa del Rey ante el Barcelona en el Calderón, brilla con luz propia en esta clasificación. El mercado de apuestas lo esperaba allí, en el hoyo, peleando por salvar la categoría hasta el último momento con los de abajo. Sin embargo, en una temporada soberbia el Alavés ha terminado siendo el campeón de la liga eficiencia con 55 puntos (9ª posición) y 0.98 de coeficiente eficiencia. ¡Ánimo pues!

En esta liga destacan por abajo Granada y Osasuna. Ambos equipos, más algún otro como el Deportivo, y han obtenido muchos menos puntos de los que ya se les anticipaban. Es por ello que la lucha por evitar el descenso ha resultado ser un tanto descafeinada al final de temporada.

La liga de la eficiencia premia también el rendimiento de la Real Sociedad, Espanyol y Villareal con coeficientes por encima del 0,90 y puestos de acceso a Champions League ¡Trabajo más que bien hecho!

Por último, la tabla muestra como el Real Madrid tiene un valor de eficiencia mucho más alto que el Barcelona. Así, el Real Madrid necesitó hacer una buena campaña para ganar la Liga y que el Barcelona no la hiciese. Si se indaga más en los datos, se ve como la probabilidad de victoria promedio del Barcelona en casa fue 0,82 mientras que la del Real Madrid fue 0,80, fuera de casa las diferencias son mayores pues la probabilidad promedio de victoria del Barcelona fue de 0,69 mientras que la del Real Madrid de 0,64.  Si uno lee la prensa estos día da la sensación que el Barcelona debe hacer una revolución para volver a ser un equipo ganador mientras que el Real Madrid lo único que debe hacer es mantenerse igual, los datos no muestran lo mismo pues dicen que el Barcelona es mejor equipo que el Real Madrid y que éste último ha ganado la Liga gracias a hacer una buena temporada mientras que su gran rival la ha hecho regular.

¡La Liga que se esperaba, la que realmente es y la de la eficiencia!

El Sevilla es campeón de invierno en la Liga de la eficiencia. Atlético de Madrid y Valencia a la cola…

Autores: Julio del Corral y Carlos Gómez-González

En cualquier ámbito las personas tendemos a generar unas expectativas sobre acontecimiento futuros en base a percepciones o experiencias previas. El fútbol es un claro ejemplo. Antes de un partido somos capaces de intuir quién puede ser el vencedor. Del mismo modo, a largo plazo podemos intuir cuáles van a ser los equipos que luchen por el título a final de temporada.
Estas intuiciones vienen dadas por el potencial de los equipos. En La Liga, no todos los equipos compiten en igualdad de condiciones, dado que los presupuestos y el talento del que disponen son muy diferentes. Por tanto, ¿son los puntos la forma más objetiva de medir su rendimiento? ¿Existen otras formas?
Quizá no. Y sí, sí existen alternativas. Vamos a analizar el rendimiento de los equipos en la Liga con un enfoque diferente:
Las cuotas de apuestas deportivas, además de mantener a unos cuantos entretenidos los fines de semana, son una fuente de información extraordinaria. Las cuotas reflejan el potencial de los equipos y, por tanto, lo que se puede esperar de ellos. Para utilizarlas en nuestro análisis es necesario extraer las probabilidades de victoria de los equipos, reajustando el margen superfluo que las casas de apuestas imponen.

Así, una vez tenemos todas las probabilidades de victoria para los partidos de un equipo, es posible generar una función de densidad con las puntuaciones esperadas. Véase un ejemplo del Sevilla en esta primera vuelta:

 

Con toda la información de los puntos esperados, podemos calcular la eficiencia de los equipos en base a lo que se esperaba de ellos en las apuestas deportivas como uno menos la probabilidad de haber obtenido más puntos que los realmente obtenidos. Información más detallada sobre esta metodología puede ser encontrada en este artículo del Journal of Sports Economics.

 

 

La Tabla 1 muestra tres clasificaciones diferentes para la primera vuelta de La Liga en esta temporada 2016-2017:
La Liga que se esperaba
No es sorprende que los aficionados situaran al Barcelona y Real Madrid peleando por la 1ª posición. El Atlético cerraría el podio, por delante de un retrasado Sevilla en 4ª posición. Athletic y Valencia estaban llamados a ocupar puestos de Europa League, mientras que a Granada, Sporting y Osasuna se les esperaba luchando por mantener la categoría.
La Liga que realmente es
Los resultados actuales han llevado al Madrid a ocupar la 1ª posición, haciendo lo que se esperaba de ellos. Un poco por detrás de sus expectativas andan Barcelona y Atlético, mientras que la Real Sociedad y el Sevilla están mejorando cumpliendo con creces. Muy notorio es el caso del Valencia, cuyos números están lejos de la puntuación que se esperaba de ellos al principio de temporada.
La liga de la eficiencia
En nuestra particular liga de la eficiencia, el Sevilla de Sampaoli está cuajando una temporada espectacular y cierra la primera vuelta bordando el coeficiente de eficiencia. Además, la última joya de Monchi, el montenegrino Stefan Jovetic, no ha podido aterrizar con mejor pie. ¡Suenan tambores de guerra en Nervión!
La liga de los equipos extraordinarios la completan en esta primera vuelta Real Sociedad, Alavés y Eibar ¡No se puede dar más con menos! ¡Enhorabuena!
Mientras que el Real Madrid está en los números esperados, el Barcelona cae hasta la posición 15ª. Unos pocos puntos de diferencia significan una gran caída en la eficiencia a estos niveles. ¡La vida en la cumbre es así de dura!
La lista la cierran por la cola el Atlético de Madrid, Valencia y Granada.
La eficiencia del Atlético de Madrides una de las grandes desconocidas de nuestra peculiar clasificación en esta primera vuelta. El Atlético emergente que sorprendió a medio mundo acariciando lo intocable, hoy tiene reservado el papel de actor principal. Los fans esperaban más del Atlético, pero Simeone ha declarado que les gusta verse exigidos. ¡Le esperamos a final de temporada en nuestro ranking!
Por último, es muy destacable el mal momento que está atravesando el Valencia. Los aficionados que esperaban verlo luchando por puestos europeos hoy lo ven relegado a la posición 18ª de la liga de la eficiencia. En cualquier caso, súper Voro parece haber vuelto al rescate. Estaremos atentos a esta evolución.
¡Veremos que nos depara la 2ª vuelta!