Archivo de la categoría: La QUÍMICA

Los metales de la primera serie

Los elementos de la primera serie de transición son metales muy utilizados en diversas aplicaciones. Aunque la principal es formar diferentes aleaciones con el hierro, tanto los metales, como alguno de sus compuestos forman parte de baterías, medicamentos o material de joyería.

En el siguiente video, realizado a partir de las presentaciones de los alumnos de Química Inorgánica 2, del curso 2014-2015, se pueden ver las características generales, algo de la historia de su obtención y las aplicaciones que a estos alumnos les resultaron llamativas, para trasladar a sus compañeros. Espero que disfrutéis con el video.

https://youtu.be/HAVJBi2iP-I

 

 

 

Los elementos y sus aplicaciones

Puede llamar la atención que, de los 118 elementos conocidos, hayamos sabido encontrar aplicaciones a la mayoría de ellos.

TABLAUSOS

Existen infinidad de referencias para conocer esas aplicaciones. En la página web de la Royal Society of Chemistry, existe una página dedicada a una Tabla Periódica interactiva, con muchísima información sobre los elementos, no solo de sus aplicaciones, sino también de sus propiedades o su obtención.

En otro sitio web, una preciosa Tabla, basada en las fotografías de Theodore Gray en su libro Los Elementos, nos permite tener una visión realista y bella de muestras de los elementos químicos.

En Google podemos encontrar más información de la que esperamos. En su página de investigación, podemos encontrar una Tabla que nos indica la importancia de los elementos por sus menciones en libros, además de otros datos útiles.

Pero si hay un sitio web donde podemos aprender mucho sobre aplicaciones de los elementos y sus derivados, además de muchas otras cosas muy interesantes sobre Química, es Compound Interest, con un nombre con juego de palabras en inglés. Es una página web donde se presenta de una manera muy visual, con unas presentaciones de diseño atractivo y moderno, diversos aspectos de la Química relacionados con la vida cotidiana, desde venenos a aromas. Incluye, además, una sección de noticias semanales sobre Química.

 

 

 

 

 

 

 

El volcán de cromo

Una de las reacciones más espectaculares y vistosas, con gran éxito en YouTube, es la que se produce cuando se forma el «volcán del dicromato».

https://www.youtube.com/watch?v=n_pOYGM5zgM

En este experimento, se produce una reacción redox, en la que el reductor y el oxidante forman parte del mismo compuesto.

El sólido naranja es dicromato de amonio, (NH4)2Cr2O7, que presenta un anión de cromo en estado de oxidación 6. Este estado es muy inestable frente a la reducción, es decir, es una especie muy oxidante, capaz de oxidar al catión amonio a nitrógeno, reduciéndose a óxido de cromo 3 (Cr2O3), que es el sólido verdoso que se forma. Como la reacción transcurre con liberación de N2 y con producción de agua, además de ser bastante exotérmica, el resultado es el aspecto de un pequeño volcán que va expulsando «lava» verde, esponjosa debido a los gases, junto con pequeñas partículas ionizadas por el calor, con el aspecto de las proyecciones incandescentes de un volcán.

(NH4)2Cr2O7(s) -> Cr2O3(s) + N2(g) + H2O(g) + ΔH

Al parecer, durante la descomposición del dicromato, se forma el óxido de cromo 6, CrO3, sustancia muy volátil. Las especies de cromo 6, conocido en el lenguaje coloquial como cromo hexavalente, son altamente tóxicas, provocando desde irritaciones de la piel, alteraciones de diversos órganos e, incluso, el cáncer. Los efectos nocivos del cromo 6 han llegado a la cultura popular a través de la película Erin Brockovich, protagonizada por Julia Roberts, en la que se representa la lucha de una activista americana real que denunció y ganó a una gran empresa que contaminaba las aguas de su zona con disoluciones de cromo hexavalente.

 

Linus Pauling

El pasado día 28 de febrero se conmemoraba el aniversario del nacimiento de Linus Pauling, uno de los químicos más influyentes de todos los tiempos. A partir de una educación en Ingeniería Química, dirigió su investigación, y su vida, al estudio del enlace entre los átomos. Tras realizar su doctorado en el CalTech, en Química Física, consiguió una beca Guggenheim para viajar a Europa, donde se encontró con algunos de los físicos que estaban estableciendo las bases de la teoría atómica y el enlace químico, como Böhr, Sommerfeld o Schrödinger. A partir de ese contacto con la química cuántica, y utilizando sus conocimientos sobre la determinación de las estructuras cristalinas, mediante difracción de rayos X, comenzó a proponer sus teorías sobre el enlace quimico. El resultado de ese trabajo se recoge en uno de los libros más importantes sobre Química jamás escrito «The Nature of the Chemical Bond and the Structure of Molecules and Crystals«, que aparece como la referencia más citada de la literatura científica.IMG_38960115473298

En el libro se recogen conceptos tan conocidos por los estudiantes actuales como la resonancia o la hibridación, como bases para explicar el enlace covalente. Además, Pauling define el concepto de electronegatividad para explicar la tendencia a atraer los electrones del enlace por parte de uno de los átomos que lo forman. Con eso, se explica el continuo entre el enlace covalente y el enlace iónico, como extremo de esa polarización de los electrones.
A partir de esas teorías sobre el enlace químico y la estructura de las moléculas, se adentró en la biología molecular y la bioquímica. Su descubrimiento de la estructura de las proteínas, la alfa-hélice, junto con el descubrimiento de la doble hélice del ADN por Watson y Crick (y que él estuvo a punto de proponer previamente), suponen el comienzo de la biología molecular y la genética.
Todos estos estudios, y su influencia en el desarrollo de la Química, le valieron, en 1954, el Premio Nobel de Química.
Además, es la única persona que tiene dos Premios Nobel a título individual. El segundo fue el Premio Nobel de la Paz, en 1962, por su activismo político en contra del desarrollo de las armas nucleares y de cualquier guerra en general, activismo que influyó en su carrera profesional y personal.
Como curiosidad, rechazó dirigir la sección de química del Proyecto Manhattan para fabricar la primera bomba atómica, no solo por su pacifismo, sino también por las insinuaciones de Oppenheimer, director del proyecto, a su mujer, Ava Hellen.
Finalmente, Pauling también es conocido por su controvertida defensa de la ingesta en grandes cantidades de vitamina C para evitar múltiples enfermedades, sobre todo las de tipo vascular, e incluso el cáncer.
Más allá de estas anécdotas, siempre nos quedarán sus palabras sobre la Química como profesión, desde alguien que dedicó su vida a esta bella ciencia nuestra:

“Toda persona que elige la Química como profesión, no con ello establece un límite reducido a las actividades de su vida. Todavía se le abren muchos caminos: puede convertirse en un profesor y, al mismo tiempo, trabajar en el descubrimiento de algo nuevo, para aportar un conocimiento más profundo de la Ciencia; puede ser investigador, trabajando con sustancias inorgánicas u orgánicas, con metales o con drogas; puede ayudar a controlar los grandes procesos industriales y desarrollar otros nuevos; puede colaborar con investigadores médicos en el estudio de la enfermedad. Aun cuando elija otra profesión distinta a la Química, puede encontrar aplicación de sus conocimientos químicos, no sólo en su trabajo cotidiano, sino también en la superación de problemas inesperados”.

Pelotas de golf, pelotas de playa

 

hardhardsoftsoft2Una de las teorías más aplicables y fáciles de usar, pero algo difícil de explicar, es la teoría de ácidos y bases duros y blandos, propuesta por Pearson en el año 1963. Según esta teoría, se observa una tendencia a la formación de aductos ácido-base de Lewis estables entre determinados cationes y determinados aniones. Observando esa preferencia, se observa que cationes pequeños y muy cargados, con una concentración de carga positiva alta, tienden a formar compuestos estables con aniones pequeños, de elementos muy electronegativos. Por otro lado, cationes grandes, con menor concentración espacial de carga, tienden a unirse a aniones voluminosos y de átomos menos electronegativos. Pearson propone la denominación de duros para los primeros, como pequeñas bolas de golf, y de blandos para los segundos, como blanditos balones de playa, de tal forma que los aductos duro-duro y blando-blando son especialmente estables. También se forman mixtos, pero serán menos estables termodinámicamente.

Un efecto de este diferente comportamiento lo encontramos, por ejemplo, en los cationes hidratados. El catión de litio es más pequeño que el de sodio, pero sus formas hidratadas tienen tamaños contrarios. Esto ocurre porque el catión de litio es más pequeño, más duro, y atrae más a las moléculas de agua, formando enlaces más fuertes. En el caso del sodio, los enlaces son más lábiles y las moléculas de agua se pierden con facilidad.

Por si eran pocos

vibrational-bond_1024Después de intentar diferenciar con claridad los tipos tradicionales de enlace, covalente, iónico y metálico, aprendemos que tenemos que tener en cuenta, además, las importantes fuerzas de enlace intermoleculares, tipo Van der Waals, o los enlaces de hidrógeno. Pues ahora tendremos que añadir un tipo más: el vibracional. Recientemente, un equipo internacional ha demostrado la posibilidad de un enlace de este tipo en el sistema BrMuBr, donde Mu es el símbolo del muonio, un isótopo ligero del hidrógeno, formado por un antimuon y un electrón. El antimuon es la antipartícula del muon, es decir la forma positiva del muon que, a su vez, es una partícula elemental similar al electrón en carga, pero mucho más pesada, cercana al protón.

En este nuevo tipo de enlace, el muonio está «saltando» de un bromo al otro, lo que permite compensar el aumento de energía potencial, que estaría en contra de la formación del enlace.