Archivo de la categoría: Divulgación

EL AÑO INTERNACIONAL DE LA TABLA PERIÓDICA

File:Código Qrpedia (Dimitri Mendeléyev) instalado en el Museo de la Ciencia de Valladolid.JPGDimitri Mendeleiev (Museo de la Ciencia de Valladolid)

La ONU, a través de la UNESCO, ha declarado 2019 como Año Internacional de la Tabla Periódica. Esta declaración hace homenaje a la publicación, un 17 de febrero de 1869, de la ordenación de los elementos propuesta por Dimitri Mendeleiev a la Sociedad Química Rusa, y recogida de forma resumida en Zeitschrift für Chemie.

La necesidad de ordenar los constituyentes básicos de todo lo que nos rodea empieza muy pronto en nuestra Historia. Los cuatro elementos aristotélicos (tierra, agua, fuego y aire) son un primer intento de establecer esos componentes básicos, que caló tan fuerte como idea que perduró hasta llegado el Renacimiento.

Existen precedentes de ordenaciones más científicas de los elementos conocidos anteriores a la tabla de Dimitri Mendeleiev. Con anterioridad, en 1817, J. W. Döbereiner, cuando aún se conocían muy pocos elementos químicos, intuyo la existencia de las tríadas o grupos de elementos con propiedades parecidas, con la característica de que el peso atómico del elemento central era la media aritmética aproximada de los pesos atómicos de los elementos extremos; éste era el caso por ejemplo, del litio, sodio y potasio, o del cloro, bromo y yodo, o del azufre, selenio y telurio. También, A. E. de Chancourtois, en 1862, estableció una hélice telúrica o tornillo telúrico, situando los elementos químicos en orden de pesos atómicos crecientes sobre una hélice, con 16 elementos por vuelta. De esta manera observó que muchos de los elementos de propiedades análogas quedaban ubicados en la generatriz del cilindro, unos encima de otros; enunció de esta manera una ley que decía que las propiedades de los elementos son las propiedades de los números. En 1868, J. A. Newlands había ordenado los elementos en agrupaciones lineales, enunciando su ley de las octavas, en la que afirmaba que si se situaban todos los elementos en un orden creciente de pesos atómicos después de cada siete elementos, aparecía un octavo cuyas propiedades son similares a las del primero, pero Dimitri desconocía este trabajo y por otra parte el suyo lo superó con creces.

Resultado de imagen de mendeleev first periodic table

Primera Tabla Periódica de Mendeleiev. En ruso, la titula: «Proyecto de sistema de elementos: basado en sus masas atómicas y características químicas».

En 1869, hace 150 años, este químico ruso publicó la primera versión de la Tabla Periódica con una orientación similar a la actual: que sirviera de guía para entender las propiedades de los elementos y sus compuestos conocidos, y predecir las de futuros compuestos y elementos. La aportación de este químico ruso fue ordenar los elementos en función de su peso atómico, pero, al mismo tiempo, en función de sus valencias, o modos de combinación más habituales. De tal manera que esa ordenación llevaba a una serie de columnas y de filas donde se veían variaciones periódicas de las propiedades. Al mismo tiempo ofrecía la posibilidad de dejar huecos para elementos todavía no encontrados en función de esa variación periódica, prediciendo incluso las propiedades de algunos de ellos. Hay que recordar que en su época solo se conocían 63 elementos. Esos huecos se llenaron posteriormente, confirmando las hipótesis de Mendeleiev (galio, escandio y germanio). Eso sí, no predijo el grupo de los gases nobles, ni de los elementos lantánidos o actínidos. Hay que tener en cuenta la falta de seguridad y precisión sobre los pesos atómicos en aquella época. Simultáneamente a Mendeléiev, pero de forma independiente, J. L. Meyer llegó a una clasificación prácticamente igual, pero este último se basó en las propiedades físicas de los elementos y no en las químicas como Dmitri Mendeléiev.

La tabla periódica actual no se ordena en función de los pesos atómicos puesto que no existe esa periodicidad regular, sino que se establece en función del número atómico. El número atómico es el número de protones que cada elemento tiene en su núcleo y, a partir de ahí, es también el número de electrones que tiene en su corteza rodeando a dicho núcleo. Son esos electrones, sobre todo los más externos, los que determinan en gran parte la química de cada elemento. Así pues una ordenación más adecuada es en función de ese número atómico. Esta distribución de la tabla tal y como la conocemos ahora, con columnas y filas ordenadas de izquierda a derecha, grupos y periodos, todavía está en discusión para que nos permita tener una ordenación más correcta en cuanto a propiedades atómicas y macroscópicas.

Tabla Periódica de la Facultad de CC. y TT. Químicas de Ciudad Real.

Recientemente, la IUPAC ha confirmado el nombre de los últimos elementos obtenidos, nihonio, moscovio, teneso y oganesón. Estos elementos, artificiales y obtenidos mediante aceleradores de partículas y reactores nucleares, terminan el período 7 de la Tabla Periódica. Ya ha comenzado la búsqueda de los elementos ultrapesados.

En estas semanas, se han publicado las dos mitades de una entrevista en la más que recomendable página de divulgación científica Cienciaes.com, dirigida por el físico y divulgador científico Ángel Rodríguez Lozano para llegar a todo aquel que sienta inquietud por el estudio de la Naturaleza y las leyes que la gobiernan. En esa entrevista, intentamos hacer nuestro pequeño homenaje a esta efemérides y hablar de los elementos a lo largo de la Historia.

http://cienciaes.com/entrevistas/2019/03/25/tabla-periodica-1/

http://cienciaes.com/entrevistas/2019/04/01/tabla-periodica-2/

https/podcast/hablando-con-cientificos-cienciaes.com/id304214854?mt=2

http://www.ivoox.com/podcast-hablando-cientificos_sq_f11448_1.html

https://www.facebook.com/cienciaes

https://www.facebook.com/groups/435745970117/

https://twitter.com/cienciaes/

Una lectura para la piscina

De vez en cuando, mis alumnos me preguntan sobre algún libro de divulgación sobre la Química que pudieran leer cuando llegan las vacaciones.  Y siempre les recomiendo el mismo, para empezar. El mismo con el que yo empecé a amar la Química, cuando andaba por aquellos años 80 tan añorados ahora: EL ELECTRÓN ES ZURDO (Y OTROS ENSAYOS CIENTÍFICOS). Es un libro pequeño, manejable y lleno de Ciencia y de científicos, contado todo por uno de los mejores  divulgadores (quizá el mejor) de todos los tiempos: Isaac Asimov.  Asimov dedicó gran parte de su vida a la divulgación de la Ciencia, en general, y de la Química en particular, ya que él mismo era bioquímico de formación. Grandes obras suyas son Guía de la Ciencia para el hombre inteligente y su ampliación Nueva guía de la Ciencia, donde relata descubrimientos y hechos de una gran variedad de campos, siempre centrándolos en su contexto histórico. Otro libro para recomendar a un estudiante que quiere bucear en la divulgación de la Química es Breve Historia de la Química. En este libro se expone cronológicamente el desarrollo de la Ciencia Central, desde la Prehistoria, hasta llegar a las reacciones nucleares.  Igualmente, es mundialmente famoso su libro El Universo, que permite una iniciación a la Astronomía, desde un lenguaje muy asequible. Su gusto por la Historia se refleja no solo en sus escritos de divulgación científica, sino también por su obra en este campo, sobre todo dirigida al estudio de la antigua Grecia o de Roma.

Y es por todos conocida su amplia obra sobre Ciencia-Ficción que se recoge en la emocionante y, en ocasiones, inquietante Saga de la Fundación, una historia del futuro de la Humanidad, en la que están incluidas sus novelas sobre robótica, término inventado por él, donde se establecen las famosas tres leyes:

  • Primera leyUn robot no puede hacer daño a un ser humano ni, por inacción, permitir que un ser humano sufra daño.
  • Segunda leyUn robot debe obedecer las órdenes dadas por los seres humanos, excepto cuando estas entren en conflicto con la primera ley.
  • Tercera leyUn robot debe proteger su propia integridad, siempre y cuando esto no impida el cumplimiento de la primera y segunda ley.

Pero volviendo al libro del comienzo, en El electrón es zurdo se recoge una serie de artículos de Asimov que van desde las Matemáticas a la Física, y que se centran en la paridad y la asimetría (y la quiralidad) tanto a nivel atómico y molecular, como en los seres vivos. Para acabar, el artículo que más me impresionó es el titulado Morir en el laboratorio.  En este apartado, se habla de los comienzos en la química del flúor y el efecto, letal, sobre las vidas que de los que se dedicaron a ello. Es verdad que cuando uno tiene ilusión por hacer de la Química su carrera profesional, que le hablen de morir en el laboratorio no entra dentro de sus objetivos a corto plazo. Pero hasta hablando de eso, Asimov, consigue hacerlo interesante. Si de algo hay que morir, por la Ciencia parece un buen motivo ¿o no?

Máquinas moleculares

Viaje alucinante es una película de los años 60, cuyo guion fue novelizado por Isaac Asimov (y no al revés, como suele ser habitual en el cine). La película, y la novela, tratan de un grupo de técnicos y médicos, miniaturizados junto con un pequeño submarino, para ser introducidos en el torrente sanguíneo de un tránsfuga de la antigua URSS que tiene una importante información y que está en coma. Sin avanzar mucho, el final tiene una interesante y morbosa paradoja.

A principio de los 2000, otro gran novelista de ciencia ficción, Michael Crichton (autor, entre otras cosas, de Parque Jurásico) escribió otra novela, Presa, en la que una empresa de nanotecnología había diseñado nanobots supuestamente también para un uso médico, aunque su uso final era militar. Estos nanobots son capaces de tomar energía de la luz solar e, incluso, replicarse. Sin avanzar mucho, la cosa no parece que vaya a acabar muy bien.

Y hay más ejemplos de que lo de miniaturizar máquinas puede llegar a ser útil (sin meternos mucho si para bien, o para mal) en nuestro futuro. Pero para llegar a ese futuro, tiene que haber un presente en el que comience esa tecnología. ¡Seguro que los hermanos Wright no pensaban en vuelos transcontinentales cuando hicieron su primer vuelo en su «avión» de papel y madera!

En octubre de 2016, se otorgó el Premio Nobel de Química a los pioneros en el diseño de entidades moleculares de tamaño nanoscópico que son el embrión de esas futuras máquinas nanobot. Los Profesores Jean-Pierre Sauvage, Sir J. Fraser Stodart y Bernard L. Feringa recibieron el premio «for the design and synthesis of molecular machines». Es decir, por dar esos primeros pasos en el diseño y síntesis de máquinas moleculares.

El grupo de Sauvage ha diseñado sistemas basados en moléculas circulares, enganchadas entre ellas como eslabones de cadenas, con la posibilidad de que una gire con respecto a la otra. Por su lado, el escocés, afincado en los EEUU, Stodart ha diseñado moléculas alargadas que alojan otra circular que puede moverse de un lado a otro, o girar con respecto al eje que forma la primera. Por último, el grupo de Feringa, ha diseñado el primer motor molecular, moléculas que giran por efecto de la luz o del calor.

El siguiente paso es el diseño de sistemas móviles eficaces, que puedan transportar fármacos o proteínas hacia las células. Para empezar, de nuevo, algunos grupos, como el de Feringa, se han volcado en el diseño y síntesis de nanocars, pequeños coches moleculares, que pueden moverse sobre una superficie, ayudados por impulsos eléctricos o luminosos.

Nanocar

En su disertación del Premio Nobel, Feringa explica con detalle la situación de esta tecnología.

https://youtu.be/4V6Vp2uVQxM

Tanto es el interés que, en abril de 2017, tendrá lugar en Toulouse la NANOCAR RACE,  una carrera de nanocars que se podrá seguir en directo en el canal de Youtube del CNRS francés.

Como ya pronosticaba hace años otro visionario, esta vez uno de los científicos más brillantes de todos los tiempos (y protagonista de pizarras y comentarios de Sheldon Cooper en The Big Bang Theory), el Premio Nobel de Física Richard Feynman: «There’s Plenty of Room at the Bottom»

https://youtu.be/4eRCygdW–c