Extracción de Litio del agua de mar

El Litio es uno de los metales más ligeros que se conocen, pero de una importancia cada vez más fuerte en la industria y la sociedad. Es uno de los metales que más se emplean en la fabricación de baterías y tiene poco repuesto; sus características electrónicas hacen que sea difícil sustituirlo por otro.

El problema fundamental que tiene su uso es su escasez: como de momento no lo usamos mucho, no hay escasez. Pero varios cálculos indican que si se pretendiera escalar la producción de Li para la fabricación de baterías, habría problemas para satisfacer la demanda de este metal mediante las minas conocidas y disponibles, como las famosas minas de sal de Bolivia(1). Sin embargo, unos investigadores han encontrado la forma de extraerlo del agua de mar de manera económicamente factible si se acopla esa extracción con otras industrias extractivas.

Comienzan su artículo indicando que la cantidad estimada de Li en el mar es unas 5.000 veces más grande que en tierra, pero con un gravísimo inconveniente. Su concentración es muy baja, del orden de 0,2 ppm(2). Al mismo tiempo, otros iones presentes en el mar tiene concentraciones mucho más altas. Como ejemplo, la concentración de sodio, calcio y otros iones es mayor que 13.000 ppm.

Revisando los posibles métodos de separar el Li en el mar, los autores del artículo presentan varias posibilidades de absorbentes para después de unir el Litio al absorbente, precipitar este compuesto para obtener el Litio. Sin embargo, según los autores del artículo, los absorbentes tienen el grave inconveniente de que hay que sustituirlos en el tiempo por que se consumen en la absorción. Por ello ellos decidieron seguir el camino de precipitar sales de litio, concretamente la sal Li3Po4, ayudadas por una corriente eléctrica y una membrana. Es decir, primero se trata de concentrar el Li en el agua de mar mediante el paso del agua por la membrana y luego precipitar el Litio al cambiar el Ph de la solución de manera que precipite una sal.

El truco consistió en emplear una membrana cristalina densa de Litio, Lantano y Óxido de Titanio (TiO3), que abrevian como LLTO. Para las pruebas que hicieron, la membrana tenía un diámetro de ~20 mm y un ancho de aproximadamente 55 µm. El ancho de la membrana no es casual, porque la selectividad de la misma para con el litio depende de la misma. De hecho, según refieren los autores en el artículo, el ancho de su membrana es unas 10 veces menos que otros experimentos similares, lo que ayudó sobremanera a sus resultados.

Como es frecuente en estructuras cristalinas, la alta selectividad del Litio por parte de la membrana se debe a la estructura del cristal, que tiene el tamaño justo para dejar pasar sólo estos iones. Como son de los más pequeños que contiene el agua de mar con un diámetro de 1,18 angstroms(3), son los únicos que pueden atravesar la membrana con facilidad.

El uso de este tipo de membranas también tiene sus problemas, porque se pueden corroer y estropear, aunque más que por oxidación directa, por «reducción». Es decir, en lugar de ceder electrones al ambiente los absorbe, de forma que también tiene que cambiar su composición química para compensar la carga negativa extra(4). Por ello, tuvieron que generar un entorno ácido cerca del cátodo, el electrodo negativo. El esquema del experimento se presenta en la figura siguiente.

Esquema de la celda de concentración precipitación del Li. «AEM» es el acrónimo de «membrana de intercambio iónico», en inglés que permite la separación del Cl en la zona saturada de sal común. A la derecha, el «H3PO4 buffer» es la sustancia empleada para incrementar la acidez de esa parte de la celda. Como se aprecia arriba, para poder seleccionar el litio hay que establecer un voltaje. Imagen extraída de la fig. 1 del artículo citado.

Con esta celda lograron concentrar la cantidad de litio hasta un nivel final de 9.000 ppm en cinco etapas sucesivas, cada una con una duración de 20 horas. Mediante este sistema de funcionamiento en etapas, se podría pensar en usar una etapa inicial como líquido a concentrar en la siguiente etapa, de manera que el proceso final sea uno de cascadas sucesivas de concentración de Litio que pueden ser construidas y diseñadas con relativa facilidad. Y además pudieron comprobar, como indica la siguiente tabla, que la concentración de otros iones permanecía muy baja después de la primera etapa, lo que indica una muy alta selectividad del metal que se desea, litio.

Li (ppm)Na (ppm)K (ppm)Mg (ppm)Ca (ppm)
Agua de mar0.21 +- 0,0112.400 +- 100750 +- 301560 +- 20480 +- 7
Primera etapa75 +- 1270 +- 65,8 +- 0,21,37 +- 0,020,54 +- 0,02
Quinta etapa9.000 +- 100300 +- 77,7 +- 0,21,48 +- 0,0040,56 +- 0,02
Concentración de los iones del agua de mar tras pasar por las etapas de concentración primera y última. De la tabla 1 del artículo citado.

En el siguiente párrafo del artículo comienzan resumiendo las características eléctricas del proceso, indicando que se producen a corrientes estables durante todo el proceso de concentración, excepto por un aumento de la corriente inicial debido a que algunos iones se fijan en los electrodos y la membrana. Este detalle, junto con la disminución en el tiempo de la corriente en la quinta etapa de concentración y algunos detalles del experimento, les permite a los autores deducir que la concentración de litio en las cuatro primera etapas depende sobre todo de la concentración en el agua circulante, antes que de la diferencia de la concentración de iones Li entre los dos lados de la membrana LLTO.

Por otra parte, comprobaron como después de la etapa de precipitación para obtener la sal Li3PO4, el producto final es lo suficientemente bueno como para entrar directamente en la producción de baterías. Este resultado se mantiene si sólo se hacen cuatro etapas de concentración, pero no con tres.

Después, y dado que su proceso es tan eficiente y selectivo, estiman el coste energético para obtener un kilo de Litio en unos 77 kW h. Haciendo unos cálculos básicos sobre el coste de la electricidad en los Estados Unidos y el precio que se podrían obtener de otros subproductos de esta reacción, principalmente Hidrógeno y Cloro, concluyen que el costo energético de todo el proceso se compensa de sobra con la venta de los subproductos, sin tener en cuanta que también producen agua potable, de manera que su economía mejoraría más.

Después de comentar todas las características de sus resultados el artículo tiene una sección dedicada a explicaciones detalladas del método experimental que hay que seguir, pero considero que esa sección no es relevante y no la comento aquí.

Por lo tanto, el artículo muestra una vía de producción de litio que permitiría multiplicar de manera considerable la cantidad disponible para la humanidad de este material, de forma que hace más sencillo la adopción masiva de baterías necesaria si queremos hacer la transición a una sociedad que base su consumo energético en energías renovables.

El artículo se publicó en la revista Energy & Environmental Science, vol. 5: Continuous electrical pumping membrane process for seawater lithium mining.

Notas:

(1) La zona con Litio de Bolivia forma parte del «Triángulo del Litio», la región del mundo con mayores reservas. El artículo de la Wikipedia lo explica muy bien: Wiki(ESP): Triángulo del Litio

(2) ppm: partes pro millón.

(3) 1 angstrom es 10-10 m. Como los tamaños de los iones o núcleos atómicos son tan pequeños, es la unidad estándar para poder medir estos diámetros.

(4) Los ácidos y las bases son las dos formas principales de concentración de iones hidrógeno de los compuestos químicos. De los dos artículos de la Wikipedia sobre el tema, es de la Wikipedia en español es bastante corto, pero el de la Wikipedia en inglés es muy bueno: Wiki(ESP):Ácido y base. Wiki(ENG): Acid-base reaction. Por otra parte, la explicación de la Wikipedia en español sobre la reducción química es corta, pero muy bien escrita: Wiki(ESP):Reducción.

Un paso más hacia sistemas de hojas artificiales funcionales y comerciales.

Uno de las soluciones más interesantes para el problema energético actual y al vez reducir el nivel del gas CO2 en la atmósfera consiste en imitar la fotosíntesis de las plantas. En un artículo reciente, se ha dado otro paso adelante en su posible implementación práctica con un sistema que produce formiato(1). El artículo está escrito pensando sobre todo en científicos muy familiarizados con el tema a tratar, por lo que la introducción comienza hablando de los diversos químicos que se han explorado para lograr la reducción(2) de CO2, denotada CO2RR en el artículo, con RR el agente reductor. Comenta que disoluciones homogéneas de varios tipos de enlaces químicos se han usado previamente y que sistemas en los que se inmoviliza el catalizador en una superficie de semiconductor, para evitar su desgaste rápido, se han empleado de manera que sumergidos en soluciones acuosas han funcionado bastante bien. El problema es que conseguir la función CO2RR es sólo la primera parte: luego, este subproducto debería a su vez oxidarse para producir compuestos más o menos útiles. Para conseguirlo, se precisa una fuente de electrones que oxide este material. El agua es un gran candidato para esto, pero precisa una fuente de energía para iniciar la reacción, como la luz solar. Así, se ha investigado mucho, según los autores, en la creación de sistemas que emplean la luz del sol para sintetizar, desde el CO22 y agua con al ayuda de la luz solar. El problema es que su escalado desde el laboratorio hasta una escala industrial es muy complicado por problemas de fabricación. Otra alternativa es el uso de coloides donde las partículas coloidales sean fotocalíticos(3), pero con frecuencia son necesarias etapas extra con otros productos químicos, lo que dificulta su uso industrial. La solución ideal sería copiar a la naturaleza y crear un dispositivo que sea similar a una hoja de cualquier planta, capaz de hacer una fotosíntesis(4). El problema es que, según los autores, lo único similar es el sistema que ellos han desarrollado.

La estructura de su sistema es lo que denominan hojas fotocalíticas, compuestas de dos partículas semiconductoras con actividad redox(5) añadidas a una capa conductiva, que sortea los problemas de usar otros productos para poder realizar las reacciones redox, a la vez que al estar pegados a la capa conductora asegura un suministro constante de electrones. Los autores del artículo han desarrollado uno de estos productos, con nombres y estructuras complícadísimas para cada una de las tres partes que hacen falta: Una de ellas genera los electrones por foto-oxidación del agua, mientra que la otra, recogiendo esos electrones por transmisión a través de la capa de oro y unión con huecos de la tercera parte de la estructura y un catalizador pegado a ella, produce el formiato.

La imagen siguiente lo explicita bastante bien:

Estructura de la hoja artificial. A la derecha, se observa como la interacción entre el agua, la luz (representada por el rayo rojo) y el material BiVO2RuO2 genera un electrón que se desplaza dentro de la capa de oro, centro, para interaccionar con un hueco del material de la derecha y luz y usar el fotocatalizador para generar el formiato.
Imagen extraída de la figura 1.a del artículo citado.

El artículo continúa explicando la forma en la que se fabricó el sistema y luego pasa a dar algunos detalles que permiten caracterizar su producción de formiato, oxígeno e hidrógeno. Como la figura siguiente muestra, se produjeron estos productos mientras el sistema estaba iluminado por luz solar simulada(6), y sumergido en una solución de agua con carbonato de potasio (K2CO3) saturada de CO2:

Producción de formiato, oxígeno, hidrógeno y CO cuando la hoja está iluminada. La producción total no es nada alta, de µmoles por cm², pero es un comienzo. De la figura 2.a del artículo citado.

Comprobaron también que la producción de formiato se debía a la interacción descrita en la primera figura, no a otro tipo de reacciones secundarias no previstas mediante el uso del sistema con una solución acuosa sin CO2. Además, observaron que la producción de hidrógeno y oxígeno se mantuvo constante sin la presencia de CO2, lo que soporta la idea presentada en la primera imagen de que su sistema «rompe» el agua.

Después comprobaron que el catalizador que emplearon efectivamente cumplía su función, dado que cuando expusieron a la luz el mismo tipo de estructura, pero sin el catalizador específico, no obtuvieron ningún producto. También pudieron comprobar que el catalizador seguía funcionando bajo grandes cantidades de oxígeno, es decir, es resistente a la oxidación, lo que no siempre es el caso. Y es importante porque al romper el agua, se produce oxígeno y por lo tanto éste puede por oxidación estropear el catalizador.

También comprobaron que la acción del sistema que implementaron se mantiene durante bastante tiempo. Durante los cuatros ciclos de rellenado de la solución de K22CO3 que emplearon durando más de 24 horas, su efectividad no bajó demasiado, como indica la figura siguiente. Parece poco, pero hay multitud de sistemas cuya duración es de horas, así que es un paso de gigante que su sistema sea robusto a la oxidación, aguante varios ciclos y durante más de 24 horas sin pérdidas de funcionamiento.

Producción de productos a lo largo de cuatro ciclos tras el rellenado de K22CO3 en el sistema. Se observa que la producción no varía demasiado. De la figura 4.d del artículo citado.

Comprobaron también la alta selectividad del catalizador por la reacción de interés y no por otra. Esto es importante, porque debido a la presencia de varios iones O⁻ en el medio de la reacción, es muy fácil que se produzcan otras especies en zonas del catalizador que no estaban pensadas para ello. Después concluyen con algunas formas de mejorar el diseño, como fijar mejor el catalizador al sustrato, cambiar su composición, etc.

En resumen, un paso importante en la consecución de la soñada hoja artificial, con algunos inconvenientes. El primero, su baja productividad. Pero un gran paso adelante, porque es la primera vez que se logra algo remotamente similar y con tanta duración.

El artículo salió publicado en la revista Nature Energy: Nature energy (2020). https://doi.org/10.1038/s41560-020-0678-6.

(1)Formiato: Su fórmula química es HCOO⁻, y es un precursor de varios productos químicos muy usados en la industria. En inglés se le llama «formate», y el artículo de la Wikipedia sobre el químico es muy aceptable.: Wikipedia:Formate.

(2) La reducción es el proceso químico por el que se transforman los dos enlace entre el Carbono y el Oxígeno en uno solo. El breve artículo de la Wikipedia lo explica algo más: Wiki:Reducción.

(3) Fotocatalíticos: sistemas que aceleran la reacción, catalizadores, pero cuando son iluminados por luz.

(4)Es decir, sintetizar productos químicos con la ayuda de la luz solar del Oxígeno y dióxido de carbono del aire.

(5) Redox: Actividad de oxidación-reducción de alguna molécula.

(6) Con frecuencia, para evitar oscilaciones en la producción normales bajo condiciones reales de iluminación natural, se emplean fuentes artificiales de luz que son idénticas a la luz solar, pero mucho más constantes en la intensidad. Esto permite comprobar mucho mejor los efectos de la luz solar en el sistema bajo estudio.

Bacterias alteradas para convertirlas en factorías químicas controladas por luz.

Me gusta la ciencia ficción. Siempre lo ha hecho y junto con la ciencia es una de mis actividades favoritas. Hace algunos años, cuando empezaba a leer ciencia ficción, se imaginaban sistemas de tamaños planetarios para fabricar cosas, porque leía sobre todo obras escritas en los 70 y 80. Cuando me acerqué más a las obras escritas en los 90, comencé a ver que había autores que imaginaban no grandes factorías o fábricas para producir los bienes físicos que necesitamos o nos gustan, sino pequeñas. De tamaño celular, de hecho. Se imaginaban que mediante nanorobots o células alteradas genéticamente, produciríamos una gran cantidad de productos en estos sistemas pequeños, abaratando y simplificando considerablemente su producción. Los resultados que este artículo presenta nos acercan definitivamente a esa idea, pero sin manipulación genética.

Lo que han logrado es hacer que bacterias que normalmente sintetizan hidrocarburos basadas en el consumo de azúcares puedan producir esos mismos hidrocarburos basándose en la exposición a luz. Comienzan en la introducción diciendo que intentos previos de lograr el uso de estos microbios para la producción de hidrocarburos mediante energía solar se basaron en la purificación y refino de las enzimas necesarias y su uso fuera de las células, pero que este sistema no permitía la renovación que se da en el interior de la célula de las enzimas, con lo que su duración es limitada.

Otra estrategia empleada anteriormente consistió en el uso de cepas específicas dentro de las bacteria para producir los químicos deseados, pero así se limita el rango de productos a producir además de que hay problemas debido a la toxicidad de estos productos para las células en si.

Los autores comentan que ha habido una investigación muy activa tratando de encontrar la manera de activar rutas enzimáticas definidas dentro de la célula desde fuera, usando campos magnéticos, luz y otros métodos no demasiado invasivos de interacción exterior con las células objetivo.

Y ellos lo han logrado, como se muestra en la siguiente figura:

Uso de bacterias para fabricación de diversos productos químicos usando como materias primas agua, luz y aire mediante la selectividad por puntos cuánticos(1). Además, se puede seleccionar el producto de salida deseado según la longitud de onda empleada. El arco iris de la derecha es la selectividad de cada punto cuántico a un color específico, que selecciona el producto de salida. Adaptado de la fig. 1 del artículo citado.

Como indica la figura, las materias primas a emplear son siempre las mismas: agua,luz y aire. Lo que cambia en función de la longitud de onda(el color) de la luz con la que se ilumina el grupo de bacterias es el producto de salida. Es importante resaltar que las bacterias empleadas en esta investigación no realizan la fotosíntesis de manera natural, es decir, no usan la luz del sol para producir ningún elemento químico de los que necesitan, empleando en su lugar azúcares. Por otra parte, debido a la naturaleza biológica de la formación de los productos, su eficiencia no pasa del 15 – 18 %, pero la falta de residuos peligrosos en su formación y facilidad de uso y manipulación compensan el problema de la falta de eficiencia.

Por otra parte, como su método no precisa de la manipulación genética de las enzimas, en principio podría usarse para activar funciones concretas de las células tanto para poder investigar esas funciones como para generar terapias concretas.

El esquema general está basado en el uso de puntos cuánticos(1) con una alta selectividad doble. Por un lado, a una longitud de onda o color específico, y por otro, a una región enzimática de la bacteria concreta. Así, al rodear el ambiente de la bacteria con puntos cuánticos concretos, éstos se unen a zonas específicas de las enzimas de su interior, lo que cuando el nanopunto se excita por la luz de su longitud de onda escogida, activa la enzima para la producción del producto químico deseado.

Por lo tanto, lo primero que hicieron los investigadores fue hacer una cuidadosa selección de los nanopuntos, basándose tanto en su tamaño, directamente relacionado con la longitud de onda a la que son sensibles, como su cubierta y formas externas, que generan una selectividad del nanopunto por enzimas específicas dentro de la bacteria.

Luego, comprobaron que los nanopuntos que habían encontrado se fijaban dónde querían sintetizando el producto en el laboratorio y viendo que los puntos cuánticos se fijaban a ese producto sólo. Usando otros nanopuntos distintos, también biocompatibles y con capacidad de penetrar la pared celular, pero con una selectividad distinta comprobaron que sólo los que ellos se habían diseñado se fijaban dentro de la célula al lugar escogido. Los nanopuntos que seleccionaron están compuestos por Cadmio y azufre con un recubrimiento de zinc y azufre, lo que favoreció su selectividad con la enzima que necesitaban, como se observa en la figura siguiente:

Representación de la unión selectiva de los nanopuntos escogidos a la enzima objetivo. Se observa que se seleccionan a través de la zona exterior de la enzima. Adaptado de la fig. (2) del artículo citado.

Lo que se observa en la figura es que al escoger la composición, forma y tamaño de los nanopuntos, fueron capaces de seleccionar muy bien la parte de la enzima a la que se ligaban los nanopuntos.

El artículo continúa explicando los diverso métodos empleados para confirmar que la ligazón de los nanopuntos se produjo sólo con las enzimas seleccionadas, desde comprobar que se producían los productos seleccionados según la ruta metabólica prevista con la adicción al agua en la que estaban las bacterias productos que interrumpen esa ruta y comprobar que así se paraba la producción, hasta comprobaciones en el laboratorio de la ligazón mediante técnicas de espectroscopía que permiten comprobar si hay o no determinados enlaces químicos presentes en la muestra.

También es muy importante comprobar que las bacterias que absorben los puntos cuánticos no se mueren, son viables a pesar de su presencia en el interior de las células. Para ello, los científicos autores de este experimento emplearon varios métodos. Primero, comprobaron el crecimiento celular tras aumentar la concentración de los nanopuntos en su entorno y observaron que con aquellos que se diseñaron correctamente, las células apenas inhibían su crecimiento, mientras que con otro tipo de nanopuntos acababan parando el crecimiento de las bacterias, como muestra la siguiente figura:

Inhibición del crecimiento (izquierda) y viabilidad(derecha) de las células en función de la concentración de las nanoestructuras. Adaptado del artículo citado.

Tanto la supervivencia de las células como su crecimiento indican que los nanopuntos que fabricaron no impiden que las células se reproduzcan. El empleo de otro tipo de comprobaciones les llevó a la misma conclusión: los puntos cuánticos diseñados adecuadamente no le causan problemas en su crecimiento o supervivencia.

Luego comprobaron que, efectivamente, la producción de los productos que querían se hacía tras activar las células con la luz adecuada. Y vieron que al iluminar las bacterias que estaban en el medio con los nanopuntos adecuados, produjeron amoniaco y que al dejar las bacterias en una atmósfera de argón, que no permite la producción de amoniaco, no lo producían, como se ve en la figura siguiente:

Producción de amoniaco y etano, según la bacteria, en función del tipo de nanopuntos (arriba) y de la atmósfera en la que estén las bacterias(abajo). Adpatado de la fig. (4) del artículo citado.

La producción de amoniaco y etano aumenta con los nanopuntos adecuados y sólo si hay la materia prima necesaria, indicando por lo tanto que se producen en el interior de la célula siguiendo las rutas metabólicas previstas.

Después de demostrar que saben cómo lograr que las bacterias produzcan los productos que ellos quieren mediante estos dos productos finales, ajustaron los nanopuntos para que fueran sensibles a distintas longitudes de onda y produjeron diversos productos finales, viendo que los rendimientos obtenidos eran una clara función de la facilidades de la propia ruta metabólica en el interior de la célula para fabricar estos productos: si bien las bacterias son fábricas muy versátiles, esta versatilidad no es infinita, por lo que si la bacteria no tiene los instrumentos para producir un determinado compuesto, es decir, las rutas metabólicas necesarias en su interior, pues no puede producirlo.

La verdad es que es un resultado impresionante, sobre todo por las posibilidades que ofrece: si realmente se puede escoger un gran conjunto de materiales a producir con el mismo tipo de bacterias según los materiales disueltos en su medio de cultivo, se puede soñar con generar fábricas de producción a la carta simplemente cambiando el nanopolvo disuelto y la luz con la que se ilumina.

El artículo original está publicado en la revista Journal of American Chemical Society, J. Am. Chem. Soc. 2019, 141, 26, 10272–10282.

(1)Punto cuántico o nanopolvo: Estructura tridimensional tan pequeña que se comporta como un pozo cuántico, con una altísima selectividad a una frecuencia de la luz de terminada, que absorbe o emite.

¡Bacterias a trabajar! El uso de bacterias en sistemas generación de hidrógeno con energía solar permite el uso de aguas residuales en lugar de agua pura.

Si bien la energía solar está disponible diaramente, es intermitente con intermitencias en todas los rangos temporales: día/noche, horas, nublado/soleado, etc. El número de horas de sol disponibles también varía diariamente en casi toda la superficie terrestre, siendo aproximadamente contante sólo cerca del ecuador.

Todo ello hace que su uso como fuente primaria de energía se vea restringido, por lo que hace falta almacenarla para su uso en el momento en que haga falta, no cuando se produzca. Uno de las formas de almacenar esta fuente de energía es la producción de algún producto químico que al oxidarse rápidamente, al «quemarse», produzca energía. Un químico adecuado es el hidrógeno molecular, puesto que su combustión sólo produce agua pura como subproducto.

Sin embargo, el uso de hidrógeno tiene varios problemas, de los cuales los más importantes son dos.

Por una parte, su almacenamiento no es sencillo. Al ser tan ligero y pequeño, al almacenarlo en sistemas de alta presión tiene una tendencia muy fuerte a difundirse por las paredes del recipiente que lo contiene; se «escapa» de su recipiente con facilidad.

Además, la producción de hidrógeno con luz solar es cara y no viable comercialmente por varias razones:

  • Necesita sistemas de generación de corriente eléctrica muy complicado: para disociar la molécula de agua hay que tener un potencial eléctrico de ~1,8 Voltios, que para conseguirlo con sistemas fotovoltaicos implican el uso de iones complicadas, en varias capas de materiales, que además son muy caros.
  • Tiene que usar agua ultrapura, lo que tiene un coste energético que hay que considerar en el balance energético final.
  • Además, algunos de los productos químicos empleados no duran mucho tiempo. Al necesitar usar un ánodo y un cátodo, los materiales de ambos polos no siempre son totaltmente reversibles y se pueden agotar con el uso; se «gastan» transformándose irreversiblemente en sustancias distitntas de las originales.
  • Y por si fuera poco, debido a la alta demanda energético de la ruptura del enlace del agua, suele hacer falta una corriente eléctrica extra que debe añadirse al gasto energético de depurar y filtrar el agua.

Una alternativa que puede soslayar parte de los problemas, sobre todo los relacionados con la generación de hidrógeno molecular desde la luz solar, es el uso de microorganismos en el diseño del sistema; éstos oxidan los líquidos orgánicos del agua residual, más que el agua misma, para generar electrones que se recombinan con los huecos generados en el cátodo semiconductor.

Este sistema tiene varias ventajas, porque al usar los microbios como donadores de electrones y «rompedores» de la molécula de agua, no hace falta usar más energía eléctrica, además de eliminar la necesidad de catalizador y la posibilidad de usar aguas residuales.

Por supuesto, este sistema también tenía problemas. Esencialmente, los mismos ya apuntados anteriormente y que el grupo que presenta esta investigación logró soslayar en parte con el uso de un catalizador de GaInP2, pero su coste y el uso de tierras raras, materiales muy caros y escasos, impidió su comercialización.

En el estudio que se comenta aquí, han logrado un avanze muy significativo con el uso de nanoestructuras de silicio negro(1) con forma de queso suizo(2) y aguas residuales de una fábrica de cerveza; claramente, los científicos también tienen sentido del humor. Además, no sólo es que lograran un sistema muy barato y escalable, es que produce una cantidad de energía que es superior a todos los valores obtenidos hasta ahora y durando 90 horas antes de agotar los substratos. Como beneficio adicional, trataron las aguas residuales, disminuyendo aún más los costes de operación del sistema.

(1) La traducción es personal. En inglés se denomina «black-silicon» o «b-Si». Es una nanoestructuración del Silicio descubierta por casualidad, consistente en un «bosque» de agujas muy pequeñas de Silicio. Se puede construir por métodos empleados en la industria de los semiconductores, y tiene una importancia cada vvez mayor en la industria de las células fotovoltaicas porque absorve mucho mejor la luz visible que el Silicio cristalino normal. Un enlace interesente sobre este este material es el de la Wikipedia: https://en.wikipedia.org/wiki/Black_silicon
(2) Copia literal del artículo del nombre de la estructura.

Generación de metanol directamente usando CO2 del aire

Uno de los problemas más importantes a los que la especia humana está sometiéndose a sí misma y al planeta es el cambio del equilibrio climático que existía previo a la explosión de la población humana de los siglos XIX y XX. Gran parte de este cambio de equilibrio se debe a la emisión de una gran cantidad de gas CO2 a la atmósfera, doblando su concentración atmosférica en los últimos decenios respecto a los valores preindustriales. Para minimizar los efectos de este cambio de equilibrio en la especie humana y el planeta, porque ya es muy tarde para evitarlo por completo, una estrategia consiste en emitir menos cantidad del gas, y otra en hacer que la propia economía humana se encargue de generar usos extra para el CO2 atmosférico y, así, «gastar» más de ese gas para reducir su concentración en la atmósfera.

Para ello, se puede pensar en sintetizar elementos útiles que precisen CO2. Uno de ellos es el metanol, que es un precursor químico de muchísimos elementos importantes, además de ser un combustible relativamente bueno. Pues recientemente, se ha logrado la śintesis de metanol desde CO2 de aire atmosférico directamente. Es un avance muy importante, porque al emplear directamente el aire más energía que puede ser extraída de fuentes renovables y suponiendo que el mñetodo pueda escalarse a sistemas más grandes, se podría emplear para usar el carbono contenido en el dióxido de carbono atmosférico en un nuevo «ciclo de carbono» artificial, que se añadiría al natural. Esto reduciría la cantida de CO2 en la atmósfera, de manera que efectivamente contribuiríamos a «enfriar» el planeta.

Artículo original: Conversion of CO2 from Air into Methanol Using a Polyamine and a Homogeneous Ruthenium Catalyst