
UNIVERSITY OF CASTILLA-LA MANCHA

Computing Systems Department

Intelligent threat detection in Internet of
Things environments

A dissertation for the degree of Doctor of Philosophy in Computer Science
to be presented with due permission of the Computing Systems

Department, for public examination and debate.

Author: D. José Roldán Gómez
Advisor: Dr. D. José Luis Martínez Martínez

Dr. D. Juan Boubeta Puig

Albacete, March 2023

UNIVERSIDAD DE CASTILLA-LA MANCHA

Departamento de Sistemas Informáticos

Intelligent threat detection in Internet of
Things environments

Tesis Doctoral presentada al Departamento de Sistemas Informáticos de la
Universidad de Castilla-La Mancha para la obtención del título de Doctor

en Tecnologías Informáticas Avanzadas.

Autor: D. José Roldán Gómez
Director: Dr. D. José Luis Martínez Martínez

Dr. D. Juan Boubeta Puig

Albacete, Marzo de 2023

A mis abuelos

Agradecimientos

Quisiera agradecer a mis padres, José y María Teresa, por su apoyo constante y por creer
en mí desde el principio. Sin su amor y su guía, no habría sido posible llegar hasta aquí.
También quiero agradecer a mi hermana Noelia por ser un apoyo.

Mis directores de tesis, Juan Boubeta y José Luis Martínez, han sido una fuente cons-
tante de sabiduría y orientación durante mi investigación. Les estoy muy agradecido por su
paciencia y dedicación.

Mis compañeros de grupo, Javi, David, Juanma, Sergio, Rubén y Carlos, han sido un
gran equipo y una fuente de inspiración durante el desarrollo de la tesis. A mis amigos,
especialmente a Pedro, Fer, Panadero y David, por su apoyo y su amistad durante todos
estos años.

También quiero agradecer a Jaime Y Jesús por su ayuda durante la estancia y a los
compañeros de La universidad de Oviedo queme acogieron como a unomás desde el primer
momento.

Por último, quiero agradecer a mis profesores de carrera, colegio e instituto por ense-
ñarme tanto y por prepararme para este momento. Sin su dedicación y su pasión por la
educación, no habría llegado hasta aquí.

Gracias a todos por estar a mi lado en este camino.

Este trabajo ha sido cofinanciado por el Ministerio de Economía y Competitividad y la Comisión
Europea (fondos MINECO/FEDER), bajo el proyecto con referencia RTI2018-098156-B-C52, por la
Consejería de Educación, Cultura y Deportes de la Junta de Comunidades de Castilla-La Mancha,
mediante el proyecto con referencia SBPLY/17/180501/000353, y por el Ministerio de Educación,
Cultura y Deporte a través de la beca FPU 17/03105.

i

Summary

The Internet of Things (IoT) has experienced a dizzying growth. The applications of the IoT
are many and diverse, ranging from enabling a “smart” home to monitoring industrial pro-
cesses to optimizing traffic patterns. This unprecedented growth has caused it to become
a very attractive target for cyber criminals. This is especially worrisome in this paradigm
because there are certain intrinsic limitations. Among these are the fact that the devices in-
volved are often resource-constrained, which means that they have little processing power
and memory. This makes them difficult to protect. Additionally, these devices are often not
well-maintained, meaning that they might be using outdated software that is vulnerable
to known exploits. It is therefore necessary to design new solutions or adapt traditional
solutions that take into account the characteristics of the paradigm. The objective of this
PhD thesis is to design, implement and evaluate an architecture that allows the detection of
known and unknown threats in IoT environments in real time. Furthermore, it is intended
that this architecture can detect such attacks with the least possible intervention.

Complex Event Processing (CEP) allows the processing and correlation of a large
amount of data in real time. To achieve this, an expert defines a set of rules, called CEP
rules, and when simple events, which contain information necessary to detect situations of
interest, comply with these rules, a complex event is triggered.

First, an architecture capable of generating CEP rules to detect IoT threats in real time
is designed, implemented and evaluated. However, this architecture requires an expert to
specify the most important fields of the protocols to be monitored. It is also necessary that
the network traffic, with which we train our architecture, is labeled, i.e., that the architec-
ture knows which packets are attacks when training.

So next, the above architecture is improved by eliminating the need for a domain expert
to identify key fields , and then it is updated to enable it to generate the rules without the
need for tagged traffic. The results obtained throughout the Thesis support the viability of
all the proposals we present, as they show that the different architectures achieve good re-
sults from a functional and performance point of view. We can conclude that the proposals
described are viable.

iii

Resumen

El IoT ha experimentado un crecimiento vertiginoso. Las aplicaciones del IoT son muchas
y diversas, y van desde la habilitación de un hogar inteligente hasta la monitorización de
procesos industriales o la optimización de patrones de tráfico. Este crecimiento sin prece-
dentes ha hecho que se convierta en un objetivo muy interesante para los ciberdelincuentes.
Esto es especialmente preocupante en este paradigma porque existen ciertas limitaciones
intrínsecas que pueden complicar la implementación de medidas en este paradigma. En-
tre ellas, el hecho de que estos dispositivos suelen tener recursos limitados, lo que significa
que tienen poca capacidad de procesamiento y memoria. Además, estos dispositivos no sue-
len estar bien mantenidos y pueden utilizar software obsoleto que es vulnerable a exploits
conocidos. Por tanto, es necesario diseñar nuevas soluciones o adaptar las tradicionales
teniendo en cuenta las características del paradigma. El objetivo de esta tesis doctoral es
diseñar, implementar y evaluar una arquitectura que permita detectar amenazas conocidas
y desconocidas en entornos IoT en tiempo real. Además, se pretende que esta arquitectura
pueda detectar dichos ataques con la menor intervención posible.

CEP permite procesar y correlacionar una gran cantidad de datos en tiempo real. Para
ello, un experto define un conjunto de reglas, denominadas reglas CEP, cuando los even-
tos simples, que contienen la información necesaria para detectar situaciones de interés,
cumplen con estas reglas, se dispara un evento complejo.

Primero, se diseña, implementa y evalúa una arquitectura capaz de generar reglas CEP
para detectar amenazas IoT en tiempo real; sin embargo, esta arquitectura requiere que un
experto especifique los camposmás importantes de los protocolos amonitorizar. También es
necesario que el tráfico de red, con el que entrenamos nuestra arquitectura, esté etiquetado,
es decir, que la arquitectura sepa qué paquetes son ataques a la hora de entrenar.

A continuación, se actualiza y mejora la arquitectura anterior. La mejora de esta im-
plementación es que elimina la necesidad de un experto en el dominio para identificar los
campos clave. Por último, se actualiza la arquitectura anterior para poder generar las reglas
sin necesidad de tráfico etiquetado. Los resultados obtenidos a lo largo de la tesis avalan la
viabilidad de todas las propuestas que presentamos. Los resultados obtenidos muestran que
las diferentes arquitecturas consiguen buenos resultados desde el punto de vista funcional
y de rendimiento. Podemos concluir que las propuestas descritas son viables.

v

Contents

Contents vii

List of Figures ix

List of Tables xi

List of Acronyms xiii

1 Introduction 1
1.1 Motivation and Justification . 1
1.2 Objectives . 5
1.3 Methodology and Work Plan . 6
1.4 General Discussion and Description of the Proposals 10

1.4.1 Threats and evaluation metrics . 10
1.4.2 Architecture to detect threats in IoT environments on the basis of

one or more key features . 12
1.4.3 Ensuring the feasibility of the initial architecture on different CEP

engines . 14
1.4.4 Architecture to detect threats in IoT environments without the need

to specify key features . 16
1.4.5 Improving, implementing and validating an architecture that can

detect threats in IoT environments in an unsupervised manner . . 18
1.5 Results . 21

2 Security analysis of the MQTT-SN protocol for the Internet of Things 27

3 Integrating Complex Event Processing and Machine Learning: an intelli-
gent architecture for detecting IoT security attacks 53

4 Detecting security attacks in cyber-physical systems: a comparison of Mule
and WSO2 intelligent IoT architectures 77

5 Attack pattern recognition in the Internet of Things using Complex Event
Processing and Machine Learning 113

vii

Contents

6 An automatic Complex Event Processing rules generation system for the
recognition of real-Time IoT attack patterns 123

7 An automatic unsupervised Complex Event Processing rules generation ar-
chitecture for real-time IoT attacks detection 155

8 Conclusions and Future Work 179
8.1 Conclusions . 179
8.2 Conclusiones . 181
8.3 Future Work . 184

Bibliography 187

viii

List of Figures

1.1 Quarterly growth of malware targeting Linux IoT. 2
1.2 The proposed architecture for detecting IoT security attacks on the basis of

key features. 12
1.3 The proposed architecture to detect threats in IoT environments without

the need to specify key features . 16
1.4 Updated architecture for generating CEP rules in an unsupervised manner

for real-time threat detection in IoT environments 19

ix

List of Tables

1.1 Metrics obtained by the CEP rules generated. 23

xi

List of Acronyms

CEP Complex Event Processing

CSV Comma Separated Values

EPL Event Processing Language

ESB Enterprise Service Bus

GGS GII-GRIN-SCIE

GMM Gaussian Mixture Models

IEEE Institute of Electrical and Electronics Engineers

IF Impact Factor

IoT Internet of Things

IPCA Incremental Principal Component Analysis

JCR Journal Citation Reports

JNIC Jornadas Nacionales de Investigación en Ciberseguridad

JSON JavaScript Object Notation

KPCA Kernel Principal Component Analysis

LR Linear Regression

ML Machine Learning

MQTT Message Queuing Telemetry Transport

MQTT-SN Message Queuing Telemetry Transport for Sensor Networks

PCA Principal Component Analysis

SOA Service Oriented Architecture

SVR Support Vector Regression

TCP Transmission Control Protocol

xiii

List of Acronyms

Telnet Teletype Network

UDP User Datagram Protocol

xiv

CHAPTER 1

Introduction

This chapter introduces this Doctoral Thesis, which is entitled "Intelligent threat detection
in IoT environments". The current state of threat detection in Internet of Things (IoT) en-
vironments is presented first. This allows us to motivate the development of this work,
formulate the hypotheses and to justify the decisions taken in this work. Furthermore,
the general and specific objectives are defined together with the methodology followed to
achieve them. Finally, the proposed solutions and the results obtained by them are briefly
described.

1.1 Motivation and Justification

The IoT has grown rapidly in the last decade and it does not seem that this growth will stop
or slow down any time soon, due to the obvious potential offered by this new paradigm.
Proof of this is the growing number of interactions with certain applications oriented to
this paradigm through devices such as smartphones or wearables. This new paradigm has
proven to be useful in a myriad of contexts, for example, healthcare applications, home
automation, intelligent resource management, among many others [1, 2, 3, 4].

Tangible proof of the paradigm’s potential, which shows that it is already a reality, is
that IoT devices now outnumber non-IoT devices connected to the Internet. This overtaking
occurred for the first time in 2020 [5], even though the pandemic caused a delay in the
paradigm’s growth rate due to chip shortages. Nevertheless, there are currently 12,300
million connected devices and the number is expected to reach 27,000 million by 2025 [6].

Despite the dizzying growth of the paradigm, there are certain intrinsic characteristics
that tend to limit the implementation or adaptation of traditional security solutions. Firstly,
we can highlight the heterogeneity that IoT systems present. There are very different de-
vices connected to each other, as well as protocols from different manufacturers and with
different objectives. This results in a level of heterogeneity that must be taken into account
when implementing solutions in this paradigm [7].

1

1.1. Motivation and Justification

Another problem with this paradigm is the limited resources, at all levels, that devices
tend to have. These devices usually have a low computational capacity, which can compli-
cate the deployment of certain basic features in traditional systems. For example, it is often
difficult to deploy communications encryption systems [8]. This limitation means that the
solutions implemented in this paradigmmust be especially light from a computational point
of view.

Unfortunately, the limitations are not only present in the devices. It should be noted
that there are IoT system deployments in very different locations. This results in a very
common problem of low bandwidth in many networks in this paradigm [9]. This means
that this peculiarity must be taken into account when deploying systems within the net-
works. Therefore, a common characteristic of many protocols intended for this paradigm
is that they focus on reducing the overhead they introduce. However, this often comes at
the expense of doing without other desirable features. The fact that IoT systems can be
deployed in a wide range of applications makes it necessary to use batteries in some spe-
cific contexts [10]. Again, this is an important limitation, as the power consumption that
these batteries may suffer when an IoT solution is deployed within these contexts must be
taken into account. Another disruptive feature, with respect to the traditional paradigm, is
the ubiquity of the devices. In many applications, devices can enter and leave the system
periodically or change their position, and this must be taken into account when designing
networks and systems in this paradigm [11].

 -

 500000.0

 1000000.0

 1500000.0

 2000000.0

 2500000.0

 3000000.0

 3500000.0

 4000000.0

 4500000.0

A
u

gu
st

 2
0

1
6

N
o

ve
m

b
er

 2
0

1
6

Fe
b

ru
ar

y
2

0
1

7

M
ay

 2
0

1
7

A
u

gu
st

 2
0

1
7

N
o

ve
m

b
er

 2
0

1
7

Fe
b

ru
ar

y
2

0
1

8

M
ay

 2
0

1
8

A
u

gu
st

 2
0

1
8

N
o

ve
m

b
er

 2
0

1
8

Fe
b

ru
ar

y
2

0
1

9

M
ay

 2
0

1
9

A
u

gu
st

 2
0

1
9

N
o

ve
m

b
er

 2
0

1
9

Fe
b

ru
ar

y
2

0
2

0

M
ay

 2
0

2
0

A
u

gu
st

 2
0

2
0

N
o

ve
m

b
er

 2
0

2
0

Fe
b

ru
ar

y
2

0
2

1

M
ay

 2
0

2
1

A
u

gu
st

 2
0

2
1

N
o

ve
m

b
er

 2
0

2
1

Fe
b

ru
ar

y
2

0
2

2

M
ay

 2
0

2
2

Growth of malware targeting Linux IoT

Figure 1.1: Quarterly growth of malware targeting Linux IoT.

As the number of IoT devices connected to the network has grown, so has the interest of
criminals in this type of device. This is evidenced by the data shown in Figure 1.1, in which

2

Chapter 1. Introduction

we can see the quarterly growth in malware samples targeting Linux IoT devices. From
August 2016 to May 2022 there was a huge increase, with fifty-nine times more malware
samples targeting IoT [12].

This rapid growth is compounded by the aforementioned limitations of IoT devices.
This disables many common solutions that require a lot of resources to function properly.
Therefore, we can conclude that it is necessary to make an effort to find new solutions, or
adapt typical solutions, to deal with these threats in this type of environment.

We can measure security within the IoT, and any paradigm, by defining three categories
of cybersecurity. These are confidentiality, integrity and availability. Within the field of cy-
bersecurity, confidentiality refers to the prevention of unauthorized access to data. In order
to maintain confidentiality, data must be protected from unauthorized individuals. There
are a variety of ways to protect data, including encryption, access control, and data mask-
ing. Integrity, in the same context, refers to the prevention of unauthorized modification of
data. To maintain data integrity, data must be protected from unauthorized individuals who
may attempt to alter it. Data integrity can be protected through the use of cryptographic
hashes, digital signatures, and data validation. Availability, finally, refers to the prevention
of data loss. To ensure data availability, data must be backed up and stored in a secure
location.

One way to address the three categories of cyber security is by detecting threats in
real time, and within the field of threat detection there are two different categories. The
more classical detectors are based on signatures and focus on checking a static signature,
which can be a hash, or any other element that univocally identifies a specific threat. In
the other category we find the behavior-based threat detectors. These detectors learn from
the behavior of different threats and are able to identify this behavior later to detect these
threats. Although signature-based detectors are widely used, they are not as flexible as
behavior-based detectors. This is because a small modification of the threat can cause the
signatures to mismatch.

As a general rule, behavior-based threat detectors make use of techniques that allow
them to generate models that represent the attacks to be detected. This set of techniques are
grouped in a field known as Machine Learning (ML) [13]. Within ML techniques there are
two different categories. The first category is supervised learning, where the ML algorithm
is given a set of training data that includes the desired output, also known as the label.
The algorithm then learns to generate the desired output from the labeled input data. The
second category is unsupervised learning, where the ML algorithm is given a set of data
but not told what the desired output should be. The algorithm then has to learn to find
patterns and structures in the data in order to generate the desired output. It is therefore
necessary to focus research on finding solutions to these problems.

This Doctoral Thesis focuses on network attack detection in IoT environments. These
attacks can be generated by a malicious device or by malware instances. There are sev-
eral works that try to solve this problem [14, 15, 16, 17, 18, 19, 20, 21, 22], the trend in the

3

1.1. Motivation and Justification

related research is to make use of ML algorithms, which are used because they allow the de-
tection of attacks on the basis of behavior. This offers a large degree of flexibility compared
with signature-based solutions, especially in such a dynamic and changing environment.
These works focus on applying different ML algorithms to detect IoT threats. The results
obtained, from a functional point of view, are very promising. The models seem to work
well and detect attacks correctly. However, deploying these models in IoT environments
presents a number of challenges and issues. These problems are mainly due to the intrinsic
limitations of IoT devices and systems. Deploying these models usually requires consider-
able computational capacity and, in general, they need a large amount of information to
be trained correctly. IoT devices do not usually have a very large computational capac-
ity and deploying a high volume of information can be problematic in networks with low
bandwidth.

Due to the inherent limitations of IoT, it is necessary to look for a technology that can
correlate a large amount of information in real time and be successfully deployed in IoT
environments despite their limitations. A technology that meets these two requirements is
Complex Event Processing (CEP). CEP has been designed to detect situations of interest by
processing and correlating a large amount of information that can be extracted in a specific
context. In this way this information, which has not been processed by CEP, is divided into
simple events. The first step in deploying a CEP solution is to define the simple events and
the information they contain. When this step has been carried out, it is necessary for a do-
main expert to define the patterns that these simple events follow in order to automatically
detect each situation of interest. Each of these situations will be triggered by one or more
CEP rules, which are defined by the domain expert and implemented by using an Event
Processing Language (EPL). An EPL is a language that allow us to define the conditions of
the rules. When the simple events meet the requirements defined in a CEP rule, a complex
event is triggered by summarizing the situations of interest that have occurred. This tech-
nology is ideal for detecting threats in IoT environments, but it has one major limitation,
namely the need for a domain expert who is able to define CEP rules manually to detect
situations of interest. The challenge is to develop an architecture that can generate CEP
rules automatically in order to overcome this limitation.

There are multiple papers that focus on defining CEP rules automatically [23, 24, 25,
26]. Most of these papers succeed in generating CEP rules satisfactorily. However, these
works do not focus on detecting attacks in IoT environments in real time, so perhaps this
is why they do not focus on the computational performance of the rules generated. In this
thesis we focus on designing an architecture that generates rules that are computationally
and functionally effective and efficient. We will then use these rules to detect known and
unknown attacks. In this context we assume that an attack is known when a rule for that
attack has been generated during the training process. An attack is unknown when there
are no samples of that attack in the training process.

The hypothesis to be tested in this thesis is that it is possible to integrate CEP with ML
to automatically generate rules to detect attacks in real time in IoT environments. This

4

Chapter 1. Introduction

hypothesis, if confirmed, generates some interesting questions. The first is straightforward
since the hypothesis is posed for an IoT scenariowith the constraints described above (RQ1):
Are the rules generated by the architecture computationally efficient in a constrained envi-
ronment, such as an IoT network? If the performance is efficient, it means that it is feasible
to deploy a threat detector in an IoT environment. The heterogeneity of this paradigm
makes it very complicated to train our detector models with all possible attacks. This leads
to the second question (RQ2): Is the proposal capable of detecting unknown attacks? There
is also some heterogeneity within CEP technologies, which leads us to the third question
(RQ3): Is this integration of technologies capable of working in different CEP implemen-
tations? This ability to adapt to different technologies is desirable because of the different
CEP implementations that exist. Finally, a question that arises from the use of ML tech-
niques is the following (RQ4): Is it possible for the models used to generate the rules to be
trained in an unsupervised way?

1.2 Objectives

As a result of the different challenges described above, and taking into account both the
hypothesis and the subsequent research questions, we can define the main objective of this
thesis as the design, implementation and evaluation of a novel architecture that integrates
CEP andML to generate CEP rules to detect real-time network attacks in IoT environments.
Furthermore, such rules should be able to detect known and unknown threats.

To achieve this general objective, we will work incrementally on different specific ob-
jectives. In this way we focus on a specific problem in each iteration of the architecture.
The specific objectives in question are the following:

• Objective 1. We will study and analyze the solutions proposed by other researchers.
This objective is transversal and cyclical, so that in each advance proposed in this
thesis a process of study of the state of the art will be carried out. This will allow
us to know the results obtained by other researchers and to focus on working with
the technologies and techniques that offer good results, comparing the advantages
and disadvantages of the existing solutions with respect to our proposal. This way of
proceeding is ideal to obtain a multiperspective view of our contributions within the
state of the art.

• Objective 2. We will analyze common IoT protocols, design, implement and deploy
a test environment. This step is fundamental to obtain an environment in which we
will experiment with the different solutions that will be proposed later. It is necessary
to generate a scenario with well-defined normal behavior and scenarios in which this
behavior is attacked with different threats. This will provide us with the data to work
with and a way to validate our solutions that we will use throughout the thesis. Thus,
in an iterative way, we will use these data to define different experiments depending
on the architecture we want to evaluate.

5

1.3. Methodology and Work Plan

• Objective 3. We will design, implement, deploy and validate an architecture, that
integrates cutting-edge technologies such as CEP and ML in order to automatically
detect threats in IoT environments on the basis of one or more key features. These
features refer to characteristics of the elements that may or may not be a threat. For
example, the size of the network packet, or the protocol to which the packet belongs,
among others. It is common for security experts to know themost common indicators
of an attack in a protocol. But sometimes quantifying the values of these indicators
is a complicated task, especially in the face of unknown attacks. Therefore, it is im-
portant to establish an initial architecture that solves this problem and is functional
and efficient in IoT environments. This will not solve the problem in its entirety, but
it will address many real situations and allow us to establish a baseline to work from.

• Objective 4. We will ensure the feasibility of the initial architecture in different CEP
implementations. It is useful to ensure the independence of the proposed architec-
tures for threat detection in IoT environments with respect to a specific CEP engine.
In this waywewill know that we can adapt our architectures to different CEP engines.
An analysis of the performance of the different CEP engines in detecting network at-
tacks will also be performed. This will allow us to ensure their efficiency from a
computational performance point of view.

• Objective 5. We will redesign, implement and validate a new architecture to detect
threats in IoT environments without the need to specify key features and achieve im-
proved computational performance with respect to the initial architecture proposed.
This will be an obvious improvement because it allows security experts to deploy
an intelligent threat detector that is able to generate its own rules whenever there
is labeled network traffic data. However, it will still be necessary to obtain labeled
network traffic to train the system.

• Objective 6. We will update, improve, implement and validate a new architecture
capable of detecting threats in IoT environments without the need to specify key
features in an unsupervised way, i.e, with unlabeled data. This improvement will
allow us to obtain an intelligent threat detector in a completely unsupervised way. In
addition, the performance improvements achieved in the previous proposal will be
maintained.

1.3 Methodology and Work Plan

This section describes the methodology that will be used to achieve each of the objectives
proposed in Section 1.2. It describes the milestones that must be reached in order to achieve
the main objective of the Thesis. The tasks to be carried out to achieve each objective are
as follows:

• Objective 1 — To study and analyze the solutions proposed by other researchers.

6

Chapter 1. Introduction

The main function of this milestone is to understand the state of the art of IoT threat
detection. In this way we can understand what technologies, techniques andmethod-
ologies are followed to work on this issue. This objective is especially useful in the
early stages of the Doctoral Thesis in order to plan how to achieve of the rest of the
objectives. However, the state of the art is analyzed throughout the whole working
process of the PhD Thesis in order to update the existing knowledge with respect to
new solutions proposed by other researchers.

• Objective 2 —To analyze common IoT protocols, and design, implement and deploy
a test environment.

This objective focuses on obtaining a set of data that allows us to correctly evaluate
our proposals.

TheMessage Queuing Telemetry Transport (MQTT) protocol is used for this purpose,
because it is widely used in IoT scenarios. A baseline scenario and attack scenarios are
then generated using virtualization. By using a sniffing process, the packets related
to each scenario are obtained. These packets will allow us to obtain the data that
will be vital for the development of the Thesis. But they also represent an important
added value in themselves.

The tasks necessary to achieve the first part of this objective are:

1. Perform a security analysis of the MQTT and Message Queuing Telemetry
Transport for Sensor Networks (MQTT-SN) protocol to detect possible vulner-
abilities.

2. Deploy a virtual MQTT network with a legitimate baseline scenario.

3. Implement and perform attacks against the MQTT network.

4. Obtain the packets of the base scenario and of the attacks by means of a sniffing
process.

• Objective 3 — To Design, implement, deploy and validate an architecture to detect
threats in IoT environments on the basis of one or more key features.

A major problem in threat detection is the need to process a significant amount of
data, preferably in real time. To create a threat detector that is able to be deployed in
an IoT environment and correlate a large number of events per second, CEP is used.
CEP needs defined rules to function and this leads to limitations.

Sometimes it is even complicated for domain experts to define rules [27, 28]. Even if
they are able to identify the characteristics to be monitored in a protocol, it is not a
trivial task to define acceptable thresholds for such features in threat detection. These
thresholds are used to check whether an item belongs to a category, in this case to
check whether a network packet is a threat and the specific threat type. Therefore,

7

1.3. Methodology and Work Plan

an architecture capable of detecting threats in IoT environments is designed to define
these thresholds automatically. For this purpose, the following tasks are performed:

1. Design and implement an architecture capable of generating rule thresholds
based on their key features.

2. Feature selection and preprocessing of labeled datasets. These will be used for
training and validation of the architecture.

3. Training of the model used by the threat detector.

4. Definition of thresholds and generation of CEP rules for threat detection.

5. Evaluation of the CEP rules generated for threat detection.

• Objective 4 — To ensure the feasibility of the initial architecture on different CEP
engines.

Ensuring that the architecture works well on a different CEP engine is an important
step forward. For this purpose, the above architecture will be deployed on both the:
Esper [29] andWSO2 [30] CEP engines. Both are widely used and stand out for being
open source. For their EPL they use, EsperEPL [31] and SiddhiQL [32], respectively. In
addition, a comparison of the twoCEP engines under situations of stress is performed.
This also provides an insight into how it can perform in an IoT scenario. The steps
followed to achieve this milestone are as follows:

1. Training of the predictor in charge of predicting the value of the key features.

2. Deploy the architecture on Esper CEP and WSO2 CEP.

3. Deploy the detection patterns on both CEP engines.

4. Implement a simulator to modulate the sending of events to the CEP engines.
The objective is for both CEP engines to be in similar situations in the experi-
ments.

5. Measure the computational performance of both CEP engines and compare the
results.

• Objective 5 — To redesign, implement and validate a new architecture to detect
threats in IoT environments without the need to specify key features and achieve
improved computational performance over the initial proposal.

In certain circumstances it is difficult to choose a set of key features for a given pro-
tocol. In addition, since it is a threat detector designed for IoT environments, com-
putational performance is critical if we want it to work in real time. To achieve this
computational improvement, it is useful to reduce the number of features of simple
events. However, if we do this directly, we could hinder the generation of models to
detect attacks. Therefore, we use Principal Component Analysis (PCA) [33], which
is an algorithm used to reduce the dimensionality of a sample space. In this case,

8

Chapter 1. Introduction

it is used to reduce the size of the simple events while maintaining the maximum
amount of information possible. This allows us to generate rules from simple events
with fewer attributes. This in turn means that the CEP engine has to process smaller
simple events and less information is sent to the network. This constitutes an im-
provement in computational performance and a more efficient use of the network.

The tasks required to complete this objective are:

1. Redesign the architecture to generate complete CEP rules for threat detection.

2. Feature selection and preprocessing of datasets for PCA model training.

3. Training of the PCA model used to reduce the size of simple events.

4. Definition of thresholds for each CEP rule generated for attack detection.

5. Generation of CEP rules obtained by our architecture.

6. Deployment of the generated CEP rules and evaluation of their performance.

• Objective 6 — To update, improve, implement and validate an architecture that can
detect threats in IoT environments without the need to specify key features in an
unsupervised manner.

The architecture obtained in Objective 5 is useful for generating complete rules when
there is previously-labeled traffic. However, this requirement is not always easy to
meet. Therefore, a further improvement in the architecture is proposed that allows
completely unsupervised CEP rule generation. These rules are able to detect attacks
in IoT environments in real time and eliminate the need to have labeled traffic.

This unsupervised learning mechanism is achieved through a clustering process us-
ing Gaussian Mixture Models (GMM) [34]. GMM is an algorithm whose objective is
to find different clusters by establishing the normal distributions that represent each
cluster. This allows us to generate anonymous families that enable the generation
of different CEP rules for each traffic class. In addition, the mechanism for defining
the thresholds has also been updated and Incremental Principal Component Analysis
(IPCA) has been used [35]. This version of PCA allows the original model to be fed
back to generate new models iteratively. The following steps are followed to achieve
this objective:

1. Design of the additional module to generate anonymous families.

2. Update of the module used to define thresholds.

3. Feature selection and preprocessing of datasets for IPCA model training.

4. Training of the IPCA model used to reduce the size of simple events.

5. Definition of thresholds for each CEP rule generated for attack detection.

6. Generation of CEP rules obtained by our architecture.

9

1.4. General Discussion and Description of the Proposals

7. Deployment of the generated CEP rules and evaluation of their performance.

1.4 GeneralDiscussion andDescription of theProposals

As mentioned above, the fundamental objective of the thesis is to develop an architecture
that can detect threats in IoT environments and do so with as little supervision by a do-
main expert as possible. This section offers a brief analysis of the different proposals made
throughout the Doctoral Thesis. First, Section 1.4.1 describes the attacks used to evaluate
the different architectures and the metrics used in these evaluations. Maintaining a certain
homogeneity in the datasets and metrics used in all the architectures allows us to know the
performance of each of the proposed designs. Section 1.4.2 describes the initial proposed
architecture, which is able to define thresholds for key features, allowing us to generate
CEP rules to detect attacks in IoT environments. Section 1.4.3 describes the comparison of
Esper CEP and WSO2 to demonstrate the possibility of deploying our proposals on various
CEP engines. Section 1.4.4 describes the architecture capable of detecting threats in IoT en-
vironments by defining complete CEP rules using PCA. Finally, section 1.4.5 describes the
improvement made to the architecture of section 1.4.4 that enables us to generate complete
CEP rules in a totally unsupervised way.

1.4.1 Threats and evaluation metrics

This section describes the attacks found in the datasets used to evaluate the different ar-
chitectures proposed. In addition, the common metrics used during the evaluation of the
different proposals are also described.

The dataset that has been generated and which we will use throughout the Thesis is ob-
tained by obtaining the traffic of an MQTT network, which is composed of 3 MQTT clients
and an MQTT broker in charge of coordinating the sending and receiving of messages. In
this network, a legitimate behavior of the network is simulated when it is not under attack.
To obtain this scenario, the clients periodically post on 3 different topics, one per client.
These published data have a numerical format, so that they can simulate temperatures or
decibels. Subsequently, a new malicious client is introduced in the network, and this client
is in charge of performing the attacks described below:

• Subfuzzing. This attack is designed to find the different topics existing in the MQTT
broker. The usefulness of this attack lies in those scenarios where the attacker is able
to introduce a client into the network but is not able to subscribe to the root topic. The
attack consists of iterating over a dictionary or using brute force to try to subscribe to
different topics. This makes it possible to discover the different topics in the system.

• Disconnect wave. The objective of this attack is to perform a denial of service of
the MQTT network by disconnecting all legitimate clients from the MQTT network.
This attack works in configurations where a new client can connect with an existing
client ID and the broker kicks out the original client when this happens. To do this

10

Chapter 1. Introduction

the attacker iterates over the various network client identifiers while connecting to
the broker with those identifiers. This causes the broker to eject legitimate clients.

• Transmission Control Protocol (TCP) SYN scan. This scanner is used to deter-
mine which TCP ports are open. Although this is not a specific attack, it is often used
in the early stages of targeted attacks. To perform this scan, the attacker sends TCP
SYN packets to the different ports to be scanned. If the port is open the victim will
respond with a SYN/ACK packet, otherwise it will respond with an RST packet.

• User Datagram Protocol (UDP) scan. The UDP port scanner is used to detect open
ports with UDP applications. In this case, if the victim responds with a packet of type
Unreachable, the port is considered closed. If the victim sends another error, the port
is considered filtered. Finally, if the victim sends nothing or sends something else,
the port is considered open.

• Teletype Network (Telnet) scan. This scanner simulates the first stage of Mirai,
which consists in performing a dictionary attack over Telnet to try to gain access to
the device.

• Xmas scan. This attack also tries to find open TCP ports, and it can be a good
alternativewhen firewalls block the TCP SYN scan. To perform this scan, TCP packets
are sent with the PSH, FIN and URG flags set. If the victim responds with an RST
packet, the port is considered closed. If the response is an unreachable error packet,
the port is considered filtered. If the victim does not respond, the port may be filtered
or open.

The dataset containing all the attacks and normal traffic has been published in theMendeley
repository [36].

The metrics used to enhance the evaluations are as follows:

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

• 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

• 𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

where 𝑇𝑃 is the true positives, 𝐹𝑃 is the false positives and 𝐹𝑁 is the false negatives.

Thus, a high Recall score means that a CEP rule detects events that actually belong to
that family, and a high Precision score means that that CEP rule does not detect many false
positives. Finally, F1 Score uses the two scores to obtain a metrict hat is balanced between
them. In a cybersecurity context, it is usually a good idea to maintain a high recall value to
detect threats, but if the precision value is too low the detector will generate too many false
positives.

11

1.4. General Discussion and Description of the Proposals

1.4.2 Architecture to detect threats in IoT environments on the ba-
sis of one or more key features

This section describes the initial architecture developed in the Thesis [37]. As discussed
above, this proposal is able to define the thresholds of the CEP rules within which the key
features should be based on the rest of the features. In this way, traffic can be classified to
detect attacks in IoT environments.

Figure 1.2 shows a diagram of the proposed architecture, which is composed of two
different layers. The first layer includes the processes that are executed at runtime (upper
half of Figure 1.2), i.e., the behavior of our system, while the second layer contains the
actions that are carried out during the design stage (lower half of Figure 1.2).

Figure 1.2: The proposed architecture for detecting IoT security attacks on the basis of key
features.

Runtime Architecture Layer

The runtime layer is designed with a Service Oriented Architecture (SOA) 2.0 in mind,
and this is responsible for: obtaining the data produced by the IoT network in real time;
processing, analyzing and correlating such data to obtain relevant information; detecting

12

Chapter 1. Introduction

situations of interest and communicating these situations to the data sinks so that actions
can be taken quickly.

In this layer the data from the dataset, which has been described in the previous section,
is obtained and sent to the Enterprise Service Bus (ESB). Using the MQTT protocol. In this
context, ESB is the centralizing component of the architecture that transports the data to
the different stages of the architecture. In this way, the ESB receives the raw data from the
sensors in real time, then preprocesses it and converts it into a common format for network
events. The preprocessing also allows the training data to be consumable for our training
ML algorithm (Linear Regression (LR) or Support Vector Regression (SVR)).

The ESB then produces a trained model, which allows us to generate NetworkPrediction
events with a timestamp, a predicted value (of packet length in this case) and a threshold.
Each packet in the network also has an associated NetworkPrediction event.

Thus, when the difference between the actual value and the prediction of a predicted
feature is outside the threshold for this type of packet, the system will detect it. This will
allow CEP to be used to detect attacks.

Subsequently, the CEP engine, which is integrated with the ESB, receives both network
events and NetworkPrediction events, and this allows it to calculate the differences between
actual values and predictions. Comparing this difference with the threshold allows it to
detect security attacks (in the form of complex events) in real time. Once a complex event
has been detected, the decision process quickly notifies the data sinks (trusted servers or
databases, for example).

Design time architecture layer

The design time layer follows a model-driven approach similar to MEdit4CEP [27], and its
main purpose is to define high-level models that are easy to understand for any user. These
models can be transformed into code interpretable by CEP engines.

We can observe the design time layer in the lower half of Figure 1.2, as well as the image
of the domain expert, who, in this context, is someone who has knowledge of the operation
of the network and is able to detect attack patterns, although he or she does not necessarily
have any knowledge of CEP and ML. Domain experts are in charge of precisely defining
the CEP domain formed by the types of network events and NetworkPrediction events with
their features, they also define the attack patterns using a graphical tool to abstract the
implementation details of the CEP rules. This tool is responsible for transforming graphical
models of attack patterns into EPL code, which can be deployed in the CEP engine.

The steps to define and generate the IoT security domain code and event patterns are
as follows:

1. The domain expert designs the IoT security domain model using the graphical tool.
This is achieved by defining the existing event types and their features.

13

1.4. General Discussion and Description of the Proposals

2. The graphical editor will validate the model syntactically. If errors are detected, the
domain expert is advised to correct these errors. Once they have a valid model, this
model is saved.

3. These patterns are converted into code. This code consists of both the EPL, which is
the code that implements the conditions that must be satisfied in order for the CEP
engine to detect security attacks, and the code for the actions to be taken in the ESB
when detecting possible security attacks.

4. The EPL code is added to the CEP engine, while the generated actions code will be
added to the decision process component in the ESB at runtime.

At design time this architecture provides two fundamental advantages. First, the use of
MEdit4CEP allows the domain expert to model the patterns he/she needs without the need
for CEP knowledge. Second, the integration of a predictor allows us to generate dynamic
patterns. These patterns are considered dynamic because our predictor calculates the es-
timated value for key features that a legitimate package would have using the features of
these packages. The patterns make use of these predicted values to calculate the difference
with respect to the actual value. The integration of MEdit4CEP and the predictor makes
our architecture easy to use, and adaptable to new attacks and scenarios.

The fundamental advantage of our proposal over other rule-based detectors is that our
proposal is capable of detecting attacks that are not modeled by the system. This allows
us to define an anomaly detector pattern that triggers complex events when the predicted
values do not match normality. Therefore, this allows us to detect unknown attacks.

1.4.3 Ensuring the feasibility of the initial architecture on different
CEP engines

This section describes the process of comparing CEP engines when deploying the archi-
tecture proposed in section 1.4.2. A further explanation on this contribution can be found
in [38]. As mentioned above, the objective of this process is to ensure that the mechanisms
we propose can be implemented in different CEP engines. Furthermore, we intend to test
the computational performance offered by these engines when deploying our proposal, or
when employing common patterns in an IoT environment, both in common and stressful
situations. In this case we compare Mule ESB with the Esper CEP engine against WSO2
with the Siddhi CEP engine.

There are differences between the two implemented architectures, since our proposal
has to be adapted to the technologies used.

14

Chapter 1. Introduction

Architecture Implementation with Mule

The implementation used by Mule and Esper is composed of three data streams: DataRe-
ceptionAndManagement, ComplexEventReceptionAndDecisionMaking and EventPatternAddi-
tionToEsper.

TheDataReceptionAndManagement flow receives data from the IoT network, transforms
it into an event format and then sends it to the Esper CEP engine. This flow is implemented
with an MQTT input endpoint where a topic is in charge of receiving the data obtained
from the data sources. The received JavaScript Object Notation (JSON) data is then trans-
formed into Java Map events, which are sent to the Esper CEP engine through a message
component.

The ComplexEventReceptionAndDecisionMaking flow captures the complex events gen-
erated by the CEP engine by detecting the patterns that have been previously displayed.
These events are transformed to JSON format and stored in a log file.

Finally, the EventPatternAdditionToEsper flow allows adding new event patterns to the
CEP engine at runtime. To do so, it periodically checks whether a new file with exten-
sion EPL exists. If such a file exists, its content is transformed into a textyo string that is
displayed in the Esper CEP engine.

Architecture Implementation with WSO2

The WSO2-based architecture does not require integration of an ESB with a CEP engine,
as is the case with the Mule and Esper-based architecture. WSO2 provides the Siddhi CEP
engine by default as part of its framework.

TheWSO2-based architecture receives the data obtained from the data sources. For this
purpose, it employs an MQTT broker with two topics, one for NetworkPacket and another
for NetworkPrediction. This data is checked against the event patterns implemented with
SiddhiQL and displayed in the Siddhi CEP engine. Similarly to the Esper and Mule-based
implementation, when a complex event is generated it is stored in a log file.

An attempt has been made to ensure that both implementations operate in similar con-
ditions, although their intrinsic differences make an exact replication using both technolo-
gies impossible. In addition, in order to achieve a similar sending of events and to be able
to reproduce the experiments, a simulator has been implemented.

Simulator

The simulator is designed to send network packets to an MQTT. For this purpose it makes
use of different Comma Separated Values (CSV) files containing real network traffic that
were previously stored, as discussed in Section 1.4.1. This simulator has been implemented
in Python, and the paho-mqtt, pandas and JSON libraries are used for the implementation
of this simulator. This allows us to have real traffic but maintain the reproducibility of

15

1.4. General Discussion and Description of the Proposals

the experiments thanks to data that has been generated in a real MQTT network. The
packets are sent while taking into account the original delay in order to perform realistic
experiments. These delays can also be reduced or omitted altogether to allow experiments
that simulate high-stress situations. These experiments will give us the key information to
know whether our proposal is correctly adapted to IoT environments, as well as indicating
the best CEP engine to use.

1.4.4 Architecture to detect threats in IoT environments without
the need to specify key features

This section describes the second proposal developed in the course of the Thesis. This
proposal tries to improve upon the previous one in two key points. First, it tries to avoid
the need to define key features, thus automating the process much more. Secondly, it im-
proves the computational performance of the CEP engine. A further explanation of this
contribution can be found in [39].

To achieve this objective we will rely on the use of PCA to reduce the size of simple
events. In this way, we achieve the following objectives:

• To reduce the size of the rules generated while characterizing such events with fewer
features, thus eliminating the need to search for key feature sets.

• To reduce the architecture’s use of the network. Smaller simple events reduce the
amount of information sent to the network.

Pipeline

PCA projection

PCA

CEP rule generation

Threshold definition

Mean of the
components

Standard deviation of
the components

Proportion of variance
explained of the

components

Inequation construction

CEP rule definition

Category separation

Labeled Traffic
(training)

Input Stages

Preprocessing

Output

CEP rule generated

PCA model

EPL selection

Category means and
covariances

MQTT Clients

CEP Engine

Figure 1.3: The proposed architecture to detect threats in IoT environments without the
need to specify key features

16

Chapter 1. Introduction

Figure 1.3 shows the diagram of the new architecture in charge of generating rules. As
we can see, as input, it receives the packets labeled by category. As outputs, it obtains the
CEP rules, but also the PCA model, means and covariances.

The operation of the rule generation proposed in this architecture can be divided into
the following stages:

• PCA projection. This stage is in charge of training the PCA model that will be in
charge of reducing the dimensionality of the simple events. To train the PCA model,
it is also necessary to perform a previous data preprocessing, which is also in charge
of this stage. Finally, a separation of the training data by category is performed. This
step is automatic because the data are previously labeled. The objective of PCA is
to reduce the complexity of a sample space, and to achieve this it tries to reduce
its dimensions. Given an element 𝑥 , a simple event in this case, represented by 𝑛
variables, PCA tries to find a representation with 𝑚 variables where 𝑚<<𝑛. Such
variables are obtained as linear combinations of 𝑛 variables, and the new𝑚 variables
are called components. The components are linearly independent of the rest of the
components. PCA thus obtains the largest amount of information represented by
these components. Moreover, since they are linearly independent, it ensures that
there is no redundancy in the information represented.

In this way, an element 𝑥 is represented as a vector of variables 𝑛 = 𝑛1, 𝑛2, ..., 𝑛𝑛 , thus
the vector 𝑚 = 𝑚1,𝑚2, ...,𝑚𝑚 will be obtained as we can observe in Equation 1.3,
where each variable is weighted with a weight 𝑎𝑙𝑝ℎ𝑎. Variables with higher weights
have higher weights in that component. This allow us to easily reduce the dimen-
sionality of the events when the model is already trained. The amount of information
in each component is not homogeneous. Each component has an explained variance
ratio, represented by 𝑟𝑣 .

𝑚𝑖 = 𝑛1 ∗ 𝛼1 + 𝑛2 ∗ 𝛼2 + 𝑛3 ∗ 𝛼3 + ... + 𝑛𝑛 ∗ 𝛼𝑛 (1.1)

• Threshold definition. This phase is responsible for generating the function that
classifies the simple events into the different categories. This function is converted
into a CEP rule in the next stage. Given a training data set 𝑋 = [𝑥1, 𝑥2, ...𝑥𝑡 , ...𝑥𝑇] of
T samples and the corresponding category labels 𝑌 = [𝑦1, 𝑦2, ...𝑦𝑡 , ...𝑦𝑇], each sample
is a matrix composed of 𝑛 components 𝑥𝑡 = [𝑥1, 𝑥2, ...𝑥𝑖, ...𝑥𝑛]. For each category 𝑗 ∈
[1, 𝑐] where c is the total number of known categories, the mean of each component
𝑖 , defined as𝑚 𝑗

𝑖
with respect to its category, is calculated, then the standard deviation,

𝑠𝑡𝑑
𝑗

𝑖
of each component with respect to its category, is calculated as follows:

𝑚
𝑗

𝑖
= 1/𝑅∑𝑥𝑟𝑖 ∀𝑟 ∈ 𝑅 : 𝑦𝑟 = 𝑗

𝑠𝑡𝑑
𝑗

𝑖
=

√︃
1/(𝑅 − 1)∑ (𝑥𝑟

𝑖
−𝑚 𝑗

𝑖
)2∀𝑟 ∈ 𝑅 : 𝑦𝑟 = 𝑗

In addition, the proportion of variance explained, 𝑟𝑣𝑖 , is obtained for each component.
There is a single 𝑟𝑣𝑖 for all categories since it is common to the model and allows us

17

1.4. General Discussion and Description of the Proposals

to power the importance of each component. With these elements, the Equation 1.2
is constructed for 𝑛 components. When the left-hand side of the inequation is smaller
than the right-hand side, which is the threshold that is defined, this event corresponds
to the category that has been used to generate the CEP rule. A corrector element
(𝑎𝑙𝑝ℎ𝑎) is also incorporated into the inequation to increase the value of the threshold.
This element is intended for categories with very different events so that the original
threshold is lower than that of the events that are further away from the mean.

𝑓 (𝑥, 𝑗) =
{
1 if 𝑓 (𝑥) = ∑𝑛

𝑖

√︁
(𝑥𝑖 −𝑚𝑖)2 · 𝑟𝑣𝑖 ≤ (∑𝑛

𝑖 𝑠𝑡𝑑𝑖 · 𝑟𝑣𝑖) + 𝛼
0 if 𝑓 (𝑥) = ∑𝑛

𝑖

√︁
(𝑥𝑖 −𝑚𝑖)2 · 𝑟𝑣𝑖 > (∑𝑛

𝑖 𝑠𝑡𝑑𝑖 · 𝑟𝑣𝑖) + 𝛼
(1.2)

• CEP rule generation. By using the inequation obtained, a CEP rule is generated.
Before defining the rule it is necessary to choose a specific EPL depending on the
CEP engine to be used. In this case, as we are dealing with WSO2, we use Siddhi as
the CEP engine and Siddhi EPL as the EPL. Finally, it only remains to build the rule,
adapting it to the syntax of the chosen EPL. This rule is constructed as a template so
that the numerical values of the rule are filled with the elements calculated to obtain
the inequation.

This architecture allows the generation of complete rules without the need to define
features, and improves upon the computational and network performance of classical rules.

1.4.5 Improving, implementing and validating an architecture that
can detect threats in IoT environments in an unsupervised
manner

This section describes the final improvement developed in the course of the Thesis. This
proposal builds on the architecture described in the previous section, and the fundamen-
tal improvement it focuses on is that of achieving an architecture that can be completely
unsupervised, allowing us to carry out training with unlabeled datasets. In addition, the
updating of rules at runtime is performed using dynamic tables, which makes it efficient,
as the tables can be updated with parameters when new rules are to be generated, and the
rules of each attack simply consult the parameters of its registry. This makes it unneces-
sary to include new EPL code when generating new CEP rules. A further explanation of
this contribution can be found in [40].

Figure 1.4 shows the CEP rule generator deployed in an IoT network. We can see that
the stages of the CEP rule generator have changed, and that it now generates parameters
for the CEP rules, and also that the training data no longer requires labels.

The different phases of the CEP rule generator are as follows:

• PCA phase. This phase is responsible for generating (or updating in subsequent
iterations) the PCA model, using the incoming traffic without the need for it to be

18

Chapter 1. Introduction

Proposed architecture

Dynamic CEP rules generator

PCA Phase

Incremental PCA
training

Reduction with
PCA

GMM Phase

GMM training and
clustering

Extraction of means
and covariance matrix

Threshold Phase

Calculation of distances
from the means
and obtaining
covariances

Calculation of the
threshold for each

family

Sending Phase

Sending of CEP rules

Training Traffic

Normal traffic

Attacks traffic

CEP rule

CEP rules Parameters

CEP Engine

CEP rules

IoT Network
MQTT clients

Client 1 Client 2

Client n-1 Client n

MQTT Broker

Attack Alerts

Alerts received

Reduced
Network traffic

Detected
attacks

CEP rules
parameter

CEP rules
parameters

Modelo PCA

Network traffic Network traffic

New iteration

Figure 1.4: Updated architecture for generating CEP rules in an unsupervised manner for
real-time threat detection in IoT environments

labeled. This phase is similar to the one found in the previous architecture, the only
difference being that IPCA is used. As in the previous architecture, this stage requires
preprocessing.

• GMM phase. This is the fundamental stage in the updating process and the one that
allows training in an unsupervised manner. Gaussian mixture models (GMM) are
used to group traffic into different anonymous families. GMM is a probabilistic model
that assumes that in each data set 𝑋 there are 𝐾 normal distributions representing
all 𝐶 categories existing in the data. GMM tries to find the best combination of the
𝐾 normal distributions. This allows the grouping of all elements into 𝐾 anonymous
families or different groupings.

𝑝 (𝑥𝑖) = Σ𝐾
𝑘=1𝑝 (𝑥𝑖 |𝑐𝑘)𝑝 (𝑐𝑘) (1.3)

Equation 1.3 represents the probability of element 𝑥𝑖 ∈ 𝑋 as the sum of the composite
probabilities it has a set of each family, so that 𝑝 (𝑥𝑖) = 1. GMM assumes that all
elements can be grouped into the various normal distributions.

𝑝 (𝑥𝑖) = Σ𝐾
𝑘=1𝜋𝑘N(𝑥𝑖 |`𝑘 , Σ𝑘) (1.4)

19

1.4. General Discussion and Description of the Proposals

Equation 1.4 shows the GMM model as a linear combination of the 𝐾 Gaussian dis-
tributions. 𝜋𝑘 is the mixing coefficient that each normal distribution has. This coeffi-
cient provides an estimate over each normal distribution. N(𝑥 |`𝑘 , Σ𝑘) is the mixture
model component, this models each distribution, where `𝑘 is the mean and Σ𝑘 is the
covariance.

We use a variational version of the algorithm, whose objective is to infer the number
of optimal distributions [41]. In this way, it is not necessary to indicate the number
of 𝐾 families a priori, and this allows the process to be completely unsupervised.

In conclusion, GMM offers anonymous families, thus avoiding the need for labeled
training traffic.

• Threshold phase. This stage is in charge of calculating the threshold for each 𝑘
family, using the Mahalanobis distance, which is a distance function that takes into
account the covariance matrix to weight it [42]. The main advantage of this func-
tion is that it takes into account the differences in scale that may exist between the
different components that make up the simple events reduced by PCA.

In this case we have slightly modified the Mahalanobis distance. To account for dif-
ferences in the explained variance ratio of the different components of the PCA, we
improved the distance function by using the ratios as weights, as shown in Equation
1.5 .

𝑑 (𝑥, {`, Σ}) =
√︃
(𝑥 − `)𝑇 (Σ−1 ×𝑉𝐸) (𝑥 − `)) (1.5)

Equation 1.5 represents the difference between an element 𝑥 and the mean of a cat-
egory `𝑘 . The inverse covariance matrix is defined as Σ−1. In this way, our distance
function will give more weight to the components with a higher 𝑟𝑣 . The first step is
to obtain the 𝑉𝐸 matrix as the diagonal matrix with the explained variance ratios of
each component. Equation 1.6 shows how the matrix we use to weight the explained
variance ratios is obtained.

𝑉𝐸 = 𝑑𝑖𝑎𝑔(𝑟𝑣1, 𝑟𝑣2, ..., 𝑟𝑣𝑚) (1.6)

Equation 1.5 is used to compare each element with the mean of each family. These
distances allow the threshold for that family to be calculated. For this purpose, the
farthest element from the mean belonging to the family and the closest non-family
element belonging to the family are obtained. With these distances we calculate the
midpoint, which defines the threshold for that category 𝑘 .

𝑑𝑚𝑎𝑥 = max {𝑑 (𝑥, {`𝑘 , Σ𝑘})},∀𝑥 ∈ 𝑘 (1.7)

20

Chapter 1. Introduction

𝑑𝑚𝑖𝑛 = min {𝑑 (𝑥, {`𝑘 , Σ𝑘})},∀𝑥 ∉ 𝑘 (1.8)

𝑇ℎ𝑘 = (𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛)/2 (1.9)

Equations 1.7 and 1.8 show how to obtain the element farthest from the mean of a
family 𝑘 and the nearest outside the family 𝑘 , respectively. Equation 1.9 shows how
the threshold is obtained with these two values.

1.5 Results

This section describes the results obtained from achieving the objectives described in Sec-
tion 1.2. These provide a brief description together with the most important findings. The
hypothesis that was put forward has been fulfilled, as can be seen from the results shown
below.

Regarding Objective 1, no explicit results are included since the state of the art can be
seen in the different articles published in the course of this thesis. The knowledge acquired
during the achievement of this objective facilitates the realization of subsequent work, espe-
cially from the point of view of the methodology. Moreover, as this objective is transversal
to the whole Thesis, the state of the art has been expanding with each new article.

Objective 2 has been achieved, as certain attacks specific to the MQTT and MQTT-
SN protocols have been identified. The process is briefly described in Section 1.4.1. In
addition, a test environment has been generated with a legitimate scenario and the different
attacks were identified together with other very common ones. This allows us to maintain
homogeneity in the experiments performed on the different architectures, and also exposes
our proposals to a realistic case. This is not an objective that offers an evaluation as such.
However, this milestone is crucial for the development of the proposed architectures, and
it can also provide support to other research, since the datasets are published and visible
from the different articles.

Objective 3 is consistently met. To achieve a successful evaluation of the proposed ar-
chitecture, whose description is discussed in Section 1.4.2, an Esper CEP engine is deployed
with ESBMule, with CEP rules defined completely manually, just as a domain expert would
do, together with a pattern to detect DoS attacks and anomalies using the proposal. In addi-
tion, two different models are used to predict the values of the key features. Linear regres-
sion, on the one hand, and SVR on the other, demonstrates that this approach is adaptable
to different regressors.

The CEP rules defined by our proposal work very well. When the linear regressor is
used, an F1 score of 1 is obtained. When the SVR regressor is used an F1 score of 0.99998 is
obtained. Thus we can conclude that this approach is successful and detects modeled and
unmodeled attacks consistently. An important detail to note is that the linear regression

21

1.5. Results

obtains excellent results, because we found that there is a linear relationship between the
key variables and the behavior of the packages. This was key to our decision to use PCA
in subsequent improvements.

Despite the good results, this architecture has certain limitations. First of all, a domain
expert has to choose key features, which is not always trivial. Secondly, it requires two
different types of simple events, and we will see in Objective 4 that this is not optimal.
Furthermore, we consider an attack detected when we identify a packet from that attack,
although many packets belonging to the attack are not detected. This is not a problem with
attacks in our dataset, but it could be a problemwith attacks that have a very small network
flow.

These limitations are what we try to correct with the following architectures and pro-
posals. But first it is useful to perform a performance study of the proposal and see how it
behaves on another CEP engine. This is the purpose of Objective 4.

Objective 4, which is achieved as described in Section 1.4.3, focuses on observing
whether our proposal can be deployed on other CEP engines. In addition it also allows
us to know how the system performs in situations with very high workloads, which CEP
engine works best, and which types of events work best with CEP engines. As already
mentioned, the evaluation of this work consists in comparing the CEP engines in different
situations. The results obtained show that the proposal developed is perfectly capable of
working in an IoT scenario with either of the two CEP engines. The conclusions we obtain
are that WSO2 works better when there is only one type of event, and that WSO2 is better
when there is a high workload. Mule performs better when comparing simple events of
different types, as was the case in our architecture discussed in Section 1.4.2. We can con-
clude that our architecture is able to perform perfectly even in high workload situations.
With the results of this work we design the following architecture with single type events
and over WSO2 to improve performance.

Objective 5, whose architecture is summarized in Section 1.4.4, is evaluated from two
different perspectives. On the one hand, we adopt the functional perspective, which eval-
uates whether the rules generated with this new architecture are able to detect attacks. It
should be noted that in this new architecture we consider each packet of an attack as an
attack event, and this may degrade the performance metrics in a fictitious way. On the
other hand, the computational performance of the rules generated using PCA is evaluated
with respect to the rules we saw in the original proposal.

Table 1.1 shows the results obtained in the detection of attacks with CEP rules using
PCA. These results are very good and show that the proposal works well at the functional
level. From a computational performance point of view, we achieved a 76% improvement
in terms of throughput (measured in events/second). In addition, an 86% reduction in the
size of events is achieved, as these events are sent over the network with a smaller amount
of information, which also improves network performance.

22

Chapter 1. Introduction

Table 1.1: Metrics obtained by the CEP rules generated.

Metrics of rules generated with PCA Precision Recall F1 score
Discwave 1 0.9002 0.9474
Subfuzzing 1 0.9017 0.9483
Subfuzzing (with corrector) 1 1 1
TCP 1 1 1
UDP 1 0.9772 0.9885
XMAS 1 1 1
TELNET 1 0.8733 0.93236
Anomaly 0.9968 1 0.9984

We can conclude that this architecture allows the generation of complete CEP rules for
detecting attacks without the need for the intervention of a domain expert while improving
computational and network performance. However, it is still necessary to have labeled
traffic. This limitation will be addressed in the final proposal.

The architecture to achieve Objective 6 is discussed in Section 1.4.5. In this case, it is not
necessary to perform a computational performance evaluation, because simple events are
also constructed with PCA so that we ensure optimal network and computational perfor-
mances. In order to check the good performance of the architecture when unsupervised,
two experimentation scenarios have been implemented. In both, attacks are introduced
progressively, starting with the legitimate attack-free scenario. The difference is that in the
first scenario each attack is divided into training and testing, with the training packets that
are detected as anomalies training the model in the new iteration, while the testing packets
validate the rules of each iteration. In the second scenario there are four datasets: the first
training dataset is similar, while, the testing dataset is divided into three datasets that are
mixed with different attacks in the new iterations. Moreover, in the second scenario, all
of them feed back to the model (except the third testing dataset, which is exclusively for
validation), even if they are correctly classified.

In both scenarios we obtain very good results. In the first experiment we obtain an F1
score of 0.9824, and in the second we obtain an F1 score of 0.9938. We can conclude that this
proposal is able to generate CEP rules, in an unsupervised way, that are capable of detecting
known and unknown IoT threats in real time.

Answers to the Research Questions

The results obtained and shown above allow us to answer the research questions posed in
the Section 1.1.

• (RQ1): Are the rules generated by the architecture computationally efficient in a
constrained environment, such as an IoT network?
We can affirm that yes, the rules generated by the proposals work perfectly well in
low-resource environments. In fact, the rules generated in the proposal [39], present

23

1.5. Results

a very significant performance improvement over the use of CEP rules without the
reduction of simple events with PCA.

• (RQ2): Is the proposal capable of detecting unknown attacks?
The conclusion is that the proposals generated, in the course of the Thesis, are per-
fectly capable of detecting attacks that were not found in the training dataset initially.

• (RQ3): Is this integration of technologies capable of working in different CEP imple-
mentations?
The proposals implemented in the thesis can be easily adapted to other CEP tech-
nologies. Moreover, the rules work well in different CEP engines. The proof of this
can be found in one of our papers [38].

• (RQ4): Is it possible for the models used to generate the rules to be trained in an
unsupervised way?
The answer to this question is yes. This is demonstrated by the final version imple-
mented in this Thesis [40].

Main Publications

All the objectives proposed in Section 1.2 have been achieved by following the tasks defined
in Section 1.3. All the results of the work carried out in this Doctoral Thesis are summarized
in the list of publications below:

• Objective 2 — To analyze common IoT protocols, and design, implement and deploy
a test environment.

– Roldán-Gómez, José, Carrillo-Mondéjar, Javier, Castelo Gómez, Juan Manuel and
Ruiz-Villafranca, Sergio, Security Analysis of the MQTT-SN Protocol for the Inter-
net of Things , submitted in Applied Sciences . Journal paper. JCR2020 Q2, IF
2.838 [37].

• Objective 3 — To design, implement, deploy and validate an architecture to detect
threats in IoT environments on the basis of one or more key features.

– José Roldán, Juan Boubeta-Puig, José Luis Martínez, Guadalupe Ortiz, Integrat-
ing Complex Event Processing and Machine Learning: an Intelligent Architecture
for Detecting IoT Security Attacks Volume 149, 2020, 113251, ISSN 0957-4174, doi:
10.1016/j.eswa.2020.113251., published in Expert Systems With Applications .
Journal paper. JCR2020 Q1, IF 6.954 [37].

• Objective 4 — To ensure the feasibility of the initial architecture on different CEP
engines.

– Roldán-Gómez J, Boubeta-Puig J, Pachacama-Castillo G, Ortiz G, Martínez JL,
Detecting security attacks in cyber-physical systems: a comparison of Mule and
WSO2 intelligent IoT architectures Volume 7, 2021, e787, ISSN 2376-5992, doi:

24

Chapter 1. Introduction

10.7717/peerj-cs.787, published in PeerJ Computer Science. Journal paper.
JCR2021 Q2, IF 2.411 [38].

• Objective 5 — To redesign, implement and validate a new architecture to detect
threats in IoT environments without the need to specify key features and achieve
improved computational performance with respect to the first proposal.

– José Roldán-Gómez, Juan Boubeta-Puig, Juan Manuel Castelo Gómez, Javier
Carrillo-Mondéjar, José Luis Martínez Martínez, Attack pattern recognition
in the Internet of Things using complex event processing and machine
learning, Date of Conference: 17-20 October 2021, ISSN: 2577-1655, doi:
10.1109/SMC52423.2021.9658711, presented at the 2021 Institute of Electrical
and Electronics Engineers (IEEE) International Conference on Systems,
Man, and Cybernetics. Conference paper. GGS Rating A-, Class 2 [39].

– José Roldán-Gómez, Juan Boubeta-Puig, Juan Manuel Castelo Gómez, Javier
Carrillo-Mondéjar, Jesús Martínez del Rincón, An Automatic Complex Event Pro-
cessing Rules Generation System for the Recognition of Real-Time IoT Attack Pat-
terns, submitted in Engineering Applications of Artificial Intelligence. Jour-
nal paper. JCR2021 Q1, IF 7.802.

• Objective 6 — To Update, improve, implement and validate architecture that can
detect threats in IoT environments without the need to specify key features in an
unsupervised manner.

– José Roldán Gómez, Jesús Martínez del Rincón, Juan Boubeta-Puig and José Luis
Martínez, Hacia la creacion de reglas CEP no supervisadas para la deteccion en
tiempo real de ataques en entornos IoT, Date of Conference: 19-21 June 2022, pre-
sented at the 2022 Jornadas Nacionales de Investigación en Ciberseguridad
(JNIC) Jornadas Nacionales de Investigación en Ciberseguridad. Confer-
ence paper [40].

– José Roldán Gómez, Jesús Martínez del Rincón, Juan Boubeta-Puig and José Luis
Martínez, An Automatic Unsupervised Complex Event Processing Rules Genera-
tion Architecture for Real-Time IoT Attacks Detection. 2023, ISSN 1572-8196, doi:
10.1007/s11276-022-03219-y, published in Wireless Networks. Journal paper.
JCR2021 Q2, IF 2.701.

• Objective 1 — To study and analyze the solutions proposed by other researchers.

– All of the above publications meet this objective in a cross-cutting manner.

Other Publications

Herewe include other findings resulting from collaborationwith other researchers inworks
that are published or under review. These proposals aim to solve certain cybersecurity

25

1.5. Results

problems but are not specifically focused on the objective of this Doctoral Thesis. These
proposals are the following:

• Forensic analysis in IoT:

– Castelo Gómez, Juan Manuel, José Roldán Gómez, Javier Carrillo Mondéjar, and
José Luis Martínez Martínez, Non-Volatile Memory Forensic Analysis in Windows
10 IoT Core, Volume 21, 2019, 1141, ISSN 1099-4300, doi: 10.3390/e21121141, pub-
lished in Entropy. Journal paper. JCR2019 Q2, IF 2.494 [43].

– Castelo Gómez, J.M., Carrillo Mondéjar, J., Roldán Gómez, J., and Martínez
Martínez J.L., A context-centered methodology for IoT forensic investigations, Vol-
ume 20, 2020, 647-673, ISSN 1615-5270, doi: 10.1007/s10207-020-00523-6 , published
in International Journal of Information Security. Journal paper. JCR2021
Q2, IF 2.427 [44].

– Castelo Gómez, Juan Manuel, Javier Carrillo Mondéjar, José Roldán Gómez, and
José Luis Martínez Martínez, Developing an IoT forensic methodology. A concept
proposal, Volume 36, 2021, 301114, ISSN 2666-2817, doi: 10.1016/j.fsidi.2021.301114,
published in Forensic Science International: Digital Investigation (contin-
uation of the journal Digital Investigation). Journal paper. JCR2021 Q4, IF
1.805 [45].

• Vulnerability detection:

– Carrillo-Mondéjar, J., Castelo-Gómez, J.M., Roldán-Gómez, J., and Martínez
Martínez J.L., An instrumentation based algorithm for stack overflow detection,
Volume 16, 2022, 245-256, ISSN 2263-8733, doi: 10.1007/s11416-020-00359-7, pub-
lished in Journal of Computer Virology and Hacking Techniques. Journal
paper. Not indexed [46].

• IoT malware classification:

– Javier Carrillo-Mondejar, Juan Manuel Castelo Gomez, Carlos Núñez-Gómez,
Jose Roldán Gómez, and José Luis Martínez, Automatic Analysis Architecture
of IoT Malware Samples, Volume 2022, 2022, 8810708, ISSN 1939-0114, doi:
10.1155/2020/8810708, published in Security and Communication Networks.
Journal paper. JCR2020 Q4, IF 1.791 [47].

26

CHAPTER 2

Security analysis of the MQTT-SN
protocol for the Internet of Things

• Title: Security analysis of the MQTT-SN protocol for the Internet of Things

• Authors: José Roldán-Gómez, Javier Carrillo-Mondéjar, Juan Manuel Castelo Gómez
and Sergio Ruiz Villafranca

• Type: Journal paper.

• Journal: Applied Sciences

• Publisher:MDPI

• ISSN: 2076-3417

• Status: Published

• Publication date: October 2022

• Volume: 12

• Paper Number: 21

• DOI: 10.3390/app122110991

• JCR IF/ranking: 2.838/Q2 (JCR2021).

27

https://doi.org/10.3390/app122110991

Citation: Roldán-Gómez, J.;

Carrillo-Mondéjar, J.; Castelo Gómez,

J.M.; Ruiz-Villafranca, S. Security

Analysis of the MQTT-SN Protocol

for the Internet of Things. Appl. Sci.

2022, 12, 10991. https://doi.org/

10.3390/app122110991

Academic Editors: Howon Kim and

Thi-Thu-Huong Le

Received: 12 October 2022

Accepted: 27 October 2022

Published: 30 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Security Analysis of the MQTT-SN Protocol for the Internet
of Things
José Roldán-Gómez 1,*,† , Javier Carrillo-Mondéjar 2,†, Juan Manuel Castelo Gómez 2,†

and Sergio Ruiz-Villafranca 2,†

1 Department of Computer Science, University of Oviedo, 33003 Oviedo, Spain
2 Institute of Informatics (I3A), University of Castilla-La Mancha, 02071 Albacete, Spain
* Correspondence: roldangjose@uniovi.es
† These authors contributed equally to this work.

Abstract: The expansion of the Internet of Things (IoT) paradigm has brought with it the challenge
of promptly detecting and evaluating attacks against the systems coexisting in it. One of the most
recurrent methods used by cybercriminals is to exploit the vulnerabilities found in communication
protocols, which can lead to them accessing, altering, and making data inaccessible and even bringing
down a device or whole infrastructure. In the case of the IoT, the Message Queuing Telemetry
Transport (MQTT) protocol is one of the most-used ones due to its lightness, allowing resource-
constrained devices to communicate with each other. Improving its effectiveness, a lighter version of
this protocol, namely MQTT for Sensor Networks (MQTT-SN), was especially designed for embedded
devices on non-TCP/IP networks. Taking into account the importance of these protocols, together
with the significance that security has when it comes to protecting the high-sensitivity data exchanged
in IoT networks, this paper presents an exhaustive assessment of the MQTT-SN protocol and describes
its shortcomings. In order to do so, seven different highly heterogeneous attacks were designed and
tested, evaluating the different security impacts that they can have on a real MQTT-SN network
and its performance. Each one of them was compared with a non-attacked implemented reference
scenario, which allowed the comparison of an attacked system with that of a system without attacks.
Finally, using the knowledge extracted from this evaluation, a threat detector is proposed that can be
deployed in an IoT environment and detect previously unmodeled attacks.

Keywords: Internet of Things; cybersecurity; protocols; MQTT-SN

1. Introduction

The Internet of Things (IoT) is a new technology paradigm that is on the path to change
the way we interact with computers and machines. It can be explained as a global network
composed of devices (also called things) capable of communicating with each other [1,2],
which, by doing so, brings with it new possibilities in many fields such as health, the
economy, engineering, resource management, and everyday life. As a result, a wide range
of industries are researching applications that use this paradigm in the race to having the
upper hand in a scenario that has the potential to become a key area in future technology.

This is evidenced by the fast-paced growth rate of the IoT, whose number of devices
connected to the Internet surpassed the total of the non-IoT ones [3] in the year 2020; even
with the chip shortage caused by the pandemic, there are 12.3 billion IoT devices connected
to the Internet, and the predictions are for this figure to grow and reach 27 billion by
2025 [4]. The IoT has several peculiarities. For example, networks are usually dynamic and
heterogeneous, giving rise to many different protocols, such as MQTT [5], Bluetooth Low-
Energy (BLE) [6], ZigBee (based on the IEEE 802.15.4 standard) [7], and the constrained
Application Protocol (CoAP) [8], among others. However, this feature also applies to IoT
devices, which can range from the simplest sensors to computing hardware with more
resources that sends information to the cloud.

Appl. Sci. 2022, 12, 10991. https://doi.org/10.3390/app122110991 https://www.mdpi.com/journal/applsci

28

Appl. Sci. 2022, 12, 10991 2 of 24

Although this environment has many applications and benefits for industry, from a
security point of view, it constitutes a new vector for attacks from cybercriminals [9]. Most
of the safety concepts that are widely accepted and applied in network communications
have not been taken into account in the IoT. This is due to the fact that IoT systems
are usually constrained by a lack of resources related to memories, processors, network
bandwidths, and power consumptions, which do not support the implementation of
security measures [10].

The diversity of IoT systems and their limitations cause new problems associated with
this paradigm [11], for example the need to improve lightweight encryption algorithms
and the weak defenses against Denial of Service (DoS) due to the lack of memory, processor
power, and bandwidth. Battery consumption gains importance since there are many
applications that require the use of devices that only have batteries. Furthermore, it is hard
to keep IoT devices updated because they are very heterogeneous [12].

These vulnerabilities are being exploited by criminals to the extent that the evolution
of malware specifically targeting IoT Linux has vastly increased in recent years. Figure 1
shows the quarterly growth of samples registered against IoT Linux since the appearance
of the Mirai malware, a botnet that interrupted Internet access for millions of people. It
can be seen that, from August 2016 to May 2022, there has been a huge increase in samples,
fifty-nine-times higher in May 2022 compared to August 2016.

Figure 1. Growth of malware targeting IoT Linux.

In the IoT, most attacks are successful because the devices are misconfigured by default,
and this indicates that old problems are present in the IoT as well. At this point, it is vital
to evaluate the protocols involved in the IoT for a security audit in order to determine their
deficiencies and, on that basis, propose improvements.

There are many challenges to be addressed by the research community in the field
of IoT cybersecurity. Some of the main ones are listed in the paper An overview of security
and privacy in smart cities IoT communications by Al-Turjman et al. [13], which identifies
the main threats to IoT security. According to the authors, malware, false information,
traffic modification, traffic eavesdropping, and identity theft are the most common IoT
threats. There are other articles that study the challenges and trends posed by the IoT,
and cybersecurity is a key area in all the analyses [14–16], highlighting the protocols
and their heterogeneity as a crucial element that needs to be scrutinized. Consequently,
this is the field on which we will focus in this work, showing that analyzing protocols
from an experimental point of view and extracting their vulnerabilities is critical for IoT
cybersecurity research, in addition to assessing the impact of different attacks that exploit
the vulnerabilities exposed by Al-Turjman et al. in their work [13].

Chapter 2. Security analysis of the MQTT-SN protocol for the Internet of Things

29

Appl. Sci. 2022, 12, 10991 3 of 24

This research is focused on MQTT-SN [17], which is based on its predecessor, namely
MQTT. While MQTT is a lightweight protocol, which uses a publish/subscribe messaging
transport scheme, MQTT-SN is the newest version and has been designed to be even lighter
than MQTT. The reasoning behind the choosing of this version is due to it being optimal for
environments with resource-constrained devices such as the Industrial Internet of Things
(IIoT) [18] and yet not having received the focus of detailed research from the security
research field. Under these circumstances, this paper aims to firstly find deficiencies in
MQTT-SN, secondly to exploit them, and thirdly, to evaluate their impact on the whole
IoT scenario. After this evaluation, we recommend an attack detector designed to discover
attacks in IoT environments. The advantage of this threat detector is its ability to detect
anomalies and unmodeled attacks, which is crucial in combating novel attacks such as
those proposed in this work.

This proposal is a substantial extension of the work Security Assessment of the MQTT-SN
Protocol for the Internet of Things [19]. Schematically, the main contributions of this article
are as follows:

• A practical analysis of MQTT-SN protocol vulnerabilities.
• An implementation of attacks based on the vulnerabilities discovered.
• An evaluation of the impact of the different attacks.
• A threat detector, which has already been published, is suggested and tested with the

implemented attacks.

This paper is organized as follows. Section 2 describes the MQTT-SN protocol and the
main differences between it and MQTT [5]. The state-of-the-art is reviewed in Section 3. A
presentation of the MQTT-SN system deployed is made in Section 4. The attacks discovered
are described and evaluated in Section 5. Section 6 describes a novel threat detector
designed for IoT environments. Finally, we draw our conclusions in Section 7.

2. MQTT-SN Protocol

The MQTT-SN [17] protocol is a connectivity protocol based on MQTT [5], which
operates at the application layer. MQTT is a topic-based protocol, which makes it possible
to create a publish/subscribe-based topology in which each device can subscribe to or
publish information about a topic. Thus, there is a broker that manages the topics and the
connected devices in the network. This topology is very useful for the IoT, as it allows the
transmission of information generated by sensors to central nodes.

MQTT-SN was designed to be lightweight (even more than MQTT [5]) and works
with wireless communications. This means that it is characterized by link failures, a short
message size, low bandwidth, and low overheads, among other features. MQTT-SN was
designed to be similar to MQTT, but there are a few differences. Firstly, MQTT-SN includes
TopicId, which replaces the topic name in MQTT. TopicId is a 16-bit integer, which acts as the
topic name, with the REGISTER command being able to negotiate the mapping between
TopicId and the topic name. Secondly, MQTT-SN provides a sleeping client mechanism.
This feature enables clients to shut themselves down and save power for a while. MQTT-
SN allows us to update or delete the will message, which allows devices to notify other
clients about an ungracefully disconnected client. Finally, another important aspect is that
MQTT-SN works over the User Datagram Protocol (UDP) [20].

UDP, which operates at the transport layer, introduces an 8-byte header. 6LoWPAN,
on the other hand, has header compression mechanisms (in the best case, it can use 4-byte
headers), and it also has a Maximum Transmission Unit (MTU) of 127 bytes, which is really
small compared to other protocols; for example, IPv6 offers an MTU of 12,800 bytes [21].
Payload sizes will be conditioned by the MTU. In our implementation of the different attacks
on a 6LoWPAN network, the maximum payload of 6LoWPAN is 38 bytes, and consequently,
the UDP payload is 30 bytes. It is important to mention that MQTT-SN operates over UDP,
but does not need to operate over 6LoWPAN. The study and implementation of the attacks
described in this analysis focused exclusively on MQTT-SN, so the complete study of
the protocols of other layers is outside the focus of this work. In Figure 2, which depicts

30

Appl. Sci. 2022, 12, 10991 4 of 24

an MQTT-SN-based network, we can observe how one operates. The publication on a
topic is represented with an arrow of the same color as that topic. The grey rectangles
symbolize MQTT-SN clients, and the colors inside them represent the topics to which
they are subscribed. This scheme allows us to easily understand MQTT and MQTT-SN.
The client with Id 1 is subscribed to topics 1, 2, and 3; the client whose Id is equal to 2 is
subscribed to topics 1 and 2; finally, the client whose Id is equal to 3 is subscribed to topics
1 and 3. If the client with Id number 2 publishes on topic 3, this message is received by
clients 1 and 3. The same happens with topic 2 is published by client 2.

BROKER

TOPIC 1

TOPIC 2

TOPIC 3

Figure 2. MQTT -SN scheme.

2.1. Format of the Main Packets

In order to properly understand the attacks to be implemented, a description of the
format of an MQTT-SN packet is provided in Table 1, containing the field information
common to all packets to be analyzed, with the MQTT-SN packets that are generated or
modified in this experiment being detailed below.

Table 1. Brief description of the fields common to the different packets.

Common Fields Description

Length It determines the length of the packet.
MsgType It defines the type of MQTT-SN packet.

Flags It indicates additional options.

2.1.1. Connect Message

This type of packet is used to connect MQTT-SN clients to the broker.
Table 2 shows the format of a Connect-type packet, the different fields, and the octets

they use. The function of these fields is as follows:

• Flags: The most relevant ones for a Connect packet:

– Will: It defines a message and a topic. In case of an error in the connection
between the device and the broker, this message is sent to the chosen topic.

– CleanSession: Enabling this flag causes the client to forget previously subscribed
topics. If it is not enabled, the broker computes the topics to which the client was
subscribed and keeps them, using the ClientID field.

• ProtocolId: It determines the version of the protocol being used.
• Duration: It contains the value of the keep alive timer of the connection.
• ClientId: It uniquely identifies a client connected to the MQTT-SN broker.

Chapter 2. Security analysis of the MQTT-SN protocol for the Internet of Things

31

Appl. Sci. 2022, 12, 10991 5 of 24

Table 2. Connect message format.

Length MsgType Flags ProtocolId Duration ClientId

Octet
number 0 1 2 3 4–5 6:n

2.1.2. Publish Message

Publish packets are used when a client sends a message on a topic.
Table 3 shows the format of a Publish-type packet, the different fields, and the octets

they use. The function of these fields is as follows:

• Flags: The most relevant ones for a Publish packet:

– DUP: It indicates that the message is a duplicated message, which is sent when no
acknowledgment has been received after sending the original one. This behavior
occurs with a Quality of Service (QoS) value greater than 0.

– QoS: It determines the QoS level of the Publish message.
– Retain: When a message is published with the Retain flag set, the broker saves

it as a reference one. Consequently, when a client subscribes to the topic, it
automatically receives this message, so it is not necessary for the original sender
to publish it again.

– TopicIdType: It indicates the type of identifier found in TopicId. This can be a short
name, formed by two characters, or the topic Id formed by 2 bytes.

• TopicId: It contains the topic identifier in either of the two formats mentioned above.
• MsgId: It uniquely identifies a message when the QoS is greater than zero. It is

encoded with 16 bits.
• Data: It contains the data of the message to be published.

Table 3. Publish message format.

Length MsgType Flags ProtocolId Duration ClientId

Octet
number 0 1 2 3–4 5–6 7:n

2.1.3. Subscribe Message

Subscribe packets are used when a client wants to subscribe to a topic.
Table 4 shows the format of a Subscribe-type packet, the different fields, and the octets

they use. The function of these fields is as follows:

• Flags: The most relevant ones for a Subscribe packet:

– DUP: If enabled, the last message with an active DUP fag is received if it exists.
– QoS: It indicates the QoS level required for that topic.
– TopicIdType. It specifies the type of identifier found in TopicId. This can be a short

name, topic name, or topic Id.

• MsgId: It is used to identify the acknowledgment of receipt, which is sent by means
of a Suback packet.

• TopicName or TopicId: It contains the topic identifier in the format specified in the
flag TopicIdType.

Table 4. Subscribe message format.

Length MsgType Flags MsgId TopicName
or TopicId

Octet number 0 1 2 3–4 (5:n) or (5–6)

32

Appl. Sci. 2022, 12, 10991 6 of 24

2.1.4. Pingreq Message

This type of message is used to know whether a client is connected to the broker.
Additionally, in MQTT-SN, it allows taking the device out of sleep mode.

Table 5 shows the format of a Pingreq type packet. This format is simpler than those
described above:

• ClientId: It is an optional field that is used for changing the status of a client from
sleeping to awake. It contains the client identifier.

Table 5. Pingreq message format.

Length MsgType ClientId (Optional)

Octet number 0 1 2:n

3. State-of-the-Art

As far as the authors of this paper know, there are currently few published studies
about the shortcomings of IoT protocols. One of the few is A survey: Attacks on RPL and
6LoWPAN in IoT by P.Pongle and G.Chavan [22], which is focused on attacks in the Routing
Protocol for Low-Power and Lossy Network (RPL) [23,24]. The RPL protocol enables
device routing in Low-power and Lossy Networks (LLNs), which are characterized by the
fact that routers usually operate under severe power, memory, and network constraints.
This protocol supports point-to-point routing, but also multipoint-to-point and vice versa.
It is also highly scalable and can be successfully used with thousands of devices within
the LLN. The attacks presented in this paper against RPL typically serve two distinct
purposes. On the one hand, we have the attacks that allow a complete or partial denial
of service of the network, for example the sinkhole attack. On the other hand, there are
also attacks that allow attacking a specific device, e.g., the selective forwarding attack.
Finally, there are others that allow the identity of devices to be hijacked to compromise
network confidentiality, e.g., the alteration and spoofing attack. The authors also collected
certain patterns so that a rule-based Intrusion Detection System (IDS) can be deployed with
these patterns.

Another interesting work is [25]. In this paper, the authors conducted a brief study
of the Constrained Application Protocol (CoAP), a web protocol designed specifically for
devices and networks with limited capabilities. In this paper, the authors used BurpSuite to
analyze CoAP request traffic and concluded that the it is not encrypted and also susceptible
to attacks.

In [26], the authors describe several security issues with MQTT, but there were no
implementations or evaluations of the described attacks. The attacks in this paper, moreover,
made an ordinary use of the protocol, not presenting any use of it, which varies from what
it is described in the standard. They also contemplated MQTT as a means to create a botnet,
although this is not an attack against MQTT; it is the use of it as a means to establish
a botnet.

There are several other pieces of research that focus on ZigBee, which is a protocol for
low-data-rate and short-range wireless networking. One example is [27], which shows two
example attacks: one tries to achieve an eavesdropping attack on a ZigBee network where
AES-CCM is used. In order to achieve this, the authors tried to use the same key twice, for
example by causing a reset of the nodes. The other attack consists of performing a denial of
service, for which they suggested modifying the payload of ZigBee packets, even if there is
encryption, to cause an error in the operation of the protocol.

In Exploiting MQTT-SN for Distributed Reflection Denial-of-Service Attacks by Sochor et al. [28],
the authors suggested to make use of the topology used by MQTT-SN to perform a pro-
reflective attack. In other words, they took advantage of the fact that the broker sends
messages to all devices subscribed to a topic to perform denials of service against the
MQTT-SN network.

Chapter 2. Security analysis of the MQTT-SN protocol for the Internet of Things

33

Appl. Sci. 2022, 12, 10991 7 of 24

A particularly interesting work is IoT Content Object Security with OSCORE and NDN:
A First Experimental Comparison by Cenk Gundogan et al. [29], which proposes the use of
OSCORE, which is a protocol designed to protect end-to-end communications in resource-
constrained systems. Its interest lies in them making a comparison with the use of DTLS,
which is the encryption protocol usually implemented over UDP. Another interesting
proposal that aims to adapt a lightweight encryption method to MQTT and MQTT-SN is
the Lightweight Security Scheme for MQTT/MQTT-SN Protocol by Ousmane Sadio et al. [30].
To achieve lightweight encryption over the MQTT and MQTT-SN protocol, the authors
propose to use ChaCha20, which is a stream cipher protocol. In addition, they also propose
to use Poly1305 as a one-time authenticator. In this way, they achieved a lightweight and
secure encryption scheme.

Another proposal in the field of lightweight encryption is Design and evaluation of
a novel white-box encryption scheme for resource-constrained IoT devices by Bang, A.O. and
Rao, U.P. [31]. This work focused on generating a scheme capable of protecting IoT
environments from white box attacks, those in which the attacker has full view of the
execution environment and uses it to break the encryption. The authors, to achieve their
goal, propose a scheme to hide the private key in ciphers with elliptic curves.

With regard to comparisons between already existing algorithms, we find the proposal
Safe MQTT-SN: a lightweight secure encrypted communication in IoT by L.Kao et al. [32], which
proposes a secure encryption scheme for MQTT-SN systems. They propose to use the digital
signature (ECDSA), hash function, key exchange (ECDHE), ChaCha20, and Poly1305. The
authors compared the delay time introduced by the MQTT-TLS handshake with respect to
their proposed scheme.

Within the comparisons of the protocols, although not part of the analysis of security,
we find a paper that makes a brief comparison from the performance point of view of the
IoT protocols, namely Survey on State of Art IoT Protocols and Applications by Kumar N.V.R.
and Kumar P.M. [33]. It is observed that the results of MQTT-SN are good, especially in the
packet loss vs. bandwidth contribution.

A very interesting paper, although not focused on any IoT protocol in particular,
is A Large-Scale Empirical Study on the Vulnerability of Deployed IoT Devices by Binbin
Zhao et al. [34]. In it, the authors surveyed 1,362,906 IoT devices over 10 months. All
the conclusions they drew were very interesting, but of special interest is the huge number
of vulnerable MQTT servers, a fact that gives an idea of the importance of the matter
at hand.

Table 6 shows a brief comparison of the different state-of-the-art works.

Table 6. Comparison of the state-of-the-art works.

Reference Target Protocol Highlights

[22] RPL Presents and evaluates different attacks against RPL.

[25] CoAP Brief analysis of the protocol; concludes that it is not safe due
to the lack of encryption.

[26] MQTT Known attacks against MQTT analyzed.
[27] ZigBee They describe two different attacks against ZigBee.
[28] MQTT-SN Reflective attacks employing MQTT-SN to cause DoS.

[29–32] General encryption All of them propose improvements to achieve a
lightweight encryption.

[33] Various Comparison of protocols; MQTT-SN obtains good results.
[34] Various Empirical analysis; there are many unsecured MQTT servers.

This work MQTT-SN Several attacks are implemented and evaluated, and
countermeasures are proposed.

As we can see, the topic of analyzing the security of the MQTT-SN protocol is an
unexplored one. Other novelties introduced in this research are the study of the protocol to
detect vulnerabilities, as well as how to exploit them. In addition, we analyzed the impact
that they have on the system, and we propose a threat detection system to detect such

34

Appl. Sci. 2022, 12, 10991 8 of 24

attacks. Furthermore, as demonstrated by the high number of vulnerable MQTT servers
currently deployed, working on the security of the lighter version MQTT-SN is necessary
before this protocol is used globally and replaces or coexists with MQTT.

4. MQTT-SN Baseline Scenario

The first step in performing a security analysis of the MQTT-SN protocol in order to
test attacks and evaluate their impact is to define a legitimate scenario without attacks and
evaluate its performance. This scenario is referred to as the baseline. This is important
because it makes it possible to compare the impact of each attack (which exploits a short-
coming in the protocol) on the system against the baseline. The evaluation can be focused
on features such as packet size, packet rate, etc., and, on that basis, try to determine the
impact of the attacks discovered.

The proposed baseline scenario is composed of six devices: one is defined as the broker
and the rest as regular devices (which perform the function of a simple sensor to acquire
data to be sent to the broker). Within this set of regular devices, the baseline scenario
includes one device with certain privileges, which is subscribed to a confidential topic, and
four others without privileges. The overall behavior is quite simple: each non-privileged
mote is subscribed to a topic referred to as /topic1. In addition, these non-privileged devices
retrieve the information generated by other devices under the /topic1 label. The information
generated as /topic1 consists of random floats with no practical meaning. This information
could be, in a real scenario, the temperature taken in a room, the humidity in a vineyard,
or the vital signs of a patient in a hospital. The generation and handling of this randomly
generated information is beyond the scope of this work. In this case, the objective is
to evaluate MQTT-SN as an information exchange protocol between the broker and the
subscriber nodes.

As mentioned above, the baseline scenario also includes a privileged mote, which
generates a random float and publishes it in the other topic referred to as /topic2 in each
cycle. The privileged mote generates a symbolic message, which is confidential, and it is
useful to evaluate a scenario that manages confidential information. These devices do not
contain additional protection measures, but the differentiation of these measures makes it
easier to observe the handling of the different topics and their contents. Finally, the broker
manages all the connections, processes all the information collected by the devices, and
centralizes the network.

Figure 3 shows the baseline scheme, which is composed of devices that generate
information on both topics, namely /topic1 and /topic2, and the broker. In this case, the
device with an orange background color, which is located at the bottom left, is subscribed to
topic 2, which simulates the sending of critical information. Including this device is useful
to evaluate how the system can be altered when using two different topics. By establishing
this scenario as the baseline, we can extract valuable information about the regular (not
under attack) behavior of the network. Below, we compare the baseline scenario against
scenarios with the system under attack.

Chapter 2. Security analysis of the MQTT-SN protocol for the Internet of Things

35

Appl. Sci. 2022, 12, 10991 9 of 24

BROKER

TOPIC 1
TOPIC 2

Figure 3. MQTT-SN baseline scenario.

5. MQTT-SN Attacks and Performance Evaluation

This section enumerates the shortcomings discovered in the MQTT-SN protocol, as
mentioned in Section 4, which an attacker can exploit to compromise the information
collected between nodes (affecting integrity and confidentiality) or to compromise the
entire network and/or devices (affecting availability) in an IoT infrastructure. All the
attacks discovered, which represent the main contribution of this paper, are described in
the following sub-sections. In addition, these attacks are implemented and their impact
is evaluated in this section. For this purpose, the baseline scenario was deployed. Once
an attack has been successfully demonstrated, different countermeasures to prevent or
mitigate it are presented.

The implementation of these attacks was performed using a network simulator called
Cooja, which is Contiki’s network simulator, as it allows the experiments to be much more
reproducible and parameterizable than a real scenario. Cooja provides an intuitive User
Interface (UI), which offers a graphical representation of our network and devices and
a toolkit to perform different actions. Contiki [35] is an open-source operating system
designed for the IoT, which provides a set of features and tools to design, implement, and
deploy IoT applications and systems. It is built on a TCP/IP stack and offers lightweight
preemptive scheduling on an event-driven kernel, which is a very motivating feature for
the IoT.

This way, the combination of Cooja and Contiki allowed us to deploy a virtualized
IoT network and study its behavior. It is widely used to develop applications, but it can be
used to design, implement, and study application layer attacks over 6LoWPAN (network
layer) on several different devices. In order to capture the traffic of the virtualized network,
it was redirected from the broker to the host device, then Wireshark was used to obtain the
traffic and analyze it later [36].

5.1. Trash-Inject Attacks

The first attack described aims to introduce unexpected elements into the legitimate
MQTT-SN application.

Before performing this attack, it is necessary to introduce a malicious device into the
network. In order to do so, it is either necessary not to have an authentication mechanism
or to gain access to the broker by guessing or having access to the credentials. In our imple-
mentation, we assumed that we had access to the network due to a lack of authentication
mechanisms, which is something very common in MQTT and MQTT-SN servers [34], so a
realistic scenario is proposed.

36

Appl. Sci. 2022, 12, 10991 10 of 24

Once that access to the broker has been gained, the attack consists of introducing
malformed information in a specific topic or in a set of topics. The range of possibilities in
this attack is very wide since, if the attackers know the logic of the application on which
they are going to inject information, they may be able to modify its behavior arbitrarily.
However, even without knowing the operation of the application into which malformed
information is introduced, this attack can have a very negative impact.

This attack requires prior knowledge of the system’s topics, but by default, it is possible
to subscribe to all topics using the # character, so knowing all the topics in the system is not
a difficult task. Another possible way is to take advantage of the short topic name format
of MQTT-SN as it is easy to scan topics when they are encoded with two characters.

Figure 4 shows the format of the Publish-type packets. As can be seen, the packet
fields that are key to carrying out the attack are marked in red. In this case, the topic Id
field indicates the topic where the malicious information is to be inserted, and the data field
contains the information to be entered. The content of these two fields may vary depending
on the attacker’s target. As mentioned above, if the attacker knows the logic of the system,
he/she can inject specific data to cause a specific system failure. However, he/she can also
introduce pseudo-random data (trash) to cause a system malfunction.

Publish packet

Length MsgType Flags Topic ID Msg ID Data

Figure 4. Publish packet format.

Figure 5 shows how the attack works, with the attacker having the ability to inject
messages into a used topic. The device on the right, which has a red background color,
represents the attacking device. As can be observed, in this case, the attacker injects trash
into topic 1 and the broker distributes that trash to all clients subscribed to that topic.
It should be noted that this attack can be carried out by contaminating several topics
simultaneously in a similar way. In our implementation, we only focused on one topic,
because it is easier to quantify the impact in this way.

BROKER

TOPIC 1
TOPIC 2
TOPIC 1 (Trash)

Figure 5. MQTT-SN trash injection scheme.

Evaluation of the Trash Injection Attack

Before diving into the evaluation, it is necessary to clarify that the baseline system
works by publishing random numbers to simulate a sensor. Thus, our application expects a
numerical value, and if it receives a different kind of data, it will not work properly.

Chapter 2. Security analysis of the MQTT-SN protocol for the Internet of Things

37

Appl. Sci. 2022, 12, 10991 11 of 24

Figure 6a shows the expected topics (numbers) versus the unexpected values (character
strings). This type of graph is recurrent throughout the paper, each point representing
a packet, so that we can easily observe the behavior of the system. As we can see, the
malicious device easily sends many malicious packets. This ability to inject traffic can lead
to a malfunctioning of the MQTT-SN application. In this experiment, the client application
receives text when it expects numeric data, what causes the application to stop working.
However, in other applications, the consequences can be more negative, since an attacker is
capable of injecting inject information into an application.

Figure 6b shows the amount of accumulated bytes received by the broker over time,
proving that this attack can be performed without significantly increasing the traffic.

(a) (b)

Figure 6. Trash injection attack evaluation diagrams. (a) Expected against unexpected packets.
(b) Cumulative traffic of baseline scenario vs. trash injection attack scenario.

This kind of attack can be partially stopped if we enable the user/password request
in our MQTT-SN network. The problem is that this solution will not work if the attacker
infects a mote that has been previously authenticated. Another relevant aspect is that this
attack is even easier to use against MQTT-SN than against MQTT, because the use of UDP
allows an IP spoofing attack to be carried out easily.

5.2. Information Leaks

Another security weakness of MQTT-SN is that (by default) it might be possible to
subscribe to all the topics, which, in many cases, can have serious consequences. The
intrinsic problem is that the topics in MQTT-SN are defined as a structured hierarchy. For
example, we could subscribe to or publish on the topic referred to as house/bedroom2/sensor1.
This structure is perfectly valid for a house with several bedrooms and a few sensors inside
each room. In this example, we can subscribe to all the topics from all the bedrooms by
simply subscribing to house/#. The # operator will obtain a subscription to all the rooms in
the house. Furthermore, if we subscribe to the /# topic, we will subscribe to all the topics in
the broker. It is useful to understand that when the # character is used, it is not mapped to a
numeric Id. In addition, when a client subscribes to a topic, you can use the name, the Id of
the topic, or the short name of the topic, which can lead to obtaining sensitive information
by using the # character. It could be possible to prevent subscription to /#, as this receives a
simple solution in MQTT in which there are no short topics, with each topic being linked to
a number. However, if the attack is against an MQTT-SN network, the attackers could use
the short name format to iterate over possible topics easily. They could also use the topic Id,
since, as it is encoded with two octets, its iteration is feasible. Once the attacker manages to
subscribe to all the topics, they obtain access to all the messages in the network, even if we
have sensitive information in them. This implementation is not a classic eavesdropping
attack in which a Man in the Middle (MitM) scheme is sought as a general rule. In this case,
it is necessary to subscribe to the topics, with the vulnerability consisting of the possibility
of subscribing to unknown topics.

38

Appl. Sci. 2022, 12, 10991 12 of 24

As we can see in Figure 7, packets of type Subscribe are used, and the attackers only
need to manipulate the topic Id field to subscribe to the topic of their choice.

Subscribe packet

Length MsgType Flags Msg ID Topic ID

Figure 7. Subscribe packet format.

Figure 8 shows the scheme of the attack. As we can see, the attacking device tries to
subscribe to all topics by iterating the numeric Id. In this way, the malicious device is able
to extract information from all the topics in the system.

BROKER

TOPIC 1
TOPIC 2

Figure 8. MQTT-SN information leak scheme.

Evaluation of Information Leak Attack

This attack can be dangerous if the system is misconfigured. In this case, an attacker
can subscribe to any topic in the system and retrieve all the information generated in the IoT
network. Figure 9 shows how easily an attacker can access confidential information. This
protocol is highly vulnerable to this type of attack because the publish/subscribe scheme
means that the attacker does not need a previous man in the middle attack to carry it out.

Figure 9. Malicious mote subscribed to confidential topic.

Although this attack does not modify the behavior or performance of the network, it
greatly impacts the confidentiality of the system. This can be avoided by making use of
MQTT-SN’s built-in authentication.

Chapter 2. Security analysis of the MQTT-SN protocol for the Internet of Things

39

Appl. Sci. 2022, 12, 10991 13 of 24

5.3. Disconnect Wave

Disconnect wave is a DoS attack that exploits a big failing in the MQTT-SN protocol.
The specification of MQTT-SN indicates that each client has a unique Id, so if a new client
tries to register this Id again, the latter gains the Id and ejects the previously created
connection. Once we know the Id, the attack can be carried out immediately. The Id field
has a variable length between 1 and 23 characters, and it is sent by the client when making
the connection. This means that if a bad security policy is used by the client application, it
is possible to guess the Id. In our application, this Id is a device counter to ensure that it
is unique.

Figure 10 shows the format of the connect packets used to steal the Id of legitimate
clients and removethem from the system. In this case, the client Id must be modified
depending on the targeted client.

connect packet

Length MsgType Flags Protocol ID Duration Client ID

Figure 10. MQTT-SN connect packet format.

As can be seen in Figure 11a, the malicious device connects to the Ids of legitimate
devices to eject them. To achieve this, it iterates over the Ids of the legitimate devices.
If guessing this Id is not trivial, it is possible to generate an MitM scheme to know the
identifiers of the legitimate devices. Figure 11b shows the result of the attack, and as we
can see, the legitimate devices are expelled.

BROKER

TOPIC 1
TOPIC 2
CONNECT client id 1-N

(a)

BROKER

TOPIC 1
TOPIC 2
CONNECT client id 1-N

(b)

Figure 11. MQTT-SN disconnect wave scheme. (a) MQTT-SN disconnect wave, implementation of
the attack. (b) MQTT-SN disconnect wave, result of the attack.

Evaluation of the Disconnect Wave Attack

As is shown in Figure 12a, the broker receives a flood of connect commands, but it
does not send any publish packets. The attacker sends connect packets iterating over the Id
to expel legitimate devices whose Id matches those of these packets. Therefore, we have
many connect ack packets and zero publish message packets, which can ultimately completely
override the network.

Even if the attacker performs this attack successfully, as we can see in Figure 12b,
legitimate devices keep sending messages. This attack can be stopped with a rules-based
IDS, which detects that the network is flooded with connect packets. This attack is an
innovation introduced in this work, so it can be difficult to find rules if you want to use
a rule-based threat detector, as is the case with other novel attacks due to the lack of
knowledge about them.

40

Appl. Sci. 2022, 12, 10991 14 of 24

(a) (b)

Figure 12. Disconnect wave attack evaluation diagrams. (a) MQTT-SN broker after disconnect wave
attack. (b) MQTT-SN legitimate client after the disconnect wave attack.

5.4. Sniffing Attack

This attack is based on a well-known MitM scheme. It can be performed using layers
below the application layer, where MQTT-SN operates. This case is different from the
rest of the attacks discussed in this paper because the attackers need to achieve an MitM
scheme, a process that requires no use of MQTT-SN features. This attack takes advantage
of the unencrypted connection (by default) in MQTT-SN communications, but has the
limitation (compared with the others presented in this paper) that it needs a third protocol
to complete the MitM scheme. Normally, MQTT-SN is supported with other lower layers
such as RPL [24] or 6LoWPAN [21]. For this attack, it is firstly necessary to compromise
the communications by attacking these protocols, and once the attacker is in the middle
of the communications, he/she has access to MQTT-SN information. The impact of this
attack could be extensive: first of all, it can affect confidentiality; secondly, integrity suffers
because the attacker can modify the messages; finally, availability is not guaranteed because
the attacker can break the communication. Figure 13 depicts an MitM attack over the MQTT-
SN protocol. We can see that the malicious device is placed between the broker and the
legitimate devices.

TOPIC 1
TOPIC 2

BROKER

Figure 13. MQTT-MitM scheme.

Chapter 2. Security analysis of the MQTT-SN protocol for the Internet of Things

41

Appl. Sci. 2022, 12, 10991 15 of 24

Evaluation of the Sniffing Attack

This attack is successful when there is unencrypted communication, and it must be pre-
ceded by a man in the middle attack. In our experiment, a rank attack against RPL [37] was
used to achieve the MitM scheme. The consequence of this attack is that the attacker gains
access to the information exchanged between the broker and the devices (see Figure 14).
This is not a pure IoT attack, but in this context, it can be more dangerous, because when
there are constrained devices, it is more difficult to implement an encryption algorithm
to protect the communication. One way to tackle this problem is to use Secure MQTT-SN
(SMQTT-SN) [38], but this implies an overhead that is introduced in the communication and
more resources employed on the devices. This attack does not affect network performance,
but then again, it is an attack that compromises system confidentiality.

Figure 14. Sniffed pcap view.

5.5. Spoofing Connection Via Id

This attack has a more complex and circumstantial implementation than the previous
ones. Its objective is to modify the topics to which a client is subscribed, which requires
that the legitimate client application does not use the CleanSession flag each time it connects
to a client.

As seen in other attacks, the client identifier is exploited to expel a client if it is
connected when the message is sent, or simply to spoof in case that it is not connected. It is
important to remark that, in this scenario, the CleanSession flag is enabled. This means that
the broker deletes the subscriptions to the different topics of the client with that specific Id.
The attackers can then subscribe the client to the topics they consider, or simply leave it
without any subscription. This completely modifies the reception of information from one
or more clients. Figure 15a shows a spoofing attack over MQTT-SN.

BROKER

TOPIC 1
TOPIC 2
CONNECT client id 1
SUBSCRIBE TOPIC2

(a) Spoofing connection, implementation of the attack.

BROKER

TOPIC 1
TOPIC 2

(b) Spoofing connection, result of the attack.

Figure 15. MQTT-SN spoofing connection scheme.

42

Appl. Sci. 2022, 12, 10991 16 of 24

In addition, Figure 16 shows the format of the connect-type packet, when the connec-
tion is to be spoofed. In this case, in addition to modifying the client Id, the attackers have
to send the CleanSession flag active.

Finally, Figure 15b shows the result of the successful attack. The target Id is now
subscribed to the topics that the attacker wishes. The malicious device does not need to
interact with the broker again.

Connect packet

Length MsgType Flags Protocol ID Duration Client ID

Figure 16. Connect packet format (spoofing connection).

5.6. Evaluation of the Spoofing Legitimate Clients Attack

This attack is implemented in Cooja by adding a malicious client that expels the target
client and overwrites the subscribed topics. Figure 17a shows the normal topic setup for
each legitimate device in the baseline scenario, while Figure 17b shows a malicious topic
setup for each legitimate device in an attacked system. As can be seen in Figure 17b, an
attacker could change the configuration of each device. We can see that, through this attack,
we can change the topics to which each legitimate device subscribes. This attack could be
avoided by including an IDS in the network, as this can detect when a new device is not
authorized to join the topology.

(a) (b)

Figure 17. Spoofing connection attack evaluation diagrams. (a) MQTT-SN topics sent for each device
in the baseline scenario. (b) MQTT-SN topics sent for each device after spoofing connections.

5.7. Congestion Attack

This attack is very common in many protocols, but there is a new factor to take into
account when it is implemented over MQTT/MQTT-SN. As the broker must distribute the
published messages, an attacker could publish massive messages on a common topic. This
means the impact is multiplied by the number of devices that have been subscribed to this
topic. There are several approaches to performing the attack. For example, it can create big
packets (with 6LoWPAN, there is a maximum of 127 bytes for the maximum transmission
unit), or it can send many packets as quickly as possible.

Figure 18 shows the scheme for performing the attack, illustrating how the flow of
/topic1 increases with respect to the normal scenario. In this experiment, this was performed
by sending messages without delay with the maximum allowed size.

We can see the format of the Publish-type packet (Figure 19) in the congestion attack.
The only difference with respect to a trash injection attack is that, here, as a general rule,
the packet will be sent with the largest possible size, so the length field gains relevance,

Chapter 2. Security analysis of the MQTT-SN protocol for the Internet of Things

43

Appl. Sci. 2022, 12, 10991 17 of 24

although it is actually calculated on the basis of the data field, which can be used to identify
this attack quickly. The size may vary depending on the network protocols used.

BROKER

TOPIC 1
TOPIC 2
TOPIC 1 (Big message, no delay)

Figure 18. MQTT-SN congested accumulated traffic scheme.

Publish packet

Length MsgType Flags Topic ID Msg ID Data

Figure 19. Publish packet format (congestion attack).

Evaluation of the Congestion Attack

To demonstrate the impact of this attack, firstly, Figure 20a shows the packets that
have been sent by the broker in the baseline scenario, and then, Figure 20b shows the
traffic on a compromised IoT baseline system. It can be seen how the broker seems to send
fewer messages.

In order to observe the impact more clearly, Figure 20c zooms in on the behavior of
the system when it is not under attack, while Figure 20d zooms in on the behavior of the
system when it is under attack. These images show an increase in the number of packets
received by the broker when the system is under attack.

In this implementation, the attacker floods a topic with two devices that send messages
uninterruptedly, and the broker’s buffer seems to have overflowed because it stops sending
other topics. In this sense, the attacker is easily able to modify the normal behavior of the
system. Figure 21 shows the accumulated traffic volume difference between the baseline
system and a congested system (flooding a topic with two devices). As we can observe, the
attackers considerably increased the traffic of the overall system. This could be a serious
issue in an IoT context, because in a small network, this increase will have a negative impact
on battery consumption. A network-based IDS could identify congestion in the network
and alert the administrator to a possible attack.

44

Appl. Sci. 2022, 12, 10991 18 of 24

(a) (b)

(c) (d)

Figure 20. Congestion attack evaluation diagrams. (a) MQTT-SN traffic in the legitimate scenario.
(b) MQTT-SN traffic in the attacked system. (c) MQTT-SN most-common topic frequency without
attacks. (d) MQTT-SN most-common topic frequency on an attacked system.

Figure 21. Accumulated traffic with topic flooding.

5.8. Wake up Wave Attack

The sleeping mode of MQTT-SN allows clients to remain in a sleeping state in order
not to waste battery power. While in this state, they do not receive the published messages
of the topics to which they are subscribed. This state is reached by sending a disconnect
message in which a time of duration is indicated. If this time is not specified, the broker
simply disconnects the client. When the client is ready to receive messages again, a Pingreq
message is sent, indicating the client identifier. This sends the client to a state called awake,
where it can receive messages again. A diagram of how this mechanism works can be seen
in Figure 22.

Chapter 2. Security analysis of the MQTT-SN protocol for the Internet of Things

45

Appl. Sci. 2022, 12, 10991 19 of 24

Client
MQTT-SN

Broker
MQTT-SN

CONNECT

CONN ACK

Client Active

DISCONNECT (sleep duration)

DISCONNECT

Client Asleep

PINGREQ

PUBLISH Client Awake

Figure 22. MQTT-SN sleeping mechanism diagram.

This attack, which exploits the mechanism introduced in MQTT-SN, aims to prevent
clients from sleeping, so that the broker does not stop sending them the various publishes.
This can be harmful, especially for devices that rely on batteries to operate. It also increases
network traffic.

Figure 23 shows the format of the Pingreq packet. In this case, an identifier of the
client we want to wake up is sent. In our implementation, we iterated over the different
clients permanently with the aim of preventing any of them from going into sleep mode. A
diagram of the attack can be seen in Figure 24.

Pingreq packet

Length MsgType Client ID

Figure 23. Pingreq packet format.

BROKER

TOPIC 1
TOPIC 2
PINGREQ client id 1-N

Figure 24. MQTT-SN wake up wave attack scheme.

Evaluation of the Wake up Wave Attack

As mentioned above, in this implementation of the attack, it iterates over the different
clients indefinitely, preventing any of them from sleeping. This causes, as can be seen in

46

Appl. Sci. 2022, 12, 10991 20 of 24

Figure 25, a huge increase in the system’s network usage. The same occurs with the battery
usage if the devices are dependent on it, which is usually the case when using sleep mode.
To defend against this attack, a rule-based IDS could be interesting since detecting that
a single IP address sends multiples Pingreqs with different Ids could be the signature to
identify this particular attack.

Figure 25. Received messages with attack versus those without attack.

6. Threat Detector Proposed

This section describes the deployment of the threat detector designed for IoT environments.
As described above, the impact of these attacks when successful is considerable, and

deploying typical detection systems can be complicated due to the scarce resources that
IoT devices possess. Therefore, we propose a threat detector that is specifically designed
to operate in IoT environments [39] and is based on a Complex Event Processing (CEP)
engine. CEP is a technology capable of processing and correlating an enormous amount
of data. The CEP engine receives simple events, which in this case are network packets.
When these simple events meet the requirements set in the CEP rules, a complex event is
triggered, which defines a situation of interest, which in this case, is a particular type of
attack. CEP is used as the base engine because it has been demonstrated that it is possible
to deploy this type of engine in IoT environments with few resources [40–42].

As a general rule, it is necessary for a domain expert to define these CEP rules. How-
ever, an architecture capable of generating CEP rules automatically has been designed [39].
This architecture is ideal for detecting the attacks in this paper, as they are novel attacks.
This means that, in a real environment, the domain experts cannot define rules for these
attacks because they do not know them.

This architecture is based on the use of Principal Component Analysis (PCA) [43] and
the Euclidean distance weighted with the explained variance ratio of each component of
the PCA model. Each component condenses the information of different features of the
events by means of linear relationships between them, and the components are linearly
independent of each other. The explained variance ratio allows us to know the weight
of each component. By doing so, we can weight each component more accurately when
generating the rules. This allows us to reduce the dimensionality of simple events while
characterizing the different families of attacks and to improve the performance of CEP
rules in the network, computation, and memory domains. In addition, it also allows us to
generate anomaly-detecting rules, which are ideal for detecting unknown attacks.

f (x) =

{
1 if f (x) = ∑n

i
√
(xi − mi)2 · rvi ≤ (∑n

i stdi · rvi) + α

0 if f (x) = ∑n
i
√
(xi − mi)2 · rvi > (∑n

i stdi · rvi) + α
(1)

Equation (1) shows the definition of a threshold for a CEP rule generated by our
proposal. Simple events, which are network packets in this case, are reduced with the PCA
model. Once the reduced simple event x is available, it is sent to the CEP engine. The CEP
engine calculates the difference of each component xi of that reduced simple event with

Chapter 2. Security analysis of the MQTT-SN protocol for the Internet of Things

47

Appl. Sci. 2022, 12, 10991 21 of 24

the mean of that component for each family mi and weights it with the explained variance
ratio of each component rvi. The α element makes it possible to add a bias for attacks with
elements that are very far from the mean. If the sum of these weighted differences is less
than the sum of the standard deviations stdi weighted with the explained variance ratio of
each component, it means that this element is part of that family. Otherwise, it is not part
of that family. This allows the generation of rules that detect anomalies by using a rule that
detects legitimate system behavior and makes it possible to generate anomaly detection
rules when a single event does not correspond to any type of attack and is not part of the
system’s legitimate behavior. It is important to understand that the real novelty of this
threat detector does not lie in Equation (1), which defines the detection threshold. The real
novelty is the use of PCA to reduce single events, which reduces the computational load of
the CEP engine. This is why this approach is novel and ideal in IoT environments.

Table 7 shows the results of the proposed threat detector against the attacks that were
presented in this paper. It should be noted that it was used to detect attacks that are more
difficult to detect using rule-based threat detectors. In this case, a single rule was generated
that tries to highlight all traffic that is malicious.

Table 7. Suggested threat detector results by packet type.

Packet Type TP TN FP FN

Normal traffic 0 653 24 0
Disconnect wave 2357 0 0 0

Trash injection 76 0 0 0
Congestion attack 824 0 0 0

Fake Id 8 0 0 0

We can see how the different types of traffic are detected by the detector (Table 8); in
this case, it was analyzed packet by packet. The classifier achieves a True Positive (TP)
when a packet, which belongs to an attack, is classified as an attack, a True Negative (TN)
when a packet, which belongs to normal traffic, is classified as such, a False Positive (FP)
when a packet, which belongs to normal traffic, is classified as an attack, and finally, a False
Negative (FN) when a packet that belongs to the attack traffic is classified as normal traffic.
To accurately assess the effectiveness of the classifier, the following metrics are used:

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• F1 Score = 2 · Precision·Recall
Precision+Recall

Table 8. Overall results of the classifier.

Precision Recall F1 Score

0.9927 1 0.9963

All metrics are between 0 and 1, with 1 being a perfect score. A high precision metric
score indicates that the classifier does not generate many false positives. A high recall score
indicates that the classifier does not generate many false negatives, and the F1 score metric
combines the two previous metrics to obtain the combined performance.

As we can see, this configuration causes some normal packets to be detected as attacks,
but in contrast, allows all attacks to be detected. Prioritizing the recall metric over the
precision metric is very common in the cybersecurity field.

In addition, the threat detector we suggest has been tested in other contexts to detect
attacks in the IoT environment with very positive results [39], being able to detect attacks
against the MQTT protocol with very good computational performance figures.

48

Appl. Sci. 2022, 12, 10991 22 of 24

7. Conclusions

The growth of the IoT has meant a drastic change in the technological world. When
a new paradigm arrives in a field, it brings many changes with it. In the case of the IoT,
having new devices and systems with specific features and requirements has consequently
meant the development of new communication protocols. Although it may not be the first
element to pay attention to when it comes to discussing IoT security, their importance must
not be underestimated, as they are the means to transport information. Data are exchanged
in large quantities in the IoT, with some of them being extremely sensitive. For this reason,
the research community has shown interest in analyzing some protocols to determine their
security level and how they can be exploited. However, the MQTT protocol, while being
one of the most-used ones in this environment, has not been studied in detail. The same
goes for its lighter version, MQTT-SN, for which, although it has not been yet as successful
as MQTT due to its novelty, it is reasonable to think that it may reach similar usage figures.

Under these circumstances, this paper provided an overview of the shortcomings of
the MQTT-SN protocol, which is appropriate for IoT scenarios. By compromising MQTT-
SN communications, the entire IoT infrastructure can be affected in terms of integrity,
confidentiality, and availability. MQTT-SN has inherited security weaknesses from MQTT,
its predecessor, which are related to authentication and encryption. In addition, this paper
highlighted the fact that MQTT-SN includes new features, such as the sleeping device
feature or the short name topic, which make it easier to attack MQTT-SN than MQTT. The
performance evaluation demonstrated that security is not an intrinsic feature of MQTT-
SN, and it is necessary to investigate, in a new specification, the way to solve security
issues while keeping in mind that the devices are resource-constrained and thus limited to
executing low-complexity algorithms, as well as most of the protocols are designed to be
light and do not support excessive overheads. Finally, this paper showed the fragility of this
protocol, meaning it is relatively simple to attack, and as we can see in the previous section,
these attacks have a huge impact on the system. Therefore, we proposed a CEP-based IDS
capable of operating in IoT environments and detecting unmodeled attacks. This threat
detector was tested at MQTT with extremely good results.

The main conclusions and novelties drawn from this work are as follows:

• A practical analysis of the MQTT-SN protocol from a security point of view was
carried out, noting that it has several weaknesses that can be exploited.

• Different attacks that exploit the vulnerabilities of the protocol were proposed, and
their operation was explained.

• The attacks were implemented, and the impact they have on an MQTT-SN network
was measured, allowing the impact of the attacks to be analyzed. This impact is quite
large in some attacks, while other attacks have a more circumstantial impact.

• Countermeasures were proposed to mitigate the effect of these attacks. In addition,
the use of a threat detector was suggested, which obtained good results, with an F1
score of 0.9963.

Author Contributions: Conceptualization: J.R.-G., J.C.-M. and J.M.C.G.; methodology: J.R.-G.;
software: J.R.-G.; investigation: J.R.-G., J.C.-M. and J.M.C.G.; data curation: J.R.-G.; draft preparation:
J.R.-G.; review and editing: J.M.C.G. and S.R.-V.; visualization: J.R.-G., J.C.-M. and S.R.-V.; supervision:
J.M.C.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Spanish Ministry of Science, Innovation and Universities
and the European Union FEDER Funds (Grant Numbers FPU 17/02007 and FPU 17/03105),by the
Spanish Ministry of Economic Affairs and Digital Transformation under the project RTI2018-098156-
B-C52, by the Spanish Ministry of Science and Innovation under the project PID2021-123627OB-C52,
by the University of Castilla La Mancha (Grant Numbers DO20184364 and PI001482), and by the
JCCM (Grant Number SBPLY/21/180501/000195).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Chapter 2. Security analysis of the MQTT-SN protocol for the Internet of Things

49

Appl. Sci. 2022, 12, 10991 23 of 24

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Thierer, A.; Castillo, A. Projecting the growth and economic impact of the internet of things. Georg. Mason Univ. Mercat. Center

June 2015, 15, 1–10.
2. Laghari, A.A.; Wu, K.; Laghari, R.A.; Ali, M.; Khan, A.A. A review and state of art of Internet of Things (IoT). Arch. Comput.

Methods Eng. 2021, 29, 1395–1413. [CrossRef]
3. State of the IoT 2020: 12 Billion IoT Connections, Surpassing Non-IoT for the First Time. 2020. Available online:

https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/ (accessed on
25 August 2022).

4. State of IoT 2022: Number of Connected IoT Devices Growing 18% to 14.4 Billion Globally. 2022. Available online: https:
//iot-analytics.com/number-connected-iot-devices/ (accessed on 25 August 2022).

5. Hunkeler, U.; Truong, H.L.; Stanford-Clark, A. MQTT-S—A publish/subscribe protocol for Wireless Sensor Networks. In
Proceedings of the 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops
(COMSWARE’08), Bangalore, India, 6–10 January 2008; pp. 791–798.

6. Ghori, M.R.; Wan, T.C.; Sodhy, G.C. Bluetooth Low Energy Mesh Networks: Survey of Communication and Security Protocols.
Sensors 2020, 20, 3590. [CrossRef] [PubMed]

7. Prakash, S. ZigBee based wireless sensor network architecture for agriculture applications. In Proceedings of the 2020 Third
International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020; pp. 709–712.

8. Shelby, Z.; Hartke, K.; Bormann and C.; Frank, B.; The Constrained Application Protocol (CoAP); Universitaet Bremen: Bremen,
Germany, 2014.

9. Gupta, P. A Survey of Application Layer Protocols for Internet of Things. In Proceedings of the 2021 International Conference on
Communication information and Computing Technology (ICCICT), Mumbai, India, 25–27 June 2021; pp. 1–6.

10. Mohanty, J.; Mishra, S.; Patra, S.; Pati, B.; Panigrahi, C.R. IoT Security, Challenges, and Solutions: A Review. Progress in Advanced
Computing and Intelligent Engineering; Springer: Berlin/Heidelberg, Germany, 2021; pp. 493–504.

11. Heer, T.; Garcia-Morchon, O.; Hummen, R.; Keoh, S.L.; Kumar, S.S.; Wehrle, K. Security Challenges in the IP-based Internet of
Things. Wirel. Pers. Commun. 2011, 61, 527–542. [CrossRef]

12. Zhang, Z.; Cho, M.C.Y.; Wang, C.; Hsu, C.; Chen, C.; Shieh, S. IoT Security: Ongoing Challenges and Research Opportunities. In
Proceedings of the 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications, Matsue, Japan,
17–19 November 2014; pp. 230–234. [CrossRef]

13. Al-Turjman, F.; Zahmatkesh, H.; Shahroze, R. An overview of security and privacy in smart cities’ IoT communications. Trans.
Emerg. Telecommun. Technol. 2022, 33, e3677. [CrossRef]

14. Javed, A.R.; Shahzad, F.; Rehman, S.u.; Zikria, Y.B.; Razzak, I.; Jalil, Z.; Xu, G. Future smart cities: Requirements, emerging
technologies, applications, challenges, and future aspects. Cities 2022, 129, 103794. [CrossRef]

15. Dahiya, P.; Kumar, V. IOT Security: Recent Trends and Challenges. In Emerging Technologies in Data Mining and Information Security;
Dutta, P., Chakrabarti, S., Bhattacharya, A., Dutta, S., Shahnaz, C., Eds.; Lecture Notes in Networks and Systems; Springer Nature:
Singapore, 2023; pp. 3–10. [CrossRef]

16. Punia, A.; Tiwari, M.; Verma, S.S. The IoT in Security Architecture, Challenges, and Solutions. In Optical and Wireless Technologies;
Tiwari, M., Ismail, Y., Verma, K., Garg, A.K., Eds.; Lecture Notes in Electrical Engineering; Springer Nature: Singapore,
2023; pp. 405–416. [CrossRef]

17. Stanford-Clark, A.; Truong, H.L. Mqtt for sensor networks (mqtt-sn) protocol specification. Int. Bus. Mach. IBM Corp. Version
2013, 1, 1–28.

18. Shakya, S.R.; Jha, S. Challenges in Industrial Internet of Things (IIoT). In Industrial Internet of Things; CRC Press: Boca Raton, FL,
USA, 2022; pp. 19–39.

19. Roldán-Gómez, J.; Carrillo-Mondéjar, J.; Gómez, J.M.C.; Martínez, J.L.M. Security Assessment of the MQTT-SN Protocol for the
Internet of Things. J. Phys. Conf. Ser. 2022, 2224, 012079. [CrossRef]

20. Postel, J. User Datagram Protocol; Technical Report; RFC: Sacramento, California, USA, 1980. .
21. Mulligan, G. The 6LoWPAN architecture. In Proceedings of the 4th Workshop on Embedded Networked Sensors, EmNets ’07, Cork,

Ireland, 25–26 June 2007; Association for Computing Machinery: New York, NY, USA, 2007; pp. 78–82. [CrossRef]
22. Pongle, P.; Chavan, G. A survey: Attacks on RPL and 6LoWPAN in IoT. In Proceedings of the 2015 International Conference on

Pervasive Computing (ICPC), Pune, India, 8–10 January 2015; pp. 1–6. [CrossRef]
23. Winter, T.; Thubert, P.; Brandt, A.; Hui, J.W.; Kelsey, R.; Levis, P.; Pister, K.; Struik, R.; Vasseur, J.P.; Alexander, R.K. RPL: IPv6

Routing Protocol for Low-Power and Lossy Networks. RFC 2012, 6550, 1–157.
24. Paszkowska, A.; Iwanicki, K. The IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) under Network Partitions. In

Proceedings of the 2018 International Conference on Embedded Wireless Systems and Networks, EWSN‘18, Madrid, Spain, 14–16 February
2018; Junction Publishing: Junction, TX, USA, 2018; pp. 90–101.

50

Appl. Sci. 2022, 12, 10991 24 of 24

25. Arvind, S.; Narayanan, V.A. An overview of security in CoAP: Attack and analysis. In Proceedings of the 2019 5th International
Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; pp. 655–660.

26. Andy, S.; Rahardjo, B.; Hanindhito, B. Attack scenarios and security analysis of MQTT communication protocol in IoT system.
In Proceedings of the 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI),
Yogyakarta, Indonesia, 19–21 September 2017; pp. 1–6. [CrossRef]

27. Farahani, S. ZigBee wireless networks and transceivers. Newnes 2011, 4, 2021.
28. Sochor, H.; Ferrarotti, F.; Ramler, R. Exploiting MQTT-SN for Distributed Reflection Denial-of-Service Attacks. Commun. Comput.

Inf. Sci. 2020, 1285, 74–81. [CrossRef]
29. Gündoğan, C.; Amsüss, C.; Schmidt, T.C.; Wählisch, M. IoT Content Object Security with OSCORE and NDN: A First Experimental

Comparison. In Proceedings of the 2020 IFIP Networking Conference (Networking), Paris, France, 22–26 June 2020.
30. Sadio, O.; Ngom, I.; Lishou, C. Lightweight Security Scheme for MQTT/MQTT-SN Protocol. In Proceedings of the

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Granada, Spain,
22–25 October 2019; pp. 119–123. [CrossRef]

31. Bang, A.; Rao, U. Design and evaluation of a novel White-box encryption scheme for resource-constrained IoT devices.
J. Supercomput. 2022, 78, 11111–11137. [CrossRef]

32. Kao, T.; Wang, H.; Li, J. Safe MQTT-SN: A lightweight secure encrypted communication in IoT. J. Phys. Conf. Ser. 2021, 2020,
012044. [CrossRef]

33. Kumar.N.V, R.; Kumar P, M. Survey on State of Art IoT Protocols and Applications. In Proceedings of the 2020 International
Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE), Keonjhar, India, 29–31
July 2020. [CrossRef]

34. Zhao, B.; Ji, S.; Lee, W.H.; Lin, C.; Weng, H.; Wu, J.; Zhou, P.; Fang, L.; Beyah, R. A Large-Scale Empirical Study on the Vulnerability
of Deployed IoT Devices. IEEE Trans. Dependable Secur. Comput. 2022, 19, 1826–1840. [CrossRef]

35. Dunkels, A.; Gronvall, B.; Voigt, T. Contiki—A lightweight and flexible operating system for tiny networked sensors.
In Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, Tampa, FL, USA,
16–18 November 2004; pp. 455–462. [CrossRef]

36. Orebaugh, A.; Ramirez, G.; Beale, J. Wireshark & Ethereal Network Protocol Analyzer Toolkit; Elsevier: Amsterdam, The Netherlands, 2006.
37. Boudouaia, M.A.; Ali-Pacha, A.; Abouaissa, A.; Lorenz, P. Security Against Rank Attack in RPL Protocol. IEEE Netw. 2020,

34, 133–139. [CrossRef]
38. Singh, M.; Rajan, M.A.; Shivraj, V.L.; Balamuralidhar, P. Secure MQTT for Internet of Things (IoT). In Proceedings of the 2015 Fifth

International Conference on Communication Systems and Network Technologies, Gwalior, India, 4–6 April 2015; pp. 746–751. [CrossRef]
39. Roldán-Gómez, J.; Boubeta-Puig, J.; Castelo Gómez, J.M.; Carrillo-Mondéjar, J.; Martínez Martínez, J.L. Attack Pattern Recognition

in the Internet of Things using Complex Event Processing and Machine Learning. In Proceedings of the 2021 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, 17–20 October 2021; pp. 1919–1926. [CrossRef]

40. Corral-Plaza, D.; Medina-Bulo, I.; Ortiz, G.; Boubeta-Puig, J. A stream processing architecture for heterogeneous data sources in
the Internet of Things. Comput. Stand. Interfaces 2020, 70, 103426. [CrossRef]

41. Ortiz, G.; Boubeta-Puig, J.; Criado, J.; Corral-Plaza, D.; Garcia-de Prado, A.; Medina-Bulo, I.; Iribarne, L. A microservice
architecture for real-time IoT data processing: A reusable Web of things approach for smart ports. Comput. Stand. Interfaces 2022,
81, 103604. [CrossRef]

42. Roldán-Gómez, J.; Boubeta-Puig, J.; Pachacama-Castillo, G.; Ortiz, G.; Martínez, J.L. Detecting security attacks in cyber-physical
systems: A comparison of Mule and WSO2 intelligent IoT architectures. PeerJ Comput. Sci. 2021, 7, e787. [CrossRef] [PubMed]

43. Martinez, A.; Kak, A. PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 228–233. [CrossRef]

Chapter 2. Security analysis of the MQTT-SN protocol for the Internet of Things

51

CHAPTER 3

Integrating Complex Event Processing
and Machine Learning: an intelligent
architecture for detecting IoT security
attacks

• Title: Integrating Complex Event Processing and Machine Learning: an Intelligent
Architecture for Detecting IoT Security Attacks.

• Authors: José Roldán-Gómez, Juan Boubeta-Puig, José Luis Martínez, Guadalupe
Ortiz

• Type: Journal paper.

• Journal: Expert Systems with Applications.

• Publisher: Elsevier

• ISSN: 0957-4174.

• Status: Published.

• Publication date: July 2020.

• Volume: 2020.

• Paper Number: 113251.

• DOI: 10.1016/j.eswa.2020.113251

• JCR IF/ranking: 6.954/Q1 (JCR2020).

53

https://doi.org/10.1016/j.eswa.2020.113251

Expert Systems With Applications 149 (2020) 113251

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Integrating complex event processing and machine learning: An

intelligent architecture for detecting IoT security attacks

José Roldán

a , ∗, Juan Boubeta-Puig

b , José Luis Martínez a , Guadalupe Ortiz b

a Research Institute of Informatics (i3a), University of Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
b Department of Computer Science and Engineering, University of Cadiz, Avda. de la Universidad de Cádiz 10, 11519 Puerto Real, Cádiz, Spain

a r t i c l e i n f o

Article history:

Received 1 August 2019

Revised 22 December 2019

Accepted 25 January 2020

Available online 30 January 2020

Keywords:

Complex event processing

Machine learning

Software architecture

Intelligent decision making

Internet of Things

Security attack

a b s t r a c t

The Internet of Things (IoT) is growing globally at a fast pace: people now find themselves surrounded

by a variety of IoT devices such as smartphones and wearables in their everyday lives. Additionally, smart

environments, such as smart healthcare systems, smart industries and smart cities, benefit from sensors

and actuators interconnected through the IoT. However, the increase in IoT devices has brought with it

the challenge of promptly detecting and combating the cybersecurity attacks and threats that target them,

including malware, privacy breaches and denial of service attacks, among others. To tackle this challenge,

this paper proposes an intelligent architecture that integrates Complex Event Processing (CEP) technology

and the Machine Learning (ML) paradigm in order to detect different types of IoT security attacks in real

time. In particular, such an architecture is capable of easily managing event patterns whose conditions

depend on values obtained by ML algorithms. Additionally, a model-driven graphical tool for security

attack pattern definition and automatic code generation is provided, hiding all the complexity derived

from implementation details from domain experts. The proposed architecture has been applied in the

case of a healthcare IoT network to validate its ability to detect attacks made by malicious devices. The

results obtained demonstrate that this architecture satisfactorily fulfils its objectives.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The Internet of Things (IoT) is expanding globally, providing di-

verse benefits in nearly every aspect of our lives, such as health-

care, entertainment, transportation, industry, smart cities and even

our daily routine. Every single device is able to connect to the In-

ternet and communicate with the web or mobile applications, or

even share data with other objects (Atzori, Iera, & Morabito, 2010).

However, it is important to bear in mind that these autonomous

objects are provided with limited features, such as small memo-

ries, a low bandwidth communication channel, a small processor,

and low cost sensors or actuators, so although this confers a form

of intelligence (smart objects), it is limited.

Nowadays, the trend for the IoT market is for continued growth,

as indicated by CISCO, and it is expected to be worth around 14.4

trillion dollars between 2013 and 2022 (Raynovich, 2017). Never-

theless, emerging IoT technologies face various security attacks and

threats, which include malware, privacy breaches, Denial of Ser-

∗ Corresponding author.

E-mail addresses: jose.roldan@uclm.es (J. Roldán), juan.boubeta@uca.es

(J. Boubeta-Puig), joseluis.martinez@uclm.es (J. Luis Martínez),

guadalupe.ortiz@uca.es (G. Ortiz).

vice (DoS) attacks, security vulnerabilities with available exploits,

and disruption of IoT networks (Andrea, Chrysostomou, & Had-

jichristofi, 2015). Taking into account the inherent computational

limitations of IoT devices in addition to their vulnerabilities, as

well as their expected proliferation worldwide, both the risks and

the projected global impact of connecting IoT devices to the net-

work in any modern environment become evident. Not only do

IoT devices have to be protected, but also the communications be-

tween them: huge volumes of data can be exchanged between de-

vices and between the latter and servers or consumers, and the

compromised availability, integrity, or confidentiality of these data

can have a great impact.

In this field, in recent years, Machine Learning (ML) has been

used to detect anomalous behaviour in the IoT (Buczak & Guven,

2016; Gharibian & Ghorbani, 2007; Meidan et al., 2017). Basically,

the proposals consist in trying to train a model to understand

the normal behaviour of an infrastructure or system and to de-

tect when a new security issue occurs. However, when testing the

model, numerous false positives—considering false positives as le-

git packets detected as anomalies— can appear until the model is

correctly adjusted. As an example, a pure ML-based Intrusion De-

tection System (IDS) usually fails when the scenario is very com-

plex, producing many false positives. Therefore, there is a gap in

https://doi.org/10.1016/j.eswa.2020.113251

0957-4174/© 2020 Elsevier Ltd. All rights reserved.

54

2 J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251

this field with has not yet been covered: there are no tools or ap-

proaches which enable the prediction and detection of unknown

attacks in the field of the IoT, bearing in mind that in this sce-

nario resources may be limited and it is essential to detect such

attacks in real time. In addition, since the handling of IoT devices

is not limited to specially qualified users, as nowadays any citizen

with a basic knowledge of the technology can install and use such

devices, the tools that detect attacks should provide a graphical in-

terface that allows such users to benefit from the knowledge of a

computer expert.

In order to cover this gap, we propose to use Complex Event

Processing (CEP) technology in conjunction with ML techniques.

CEP is a technology that is designed to process, analyze and cor-

relate big amounts of real-time data produced by IoT devices and

systems with the aim of promptly detecting situations of interest

in multiple domains (Kousiouris et al., 2018; Garcia-de Prado, Or-

tiz, & Boubeta-Puig, 2017; Terroso-Saenz, Gonzlez-Vidal, Ramallo-

Gonzlez, & Skarmeta, 2019). Even though CEP has demonstrated

benefits such as its ability for efficiently processing network secu-

rity data on the fly without being previously stored (Gad, Boubeta-

Puig, Kappes, & Medina-Bulo, 2012; Gad, Kappes, Boubeta-Puig, &

Medina-Bulo, 2013), only some isolated works make use of this

technology for detecting security attacks and threats (Gad et al.,

2013; Vegh & Miclea, 2016).

Considering such benefits provided by CEP and ML, in this pa-

per, we propose an intelligent architecture that integrates both CEP

and ML in order to promptly detect IoT security attacks by defining

event patterns whose conditions depend on values of the network

packets predicted by ML algorithms. More specifically, this pro-

posal is based on our previously proposed Event-Driven Service-

Oriented Architecture (SOA 2.0) (Boubeta-Puig, Ortiz, & Medina-

Bulo, 2015), which has been extended with ML capabilities and

then applied to the IoT security domain.

In such an architecture one of the key parts is the Enterprise

Service Bus (ESB): the ESB is the middleware that makes it possible

to create the data connection between IoT networks and both the

CEP engine and ML algorithms, as well as to allow the CEP engine

to communicate with data consumers such as trusted computers,

email servers and alert databases. In this way, the CEP engine can

receive both network packet events as a result of preprocessing

IoT sensing data, and prediction network packet events generated

upon training ML algorithm execution. By analyzing and correlat-

ing these events through the use of event patterns, the CEP engine

is capable of detecting IoT security attacks in real time, as well as

notifying them to data consumers through the ESB. Thanks to the

integration of the ESB and the ML algorithms with the MEdit4CEP

model-driven approach (Boubeta-Puig et al., 2015), security domain

experts can graphically define which types of security attack must

be analyzed and prevented, without having advanced knowledge

about CEP, ML or IoT networks. The graphical security attack mod-

els are then automatically transformed into implementation code,

which is automatically deployed in the proposed architecture at

runtime. Therefore, the main contribution of this paper is an SOA

2.0 integrating CEP, ML, IoT and MEdit4CEP for detecting IoT secu-

rity attacks and threats in a user-friendly way.

To sum up, the main contributions of this paper are twofold:

firstly, the integration of an SOA 2.0 architecture with ML tech-

niques which facilitates the real-time detection and prevention of

security attacks in the IoT; secondly, the extension of MEdit4CEP

to support the graphical definition of the security attacks to be de-

tected and prevented in the new enhanced architecture. Further-

more, in order to validate our proposal, the architecture has been

applied to an IoT network prototype constructed in a hospital with

the aim of detecting attacks made by a malicious device. The re-

sults confirm that the integration of CEP with ML is powerful in

this realistic scenario, and that this architecture works effectively

when using a model that can be adapted to the context of the sce-

nario in question. Since a model can be defined with many layers

similarly to those proposed by the Open System Interconnections

(OSI) and Transmission Control Protocol(TCP)/Internet Protocol (IP)

models (Rondeau, Temple, & Lopez, 2019), our proposal is able to

adapt to any layers from physical to enterprise network ones. To

address it, the only requirement is to redefine the packet features.

The rest of the paper is organized as follows. Section 2 ex-

plains the basic concepts needed to understand the work pre-

sented. Section 3 deals with the main components of the proposed

architecture integrating CEP and ML. Then, Section 4 presents

the application of the architecture to detect IoT security attacks.

Section 5 shows the results obtained, while Section 6 describes

the related work. Finally, Section 7 draws some conclusions and

describes lines for future research.

2. Background

The subject matters relevant to the content of this paper is in-

troduced in this section.

2.1. Complex event processing

CEP is a technology that allows the capture, analysis and corre-

lation of large amounts of simple events with the aim of detecting

relevant situations in a particular domain (Luckham, 2012). Cap-

tured events are data that, for instance, flow through information

systems or are provided by IoT devices, among others. They are

called simple events because they are usually raw data. From the

processing of such simple events, we can infer information with a

greater semantic knowledge in real time, therefore obtaining the

so-called complex events.

Thus, in a given context, we will be interested in detecting rel-

evant situations according to the domain in question, that is, com-

plex events. To do this, we will have to define a series of event

patterns that specify the conditions that must be met by input

simple events to detect such situations. These patterns are defined

in a CEP, which is a software used to match these patterns over

the incoming event streams, and capable of analyzing the data and

highlighting detected situations of interest in real time. Each CEP

engine has its own specific Event Processing Language (EPL) for the

pattern definition.

The main advantage of CEP compared with other traditional

event analysis software is the ability to process large amounts of

data and notify the interested parties of the detected situations of

interest in real time, thus considerably reducing the latency in the

decision-making process, and therefore giving a competitive advan-

tage to the user in question.

2.2. Event-driven service-oriented architecture

SOA 2.0, also called ED-SOA, evolved from the traditional

Service-Oriented Architecture (SOA). While in SOA communica-

tions are performed following the request/response paradigm

(Papazoglou, 2012), in SOA 2.0 communications are performed

in reaction to events occurring in the system (Taylor, 2009), i.e.,

events trigger asynchronous messages that are sent to indepen-

dent software components. To achieve this integration, a software

abstraction layer is required that is capable of integrating various

heterogeneous data sources with the software components to be

invoked. These functionalities are offered by an ESB (Papazoglou &

Heuvel, 2006), which permits interoperability among several com-

munication protocols and heterogeneous data sources and sinks. In

addition to being in charge of transforming messages to the nec-

essary protocols and their correct routing, the ESB can provide a

Chapter 3. Integrating Complex Event Processing and Machine Learning: an
Intelligent Architecture for Detecting IoT Security Attacks

55

J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251 3

series of added functions such as security support, monitoring, au-

diting, and many others, depending on the particular ESB.

In this way, through the use of ED-SOA and an ESB, applications

and services can respond quickly to asynchronous events and allow

server and client to be completely decoupled. Despite all the ad-

vantages provided by SOA 2.0, this type of architecture might not

be ideal for analyzing and correlating big amounts of data in terms

of events. Therefore, we have integrated SOA 2.0 with CEP tech-

nology in order to be able not only to respond quickly to events,

but also to process, analyze, and correlate these events in order to

promptly detect situations of interest for a particular domain.

2.3. MEdit4CEP

As mentioned above, the integration of SOA 2.0 with CEP con-

siderably improves real-time decision-making. In order to benefit

from such integration, we need to accurately define event patterns

that allow the detection of the situations of interest based on the

incoming event stream. This is undoubtedly the task of the domain

expert, who does not necessarily have to be an expert in software

programming. Therefore, we must provide experts with a graph-

ical tool to help them define the patterns correctly. MEdit4CEP

(Boubeta-Puig et al., 2015) was designed and implemented for this

purpose.

Thus, MEdit4CEP is a model-driven solution for real-time deci-

sion making in SOA 2.0. whose main aim is to facilitate the def-

inition of event patterns for domain experts. This solution pro-

vides a graphical modeling editor for CEP domain definition and

a graphical modeling editor for event pattern definition. It also

provides automatic code generation and deployment from the pat-

terns modeled by the domain expert. In particular, MEdit4CEP cur-

rently generates the pattern code in Esper EPL, the language sup-

ported by the Esper CEP engine (EsperTech, 2019a), and deploys

the code in the engine at runtime.

2.4. Machine learning

ML techniques refer to the study of algorithms and systems that

are capable of learning or acquiring knowledge from experiences.

ML uses statistics with different kinds of algorithms to solve a

problem by studying and analyzing data. Due to its success, ML has

been used in an extensive range of applications including search

engines, medical diagnosis, Deoxyribonucleic acid (DNA) sequence

classification, and object recognition in computer vision, and, more

recently, it has been applied to improve network security in terms

of authentication, access control, anti-jamming offloading, DoS and

malware detection (Buczak & Guven, 2016; Narudin, Feizollah, An-

uar, & Gani, 2016; Ozay, Esnaola, Yarman Vural, Kulkarni, & Poor,

2016; Tan, Jamdagni, He, Nanda, & Liu, 2011).

In general, there are two types of ML algorithms: supervised

learning and unsupervised learning. On the one hand, supervised

learning uses data samples with known measurements and class

membership to create a set of rules to classify data samples with

known measurements and assign class membership. On the other

hand, unsupervised learning does not require labeled data, as in

the supervised learning, and investigates the similarity between

the unlabeled data to cluster them into different groups (Al-Garadi,

Mohamed, Al-Ali, Du, & Guizani, 2018).

The ML techniques used in this work are based on super-

vised learning. In particular, this paper uses a Linear Regres-

sion (Mihescu, 2011) method to model the relationship between

a scalar response and many explanatory variables (multiple lin-

ear regression). The proposed model can be used to fit a predic-

tive model generated from an observed dataset of values extracted

from a regular network scenario. The key point is identifying the

information that can be used to build the predictive model. After

developing such a model, if additional values of the explanatory

variables are collected without an associated response value, the

fitted model can be used to make a prediction of the response:

normal behaviour or anomalous behaviour. This paper also uses

the Support Vector Regression (SVR) regressor. Note that the com-

parison of ML algorithms is out of the scope of this paper. We are

aiming to show that our proposal can be adapted to any model;

we use the same features set and a linear kernel (Basak, Pal, & Pa-

tranabis, 2007).

In particular, we will use a novel architecture (rules with CEP

together with linear or SVR regression) and define manual patterns

for common attacks, as port scans, and linear regression in con-

junction with CEP against attacks over Message Queuing Telemetry

Transport (MQTT). Although we can use CEP together with linear

regression against common attacks, our goal is to show the advan-

tage of our architecture against unknown attacks (or attacks that

we have not been included in our model). Therefore, the use of CEP

in conjunction with regression (linear or SVR in this case) is used

to detect MQTT attacks, when we do not know the expected value

of the attack packets. With this architecture we have a twofold

benefit: on the one hand, we can predict attacks that we do not

know in advance; on the other we can create patterns that detect

well-known attacks.

2.5. IoT network communication

The IoT (Gubbi, Buyya, Marusic, & Palaniswami, 2013) is a pow-

erful paradigm in which many objects are able to obtain relevant

information and communicate with each other.

Although the IoT allows us to upgrade interaction with our sur-

roundings, it creates new challenges to be overcome, such as con-

strained devices, dynamic networks, battery autonomy and hetero-

geneous protocols. In the field of security management, all these

challenges might be a handicap, so we need new approaches and

tools to improve the current situation. As an example, the integra-

tion of the IoT paradigm with CEP technology allows us to extract

important information, understand the situation, act accordingly

and improve our living and working conditions (Boubeta-Puig, Or-

tiz, & Medina-Bulo, 2014).

MQTT is a very common protocol used in then IoT (OASIS,

2019). MQTT offers a small overhead (2 bytes from its fixed header,

normally). Moreover, MQTT is a binary protocol that reduces the

overhead compared with other application layer protocols. It is a

publish/subscribe-based protocol in which a server (there can be

more than one), known as the message broker, manages the in-

formation flow organized in a hierarchy of topics. Each client can

be a subscriber and a publisher simultaneously. When a publisher

device needs to send new information, it publishes a topic con-

taining the information in the broker, then the broker distributes

this information to all subscriber devices, which have been pre-

viously subscribed to this topic in particular. Although there are

other IoT protocols, we use MQTT because it is consolidated and

widely used. In any case, our solution can be adapted for different

technologies and protocols.

2.6. Security attacks

Security attacks, which can be classified as critical or soft, are a

constant threat for every system. Therefore, taking actions is nec-

essary to avoid unrecoverable problems that could affect our con-

fidentiality, integrity or availability. IoT systems have several con-

straints, such as a small memory, a dynamic and heterogeneous

network and a limited battery, that prevent developers from us-

ing a usual security setup. Therefore, the actions for this kind of

system need to be reconsidered.

56

4 J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251

Fig. 1. The proposed architecture for detecting IoT security attacks.

A very common attack against IoT systems consists of producing

a DoS of the system. There are many methods to perform this, such

as, for example, the Mirai attack, which consisted in gaining ac-

cess to the system using common credentials against Telnet, Secure

Shell (SSH) or other services, thus allowing the attacker to take

control of the device. The attacker, through the use of a big num-

ber of devices, usually uses this method to flood a target, which is

the victim.

The first step before attacking the target is usually to carry out

port scanning. This is not an attack per se but it makes it possi-

ble to be aware of the open ports. The attacker can craft and send

packets and interpret the responses to perform the port scans.

Since DoS and port scans are very common, we have considered

both of them in our application scenario.

3. Proposed architecture

In this section, our proposed architecture is described. This ar-

chitecture is composed of two distinct parts. The first part includes

the processes to be executed at runtime (top half of Fig. 1), i.e. the

behaviour of our system, whereas the second part covers the pro-

cesses that take place at design time (bottom half of Fig. 1).

3.1. Runtime architecture

In particular, the runtime part is based on an SOA 2.0, which is

responsible for: (1) capturing the real-time IoT data produced by

data sources; (2) processing, analyzing and correlating such data

reached by the ESB; and (3) acting and making decisions about the

situations of interest detected, as well as notifying data sinks of

them.

In this architecture, IoT networks are used as data sources. IoT

networks are composed of several IoT nodes connected to a mes-

sage broker, which is in charge of sending all raw sensor data to

the ESB through the MQTT protocol, as well as generating the raw

sensor data for training purpose in an isolated scenario without

any security attacks.

The ESB receives the real-time raw sensor data, preprocesses

them and transforms them into a common format of network

events. Additionally, the ESB receives the training raw sensor data

and preprocesses them to make them consumable for our train-

ing ML algorithm (linear regression or SVR in this case). Then, the

ESB produces a trained model, which will be used to generate Net-

workPrediction events containing a timestamp, a predicted value (of

packet length in this case) and a margin where a normal value

should be. Each packet in the network will have an associated Net-

workPrediction event. Note that the difference between a training

packet and a normal packet is that the training packet is used dur-

ing the training stage, while the normal packet is predicted by the

trained model.

We should point out that the values of the key features (fea-

tures essential for detecting a specific scenario) for validating a

legitimate packet are not necessarily fixed, as the domain expert

can use the predictor and generate a dynamic predictor with the

knowledge obtained for a legit scenario. If a packet’s real value ob-

tained from a predicted feature is outside a prediction bound for

this kind of packet, the system will detect it. Since the predic-

tor has the ability to adapt to different cases, it works correctly

not only with homogeneous scenarios but also with heterogeneous

ones.

Afterwards, the CEP engine, which has been integrated with the

ESB, receives both network events and NetworkPrediction events,

Chapter 3. Integrating Complex Event Processing and Machine Learning: an
Intelligent Architecture for Detecting IoT Security Attacks

57

J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251 5

and it also analyzes and correlates these events in order to detect

and predict security attacks (complex events) in real time, accord-

ing to the event patterns previously defined and deployed in the

engine.

Upon complex event detection, the decision-process compo-

nent will promptly notify the data sinks (trusted computers, email

servers and alerts databases, among others) previously subscribed

to this type of complex events.

3.2. Design time architecture

The design time part of the architecture is based on the

MEdit4CEP model-driven approach (Boubeta-Puig et al., 2015),

whose main aim is the definition of high-level models, which are

understandable to any user. These models are automatically trans-

formed into code that is executable in the CEP engine and the

decision-process component located in the ESB.

As shown in the bottom half of Fig. 1 , the design time part

includes the domain expert, representing people who possess a

wide knowledge of network security and so understand the nor-

mal behaviour of the system to protect, but do not necessarily have

knowledge of CEP or ML. These experts are suitable candidates to

accurately define the CEP domain composed of the network event

and NetworkPrediction event types with their properties, as well as

to graphically define the security attack event patterns through a

graphical tool, hiding them from the implementation details.

The steps involved for the definition and code generation of the

IoT security domain and event patterns are as follows:

1. The domain expert creates a graphical IoT security domain

model from scratch, defining event types with their properties.

2. Once the domain model is defined, the editor will be responsi-

ble for its syntactic validation. If it is not valid, the domain ex-

pert will be advised to correct the detected errors. This model

will then be saved.

3. The domain expert will create security attack pattern models.

To do this, the graphical editor will be customized with the

previously defined domain model. One should take into account

that the defined patterns might include the values obtained by

the ML algorithm dynamically.

4. Once pattern models have been defined, the editor will be re-

sponsible for their validation. If any of them are invalid, the

user will be asked to correct the detected errors. These mod-

els will then be saved.

5. Each of these pattern models will be automatically transformed

into code, which consists of both the EPL the code implement-

ing the conditions to be satisfied so that the CEP engine can

detect the security attacks, and code of actions to be carried

out in the ESB when detecting prospective security attacks.

6. The event pattern code generated will be added to the CEP

engine while the action code generated will be added to the

decision-process component in the ESB at runtime.

It is worth noting that the design time part of the architecture

provides two advantages. Firstly, the use of MEdit4CEP allows the

domain expert to easily design the IoT security domain model and

security attack patterns without requiring any programming lan-

guage. Secondly, the connection with a predictor makes it possible

to model dynamic patterns, in which the definition of some event

properties depends on the values automatically computed by the

predictor. We use the term dynamic patterns because our predic-

tor computes the estimated value for a legitimate packet by us-

ing the features of these packets, and the patterns make use of

such prediction values. Therefore, the combination of MEdit4CEP

and the predictor makes our architecture user-friendly, customized

and adaptable to new attacks and security scenarios.

The main advantage of our proposal against existing rule-based

IDS is that our architecture is able to detect attacks that have not

been defined in our model, as explained in Section 5 . So, we could

define an “unknown attack pattern” to be triggered when the in-

coming packets contain uncommon values. Additionally, this could

be used for a smart definition of thresholds for known attacks,

such as a DoS. Therefore, our architecture is also very versatile.

4. Applying the architecture to detect IoT security attacks

The aim of this section is to provide a real-world scenario in

which our proposed architecture can be applied in order to check

that it works correctly.

In particular, we have applied our architecture to an IoT net-

work prototype constructed in a hospital. This network is com-

posed of noise sensors located in different rooms of the hospi-

tal. The measurements taken by the sensors could be used to de-

tect noise levels in real time as well as to notify nurses when a

noise level is too high in a particular room. In this way, a nurse

could go to this room as soon as possible to recommend that the

patient’s visitors speak more quietly, thus improving the patient’s

well-being.

In this section, we focus on detecting IoT security attacks in this

network by using our proposed architecture. Note that the detec-

tion of noise level is beyond the scope of this paper.

4.1. Data sources

To test our proposal we designed and constructed such an IoT

network as the data source for our architecture.

Fig. 2 depicts the network topology, which is composed of three

legitimate devices, a broker and a malicious device for implement-

ing attacks. The devices use the MQTT protocol to share informa-

tion with the broker; in this case, they share information about

noise.

Although this network is simple, it is effective in illustrating the

proposed architecture. Note that the same network topology could

be applied to other application domains in which devices share

other types of information.

Additionally, this IoT network has been emulated with Virtual

Box (Oracle, 2019), obtaining similar results to those when us-

ing real devices. Specifically, an application in which each device

generates random numbers and publishes them in its own topic

has been emulated. We have used virtual machines because these

make it possible to modify the set up quickly and change the test

cases easily.

4.2. ESB

The functionalities provided by the ESB (see Section 3) have

been implemented by using Mule ESB 3.9 (MuleSoft, 2019). Our

ESB application is composed of four data flows, as detailed in the

following paragraphs.

The first data flow is responsible for gathering the raw sensor

data through the MQTT protocol endpoint, transforming them into

network event format and then sending the events to the Esper 7.1

CEP engine (EsperTech, 2019a).

The second data flow is in charge of predicting events from

the training sensor data received through another MQTT protocol

endpoint. To do this, we have implemented a predictor in Python

3.6 (Python Software Foundation, 2019) using the Numpy (NumPy,

2019), Scikit-learn (Scikit-learn, 2019) and Pandas (Pandas, 2019)

libraries. This predictor uses traces of packages captured using

Wireshark (Wireshark, 2019) in the broker to fit the model. Since

Pandas works easily with data in the Comma-Separated Values

58

6 J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251

Fig. 2. IoT network topology for the real-world scenario.

Fig. 3. Dataflow scheme.

(CSV) format and Wireshark makes it possible to export the cap-

tured data in CSV, the predictor also works with this format. Fig. 3

illustrates the dataflow scheme. Note that, if needed, Wireshark

could be replaced by another packet analyzer because our archi-

tecture is entirely modular.

In particular, our predictor currently works with linear regres-

sion (or SVR algorithms in some experiments), which are essential

to fit our model by using a normal case in which the system works

correctly without attacks. Additionally, we have defined port scans

and attacks (see Section 4.5) to test both our predictor and the sys-

tem behaviour when it suffers an attack. We should point out that,

although we have used linear regression and SVR because of their

suitability for our features, other ML methods could be used in our

architecture if necessary.

The third data flow is responsible for both receiving the Esper

EPL pattern code automatically generated by MEdit4CEP and de-

ploying it in the Esper CEP engine, while the fourth data flow re-

ceives the action code generated by MEdit4CEP and makes the de-

cisions about which data sinks will be notified about the situations

of interest detected in real time.

4.3. Data sinks

Three types of data sinks have been considered in this archi-

tecture: (1) alert databases, on which the detected situations of

interest are stored; (2) emails with their body containing the de-

scription of the detected situations to be notified to the subscribed

users; and (3) trusted computers in charge of displaying such situ-

ations on dashboards in real time.

Since our architecture is flexible, other data sinks could be in-

cluded in the future, according to the domain expert’s needs.

4.4. IoT security domain

The IoTSecurity domain has been graphically modeled by using

MEdit4CEP, as shown in Fig. 4 . This domain is composed of two

types of event types: NetworkPacket and NetworkPrediction .

In particular, NetworkPacket defines the event information re-

quired for traces of packets captured by network protocol ana-

lyzers, such as Wireshark. As depicted in Fig. 4 , the event prop-

erties have been modeled according to the OSI reference model

(Zimmermann, 1980), i.e. grouping the properties by OSI layers.

Therefore, NetworkPacket contains the time (in epoch format) at

which the packet is captured, the packet length in bytes, the packet

info that is defined by Wireshark and depends on the protocol, and

also the following nested properties: networkInterface, internet, TCP ,

User Datagram Protocol (UDP) and MQTT .

The networkInterface property is composed of:

• sourceMAC : sender’s MAC address.
• destinationMAC : receiver’s MAC address.

The internet property is composed of:

• sourceIP : sender’s IP address.
• destinationIP : receiver’s IP address.

Chapter 3. Integrating Complex Event Processing and Machine Learning: an
Intelligent Architecture for Detecting IoT Security Attacks

59

J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251 7

Fig. 4. IoT security domain modeled with MEdit4CEP.

• protocol : upper layer protocol.

The TCP property is composed of:

• sourcePort : TCP port of the sender device.
• destinationPort : TCP port of the receiver device.
• flags : flags provided by the TCP protocol indicating the follow-

ing actions:

1. Synchronization (SYN) : used for connection establishment. It

is only used in the first packet from the sender and the re-

ceiver.

2. Acknowledgement (ACK) : used to acknowledge the packets

that have been received.

3. Push (PSH) : used to send a packet immediately to the appli-

cation layer, without requiring the receiver to wait for the

maximum segment size buffering the packet.

4. Urgent (URG) : allows marking packets as urgent, these being

processed first.

5. Finish (FIN) : used to request TCP to terminate the connec-

tion gracefully without data loss.

6. Reset (RST) : used to request TCP to terminate the connection

abruptly—data loss could occur.
• calculatedWindowSize : indicates the size of the connection win-

dow.

The UDP property is composed of:

• sourcePort : UDP port of the sender device.
• destinationPort : UDP port of the receiver device.

The MQTT property is composed of:

• flags : these indicate the kind of MQTT packet—there being 14

different packets, but their study is beyond the scope of this pa-

per. Also, the publish packet provides three more flags, namely:

1. Duplicate delivery of a publish Control Packet (DUP): indi-

cates whether a publish message has been resent. This hap-

pens when there is a QoS greater than 0 and there is no ACK

for the original packet.

2. Publish Quality of Service (QoS): indicates the quality of ser-

vice level. Three levels are represented by using 2 bits. Level

0 fulfils the at most once scheme; in this level there is no

resending. Level 1 ensures that the packet meets the at least

once schema, but duplicated packets at the receiver could

exist. Level 2 ensures that the packet fulfils the exactly once

schema.

3. Publish Retain flag (RETAIN): This flag makes setting a fixed

message (only one) per topic possible. In this way, when

a new client subscribes to the topic, it will receive the re-

tained message. Each client can manage the message as

needed, although this flag is usually used to update the state

of new devices.
• message : the message contained in the MQTT packet.
• topic : topic’s name.
• messageLength : MQTT packet’s length.
• frameCounter : the number of fragmented packets that make up

a full packet.

In addition, the NetworkPrediction event type contains the time

(in epoch format) at which the prediction is calculated, the pack-

etLengthPredict property, which represents the value predicted

by our predictor based on the destination port, protocol, frame

counter and calculated windows size, and the packetLengthPredict-

SquaredError property, which indicates the squared error commit-

ted by our predictor in the training stage.

4.5. Security attack patterns

Once the IoTSecurity domain has been designed, the event pat-

tern editor is automatically reconfigured for this domain, i.e., the

event types modeled in the domain are included in the tool palette

of the editor.

In order to validate our proposal, we consider the modeling of

the following five patterns of attacks, in which a malicious device

generates attacks against the MQTT network.

60

8 J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251

Fig. 5. SrcDst_TCP_1s_Batch pattern modeled and generated with MEdit4CEP.

4.5.1. TCP/SYN port scan

In the TCP/SYN port scan attack, the malicious device sends

a round of 10 or more TCP packets with SYN flag to 3 or

more different ports of the broker in 1 s. If the port is open,

the broker sends a SYN/ACK packet, otherwise it sends an RST

packet.

By using the MEdit4CEP tool, this attack has been modeled as

two patterns. The SrcDst_TCP_1s_Batch pattern (see Fig. 5)(a) is re-

sponsible for obtaining all the network packet events whose pro-

tocol is TCP and whose flags are 0x002 in 1-s batch windows;

then, the number of packet events as well as the number of dis-

tinct TCP destination ports in every batch window are calculated

and grouped by source IP and destination IP. This information, to-

gether with the current timestamp, the source IP and the destina-

tion IP, is inserted into complex events named SrcDst_TCP_1s_Batch .

Once this pattern has been syntactically validated, the Esper EPL

Chapter 3. Integrating Complex Event Processing and Machine Learning: an
Intelligent Architecture for Detecting IoT Security Attacks

61

J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251 9

Fig. 6. TCP_SYN pattern modeled and generated with MEdit4CEP.

code, which is illustrated in Fig. 5 (b), is automatically generated by

MEdit4CEP.

Afterwards, for each SrcDst_TCP_1s_Batch complex event cre-

ated, the TCP_SYN pattern modeled (see Fig. 6)(a) checks whether

both its count property is greater or equal to 10 and the destina-

tion port distinct count is greater or equal to 3. Once this pattern

has been syntactically validated, the Esper EPL code, which is de-

picted in Fig. 6 (b), is automatically generated.

4.5.2. UDP port scan

In the UDP port scan attack, the malicious device sends a round

of 10 or more empty UDP packets to 3 or more different ports of

the broker in 5 s. If the broker sends any response, then the port

is open, but if the broker does not send a response, the port could

be open. If the broker sends ICMP unreachable, the port should be

closed. And if it sends another error (not unreachable), the port

should be filtered.

This attack has been modeled in a similar way to the TCP/SYN

port scan attack, but replacing the 1-s batch window by a 5-s one,

and the TCP protocol property by the UDP one. The modeled Sr-

cDst_UDP_5s_Batch and the UDP_Port_Scan patterns are shown in

Fig. 7 (a) and Fig. 7 (b), respectively.

4.5.3. Xmas port scan

In the Xmas port scan attack, the malicious device sends a round

of 10 or more TCP packets with PSH, FIN and URG flags to 2 or

more different ports of the broker in 1 s. If the broker does not

respond, the port should be open or filtered. If the broker sends

an RST packet, it should be closed. If the broker sends an ICMP

unreachable error, it should be filtered. Note that although this at-

tack/scan does not work frequently, it is useful for evaluating our

proposal.

This attack has been modeled in a similar way to the TCP/SYN

port scan attack, but replacing the 0x002 TCP flag property by

0x029 , and updating the condition of destination port distinct

count to greater or equal to 2, instead of 3. The modeled Sr-

cDst_Xmas_1s_Batch and the Xmas_Scan patterns are shown in

Fig. 8 (a) and Fig. 8 (b), respectively.

4.5.4. DoS with big messages

In the DoS with big messages attack, the malicious device pub-

lishes a heavy message to the broker, producing a DoS.

It is worth noting that this attack has been defined as a dy-

namic pattern (see Fig. 9) through the combining of CEP and ML.

As can be seen, this pattern searches MQTT publish messages (pub-

lish is defined by flag 0x30) that are beyond the upper or lower

limit. We do not need to define the limit, since our regressor does

it. Once the regressor has been trained with a part of the legiti-

mate case (the normal MQTT case), it can predict a value for each

MQTT packet by using its features, thus generating a NetworkPre-

diction event. This pattern is automatically transformed into Esper

EPL code, as shown in Fig. 9 (b).

4.5.5. Anomaly

The Anomaly pattern’s goal is to detect unknown attacks. This

makes it possible to detect attacks which we have not modeled

and our predictor does not know.

This pattern has been also defined as a dynamic pattern (see

Fig. 10)(a). As can be seen, this pattern is triggered when a packet

contains a non-known protocol (a non-known protocol is any pro-

tocol that we do not have in our normal scenario). This is also

62

10 J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251

Fig. 7. SrcDst_UDP_5s_Batch and UDP_Port_Scan patterns modeled with MEdit4CEP.

triggered when a packet has an anomalous length value. Note that

we have used this value because it is linearly and directly cor-

related with many important features to detect anomalies (see

Fig. 11) and we make use of the same predictor used in the DoS

pattern. It is important to highlight that this pattern can be de-

fined in many domains by adapting the features and the model.

This pattern is automatically transformed into Esper EPL code,

as shown in Fig. 10 (b).

4.5.6. Discwave attack

In the DoS with big messages attack, the malicious device sends

many connects commands with different identifications (MQTT

broker uses the id to identify each client) against the broker. This

attack can be very dangerous in many systems, where the broker

is configured for expel devices with old connections (when a new

device with the same id sends a connect command). It can shut

down all the MQTT network. Notice that this attack is very differ-

ent from the DoS attack.

4.5.7. Subfuzzing attack

Subfuzzing attack has been designed to map the topics hierar-

chy when MQTT wildcards are disabled. The wildcards allow us to

subscribe multiple topics simultaneously. The attack is quite sim-

ple, only a list of possible topics is required. The attacker sends

multiple topics subscription attempts with different topic names.

If it receives a suback packet, then it knows that the topic exists.

Chapter 3. Integrating Complex Event Processing and Machine Learning: an
Intelligent Architecture for Detecting IoT Security Attacks

63

J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251 11

Fig. 8. SrcDst_Xmas_1s_Batch and Xmas_Scan patterns modeled with MEdit4CEP.

4.6. Mirai

Mirai is a well-known malware, although our predictor has not

been trained with it. In this case, we try to detect the first Mirai

stage (we want detect the attack before it can infect us). This first

stage sends multiple usernames and passwords over Telnet to gain

access, after that it runs (or downloads) the malware payload.

5. Experiments and results

This section describes and discusses the experiments performed

and the results obtained in order to demonstrate the viability of

the proposed architecture for detecting IoT attacks. In particular,

we have conducted three types of experiments.

64

12 J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251

Fig. 9. MQTT_BigMsg_DoS pattern modeled and generated with MEdit4CEP.

First, we have conducted a features selection process, which al-

lows us to find representative features. Moreover, in this case, it

can be used to determine the correct ML model.

Second, we have modeled the events patterns for detecting

the well-known attacks such as—TCP, UDP and Xmas port scans

(see Sections 4.5.1 –4.5.3) and also DoS attack (see Section 4.5.4)—

against our network (see Section 4.1). The simpler port scans are

modeled by using the CEP engine without the predictor and the

DoS attack by using a linear regression predictor to determine the

threshold depending of the understanding of the network.

Third, departing from the model latter, it has been also modeled

the event pattern Anomaly (see Section 4.5.5) against the broker by

making use of the CEP engine together with the linear regression

predictor (the same used in DoS pattern). Furthermore, in order to

demonstrate that other predictors are also valid, the SVR predictor

has been also include in the experiments.

Finally, in order to check the Anomaly detection pattern, we

have included in the network three new attacks which have not

been identified before by the proposed model such as –Discwave,

Subfuzzing and Mirai (depicted in Sections 4.5.6, 4.5.7 and 4.6)–.

All of them are detected by the model as anomalies and, after an

analysis, they can be included and modeled as new patterns to fur-

ther classify them in the future.

All these patterns have been validated and automatically trans-

formed into Esper EPL code. Then, this code has been deployed in

the CEP engine at runtime, producing the following results that are

compared in Section 5.5 .

5.1. Feature selection

The set of features have been selected with a simple and solid

criteria proposed by KDD99 (Kayacik, Zincir-Heywood, & Heywood,

2005) (those which are adaptable to a MQTT scenario) and we

have also added features extracted from MQTT. The MQTT fea-

tures have been selected heuristically; although, it is adaptable

to any protocol. We have used Extremely Randomized Trees with

Chapter 3. Integrating Complex Event Processing and Machine Learning: an
Intelligent Architecture for Detecting IoT Security Attacks

65

J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251 13

Fig. 10. Anomaly pattern modeled and generated with MEdit4CEP.

datasets composed by MQTT regular traffic, background and ma-

licious attacks over MQTT (brute force, broker spoofing and mal-

formed MQTT packets). This allows us measure the importance of

each feature.

As we can see in Fig. 11 , our features fits perfectly in this

domain. It is important to highlight that we have not used par-

ticular datasets to fit the feature selection process or system

evaluation.

We emphasize that some features are correlated with others

ones; for example, packet length is correlated with others features

such as calculated window size, protocol used and the information

field. Thus, packet length feature is linearly and directly correlated

with other features and fits well with a linear regressor and it is

useful to detect unknown attacks.

Obviously, in other cases we will need a more complex predic-

tor with other features, but this is not a limitation for our architec-

ture: the modular architecture allow us to modify any component

easily.

5.2. CEP engine without the predictor

As Fig. 12 shows, there are 2 complex events that have detected

UDP port scans. However, why are there only 2 complex events al-

though the scan is prolonged in time? This has happened because

UDP/SCAN is a very slow scan and the pattern conditions require

that there are at least 10 packets in 5 seconds. These conditions are

satisfied only in the first part of our scan, which generated several

packets in few seconds, as illustrated in this figure. After that, there

is a slower flow of UDP packets, and no more complex events are

detected.

Similarly to the UDP port scan, the results of the Xmas port

scan (see Fig. 13) show that, at the beginning, the TCP flow is more

dense.

Fig. 14 shows the detection of TCP/SYN port scans. As can

be seen, TCP/SYN is very fast (less than 0.5 s). Therefore, only

one complex event has been triggered after finishing the full

scan.

66

14 J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251

Fig. 11. Feature importance.

Fig. 12. UDP port scan detection.

With theses experiments we confirm that CEP is a suitable

technology to detect such port scanning patterns in real time.

However, in order to define such patterns appropriately, we have

needed to study the different attacks to set the condition values

correctly.

5.3. CEP engine together with the linear regression predictor

To evaluate the integration of CEP with linear regression, we

have analyzed the exactitude of our regressor, studied the exac-

titude of our predictor for the DoS scenario and checked whether

our predictor is able to set predicted values for legitimate packages

and the DoS scenario properly, as explained in this section.

Regarding the exactitude of our regressor, we can affirm that it

works correctly, as shown in Fig. 15 . This situation is normal be-

cause the legitimate case is similar to the case used for training

our regressor.

In the graphs in Fig. 15 and 16 we can see blue squares and or-

ange circles. A blue square represents the real size of the packets,

and an orange circle represents the predicted values. Therefore, if

our architecture works correctly, there will be circles in the cen-

ter of the squares when the system is not under attack, but these

circles will be out of the square when there are strange packets in

our network.

Regarding the exactitude of our predictor in the DoS scenario,

as depicted in Fig. 16 , many predictions failed. The difference be-

tween predicted values and real values is greater compared with

Fig. 15 since there are more packets and they are bigger.

Tables 1 and 2 summarize the numerical results illustrated in

Figs. 15 and 16 respectively, which represent the distribution of the

Chapter 3. Integrating Complex Event Processing and Machine Learning: an
Intelligent Architecture for Detecting IoT Security Attacks

67

J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251 15

Fig. 13. Xmas port scan detection.

Fig. 14. TCP/SYN port scan detection.

errors (real packet length against predicted packet length). While

in the legitimate MQTT scenario the error values are small, these

are much bigger in the DoS scenario.

Finally, in regard to whether our predictor is able to set pre-

dicted values within the upper and lower limit for legitimate cases

Table 1

Legitimate MQTT packet length prediction error.

Quartile Quartile value Number of packets

Q1 x < 0.00166298 4214

Q2 0.00166298 < x < 0.01077055 3648

Q3 0.01077055 < x < 0.01086934 7696

Q4 0.01086934 < x 1295

and for our DoS cases, we obtained the following results. The le-

gitimate case prediction errors are illustrated in Fig. 17 . Note that

the error margin of our predictor is computed using the error of

our linear regression with our training dataset (in our case), and

the prediction error is computed as the difference between the

Table 2

DoS MQTT packet length prediction error.

Quartile Quartile value Number of packets

Q1 x < 201.10600944 27,106

Q2 358.89399057 < x < 201.10600944 26,977

Q3 761.10600943 < x < 358.89399057 26,735

Q4 761.10600943 < x 26,632

68

16 J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251

Fig. 15. Legitimate MQTT predictions.

Fig. 16. DoS MQTT predictions.

predicted value and the real value (in our case), and if a predic-

tion error (represented with orange points) is over the error mar-

gin (represented with the blue line), there is a missprediction. In

the previous figures we only compared the predicted value with

the real one for our prediction. If our architecture works correctly,

there will just be a few of orange points over the blue line when

we have a legitimate case (this means that these packet values,

represented with orange points, are very different compared with

the predicted value). However, there should be many points over

the line when we receive an attack, as this lets us detect these at-

tacks correctly. In Fig. 17 only 5 packets have been miss-predicted,

but none of them are MQTT packets. This happens because our

training dataset does not address packets other than MQTT proto-

col ones and the regressor cannot deal with them. Such additional

protocols cannot trigger our patterns anyway, and they are not par-

ticularly relevant to this paper.

Fig. 18 shows the prediction errors when grouping the packets

by protocol. The biggest errors are produced on ICMPv6 and ARP.

This is because we do not have many packets of these protocols

in our dataset and we are using linear regression, so the model

does not give much importance to these packets. Table 3 presents

the number of packets by protocol, showing that our predictor is

worse when it needs to predict a very different value in packets

with few samples. We should point out that this model is appro-

priate for our goal—detecting MQTT DoS—, but it could be replaced

by a more complex one if we needed to make more exact predic-

tions.

According to Fig. 19 , our regressor’s prediction is so far from

the correct value when it receives an abnormal packet that, makes

it possible to discover the malicious packets. This is exactly what

we intended to achieve, i.e. we have a feature to distinguish legit-

imate packets from malicious packets. Of course, our architecture

Chapter 3. Integrating Complex Event Processing and Machine Learning: an
Intelligent Architecture for Detecting IoT Security Attacks

69

J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251 17

Fig. 17. Legitimate MQTT margin predictions.

Fig. 18. Errors by protocol.

could be adapted to achieve other objectives. As an example, we

could add a more complex model to predict different values. Note

that the aim of this paper is to present a proof of concept demon-

strating that our proposal can work appropriately by using dynamic

Table 3

Number of packets by protocol for

the legit case.

Protocol Number of packets

MQTT 8098

TCP 8105

ARP 481

DHCP 58

NTP 14

ICMPv6 59

IGMPv3 16

DNS 20

ICMP 2

patterns in which a model is in charge of calculating their predic-

tion and margin values. In this way, the definition of dynamic pat-

tern’ conditions is more exact than static pattern’ conditions; the

latter being fixed and manually defined by domain experts.

Fig. 20 highlights the main benefits of our novel proposal,

namely; (1) the dynamic pattern is able to detect all the DoS pack-

ets; (2) the pattern has not been triggered by any legit packet:

(3) there are no false positives or undetected DoS packets; (4) the

value and the error margin for the pattern have not been defined

manually; and so (5) the pattern conditions are adaptable at run-

time.

As a result, we can affirm that the integration of the CEP engine

with linear regression prediction permits the detection of security

attacks in real time with a low error margin.

Besides, we have conducted a performance evaluation. Results

have also demonstrated that the architecture performance is ap-

propriate. Our normal scenario generated 17,040 packets in 2

70

18 J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251

Fig. 19. DoS MQTT margin predictions.

Fig. 20. MQTT DoS predictions.

hours, in other words, 2.3 packets each second. In the worst case

(TCP/SYN scan), 2006 packets were generated in 5 seconds, i.e., 401

packets per second. Our predictor just needed 0.47 seconds to pre-

process the training data and fit with the legit scenario. In addi-

tion, this process can be done offline when necessary. Note that

online training is not recommended in a cybersecurity scenario

since an attacker could poison the data to modify the model so as

to evade our IDS (Jagielski et al., 2018). In addition, Esper 7.1 is able

to process up to 6 millions of events per second (EPS) (EsperTech,

2019b); thereby the number of packets in a normal scenario can

be processed in near-real time. Therefore, we can conclude that

our architecture can work with a massive network since Esper is

able to scale easily.

5.4. CEP engine together with the linear regression predictor against

non-modeled threats

In this section we evaluate the integration of CEP with linear

regression against non-modeled attacks. A non-modeled attack is

an attack that our system unknowns. This means that we have not

previously defined a pattern to detect that attack and, thus, the

predictor has not been trained against this attack.

Table 4 shows the number of attacks, the packets produced for

each attack and the packets detected. Note that one attempt of at-

tack can generate various packets, we say that we are detecting

them if we detect at least 1 packet of the attack. As we can see, all

attacks are detected and there are no false positives.

Since we can detect Mirai and its derived malware (Discwave

and Subfuzzing attacks), and all of them are pure IoT attacks—Mirai

is one of the more common attack against IoT systems Antonakakis

et al. (2017))—, we can conclude that our pattern works appropri-

Table 4

Results of CEP and Linear Regression against non-modeled attacks.

Category Attempts Simple events Anomaly complex events

Normal traffic (new) 7930 7930 0

Discwave 100,000 700,025 400,027

Subfuzzing 4097 4097 4097

Mirai 126 787 504

Chapter 3. Integrating Complex Event Processing and Machine Learning: an
Intelligent Architecture for Detecting IoT Security Attacks

71

J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251 19

Table 5

Results of Linear Regression as predictor.

Predicted as negative Predicted as positive

Is negative 7930 (True negative) 0 (False positive)

Is positive 0 (False negative) 104,223 (True positive)

Precision = 1 Recall = 1 F1-score = 1

ately. So, we are able to detect attacks that our architecture does

not know in advance (they are not previously modeled).

Other interesting metrics are True Negatives (TN), False Posi-

tives (FP), True Positives (TP) and False Negatives (FN). True neg-

ative is a well predicted normal packet. False positive is a bad

predicted normal packet (predicted as an anomalous packet). False

negative is a bad predicted anomalous packet (predicted as a nor-

mal packet). True positive is a well predicted packet that is an

anomalous packet. Moreover we will use 3 more metrics.

Precision: (
T P

T P + F P

)
Recall: (

T P

T P + F N

)
and F1 score:

2 ·
(

P recision · Recall
P recision + Recall

)

All these metrics take values between 0 and 1. A high precision

score shows that the model does not detect many false positives,

a high recall shows that the model detect many threats. And F1

score is a general metric.

Table 5 shows that, in this context, we get a perfect score. No-

tice that we have not modeled Mirai, discwave and subfuzzing at-

tacks. We can conclude that our proposal works very well in a real

scenario against unknown attacks.

5.5. Proposal comparison

This section compares our proposal against other commercial

alternatives.

First, we will use Snort, a well-known rule-based IDS, to de-

tect MQTT attacks and scans. By using Snort, we need to define

our rules to detect each attack. Snort have 2 main problems. One

problem is that it cannot detect novel attacks, i.e. if Snort has not

a specific rule for a particular attack, then it cannot detect such at-

tack. The second problem is that the definition of Snort rules can

be hard, since you need to indicate the exact byte for each field

(for example, MQTT flags). Our proposal solves both problems. On

the one hand, we can detect novel attacks, as previously shown.

On the other, MEdit4CEP allows us to define patterns easily with a

powerful graphical tool.

In this comparison we use these standard Snort rules:

‘attack-responses.rules’, ‘backdoor.rules’, ‘bad-traffic.rules’, ‘chat.rules’,

‘ddos.rules’, ‘dns. rules’, ‘dos.rules’, ‘experimental.rules’, ‘exploit.rules’,

‘finger.rules’, ‘ftp.rules’, ‘icmp-info.rules’, ‘icmp.rules’, ‘imap.rules’,

‘info.rules’, ‘misc.rules’, ‘multimedia. rules’, ‘mysql.rules’, ‘net-

bios.rules’, ‘nntp.rules’, ‘oracle.rules’, ‘other-ids.rules’, ‘p2p. rules’,

‘policy.rules’, ‘pop2.rules’, ‘pop3.rules’, ‘rpc.rules’, ‘rservices.rules’,

‘scan.rules’, ‘smtp.rules’, ‘snmp.rules’, ‘sql.rules’, ‘telnet.rules’,

‘tftp.rules’, ‘virus.rules’, ‘web-attacks.rules’, ‘web-cgi.rules’, ‘web-

client.rules’, ‘web- coldfusion.rules’, ‘web-frontpage.rules’, ‘web-

iis.rules’, ‘web-misc.rules’, ‘web-php. rules’, ‘x11.rules’, ‘community-

sql-injection.rules’, ‘community-web-client.rules’, ‘community-

web-dos.rules’, ‘community-web-iis.rules’, ‘community-web-misc.

rules’, ‘community-web-php.rules’, ‘community-sql-injection.rules’,

Table 6

Our proposal against Snort.

Attack Snort Our proposal

TCP Syn scan YES YES

UDP port scan YES YES

Xmas port scan YES YES

MQTT DoS bigmsg YES YES

MQTT Discwave NO YES

MQTT subbfuzzing NO YES

MIRAI YES YES

‘community-web-client. rules’, ‘community-web-dos.rules’ and

‘community-web-iis.rules’ . Moreover, we have added a rule that

is able to detect MQTT packets with more than 400 bytes of

length; we use it to detect DoS attacks over MQTT.

Table 6 shows the advantages of our proposal compared to

Snort. As we mentioned before, our proposal does not need spe-

cific rules for each attack; we can detect anomalous packets with-

out a specific rule. Anyway, we could create new rules for each

new anomaly. This is very interesting and allows us to filter at-

tacks better. We can conclude that purely rule-based IDSs are de-

pendent on the rules created from known threats; therefore, this

kind of IDS is useless against non-known threats and new malware

(Hammarberg, 2014; Holm, 2014).

In addition to evaluating the advantages of our approach

against Snort, we have done a comparison with very popular

IDS/SIEMs. Table 7 summarizes the different features, hardware re-

quirements and performance of common IDS/SIEMs with respect

to our proposal. In particular, we have evaluated the following fea-

tures:

• F1: this provides rule-based detection.
• F2: this supports anomaly detection.
• F3: this provides full ARM support.
• F4: minimum core requirements.
• F5: minimum RAM requirements.
• F6: disk capacity requirements.
• F7: EPS/Gbps (depending on the developer).

As we can see, most approaches provide anomaly detection and

rule-based detection, but their main problem is that they require

too many hardware resources and are not compatible with ARM ar-

chitectures (or any non x64/x86 architecture), so these cannot be

deployed on an IoT context. In contrast, our proposal can be de-

ployed in a Raspberry or other constrained devices. Regarding per-

formance comparison, we have obtained the measurements from

the IDS/SIEM official websites and we can conclude than our pro-

posal has a better performance rate (measured in EPS) than other

alternatives (Mathew, 2014).

Table 7 also shows that the options examined cannot be de-

ployed on a Rapberry Pi 3 or other constrained devices, with

the exception of Snort. Anyway, Snort does not provide anomaly

detection features. In general, all these systems have a poor

resource-performance relationship. In the past we performed sev-

eral performance tests on an architecture integrating the Esper CEP

engine with Mule ESB to provide COLLECT, a collaborative context-

aware SOA for intelligent decision-making in the Internet of Things

(Garcia-de Prado et al., 2017). A case study with several of the col-

laborative nodes was provided, and two nodes were deployed on

two Raspberry Pi3’s (Model B), with 1GB of RAM memory and a

2 GHz 64-bit quad-core ARMv8, with 8GB and 16GB cards, respec-

tively. Even though the implementation was not focused on IoT at-

tacks and did not provide prediction but only detection of relevant

situations for the domain question, the results of the performance

and stress evaluations carried out for the architecture are applica-

ble in this paper. As we can see in Garcia-de Prado et al. (2017) ,

72

20 J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251

Table 7

Our proposal against other IDS/SIEMs.

F1 F2 F3 F4 F5 F6 F7

Snort YES NO YES – – – 70,000 aprox

Splunk (Splunk, 2019) YES YES NO 12 cores x64/x86 12GB 600GB 154,000 low density

Qradar 1699 (IBM, 2019) YES YES NO 4 cores x64 12GB 256GB Up to 20,000

LogRhythm LR-NM3400 (LogRhythm, 2017) YES YES NO 12 cores x64/x86 64GB 4 TB aprox 1 Gbps

Alienvault USM (AlienVault, 2018) YES YES NO 8 cores x64/x86 24GB 4.2 TB Up to 2500

Our proposal (constrained device) YES YES YES < 4 cores ARM < 1GB < 8GB Up to 900 aprox

Our proposal (no constrained device) YES YES YES 1 core (2Gh) 4GB – Up to 120,000

the Raspberry Pi CPU throughput and memory usage remain

within reasonable values maintaining the response time under

25 ms with a load of up to 300 events per second. Therefore,

we can conclude that comparatively, taking into account the re-

sources of the machine, the existing alternatives (AlienVault, 2019;

LogRhythm, 2019; Pechta, 2017; Shah & Issac, 2018) have a poorer

performance or require many more resources.

Therefore, these results show that our proposal is more adapt-

able and lighter than the other analyzed ones. Additionally, it can

achieve the best performance compared with other SIEMs.

Moreover, we have measured the performance using a new

dataset that has 1,424,903 simple events (as we mentioned, each

simple event is a packet or a prediction). By using this dataset as

input data, 404,627 complex events have been generated by the

CEP engine. With this dataset, a mean processing rate of 39,565.96

events/second is obtained when the architecture is deployed on an

Intel Core i7-8550U CPU @ 1.80GHz 1.99 GHz, 16GB RAM. Note

that, although this is a high mean rate, this is not a peak rate,

i.e. our architecture is capable of managing a higher traffic data

rate. Thus, depending on the necessities of the system, we can de-

ploy it on a resource constrained device, on a computer or on a

large server, obtaining a reasonably good performance, in accor-

dance with the device used.

5.6. CEP with support vector regression

As previously mentioned, linear regression works adequately in

our context. However, to demonstrate that our system can man-

age other regressors, we have conducted other experiments inte-

grating it with the Epsilon-Support Vector Regression, a kernel-

based regressor that allow us to probe other model (Basak et al.,

2007).

In particular, we have used Mirai, subfuzzing and discwave as

anomalous packets/events, and added more normal packets as nor-

mal behaviour packets. Tables 8 and 9 show that all attacks have

been correctly detected again, and only 2 false positives have been

obtained. Even though these results obtained by using the Support

Table 8

Results of CEP and SVR against non-modeled attacks.

Category Attempts Simple

events

Anomaly complex

events

Normal traffic (new2) 7930 7930 2

Discwave 100,000 700,025 323,584

Subfuzzing 4097 4097 4097

Mirai 126 787 787

Table 9

Results of SVR as predictor.

Predicted as negative Predicted as positive

Is negative 7928 (True negative) 2 (False positive)

Is positive 0 (False negative) 104,223 (True positive)

Precission = 0.99998 Recall = 1 F1-score = 0.99998

Table 10

Linear regression against SVR in our system.

Linear regression SVR

Recall 1 1

Precision 1 0.99998

F1-score 1 0.99998

Vector Regression (SVR) regressor are worse than those by using

the lineal one, they are still good enough for the IoT context.

We can, therefore, conclude that our architecture can work with

different regression models.

Table 10 shows the difference of linear regression against SVR in

our context. As we can see, in this scenario (and with our features

selection) SVR with a polynomial kernel works worse than linear

regression. We have a lower precision (0.99998), which means that

a few legit packets have been detected as anomalous packets with

SVR. It is important to point out that these results are dependent

on the feature selection and the scenario to be protected. With an-

other scenario, SVR could provide better results than linear regres-

sion.

6. Related work

In recent years, ML has been used to improve the security of

computer systems. As an example, a set of techniques for each se-

curity attack class has been proposed by Xiao, Wan, Lu, Zhang, and

Wu (2018) .

Another interesting survey is the one conducted by Al-Garadi

et al. (2018) , providing a taxonomy scheme of ML and deep learn-

ing for IoT security. This paper discusses whether ML is more ap-

propriate than deep learning, and vice versa, for each security is-

sue. Additionally, this work explains the importance of choosing

where the ML algorithm is executed. Li, Ota, and Dong (2018) pro-

pose a theoretical approach integrating ML into an edge comput-

ing scheme; however, real-world applications are not analyzed.

Kulkarni and Venayagamoorthy (2009) implement an ML algorithm

for securing a wireless sensor network against DoS attacks.

Thus, there are many papers that propose the use of ML for

tackling IoT security issues, but they do not address the challenge

of managing dynamic patterns. We propose a novel model com-

bining ML and CEP in which an ML algorithm calculates heuristic

values from observations in order to define event pattern condi-

tions dynamically. These predicted values allow the modeling of

flexible patterns for detecting IoT security attacks, avoiding many

false positive alerts, which are very common on ML-based IDS.

There are a few papers that propose the integration of ML with

CEP as a differentiating advantage. For instance, Raj, Sahu, Chaud-

hary, Prasad, and Agarwal (2017) defines a CEP-based approach for

detecting meaningful patterns in smart buildings. Although the au-

thors state that the CEP engine could be optimized by using effi-

cient learning algorithms, this is considered as future work.

Baldoni, Montanari, and Rizzuto (2015) present an architec-

ture combining CEP and ML algorithms designed using hidden

Chapter 3. Integrating Complex Event Processing and Machine Learning: an
Intelligent Architecture for Detecting IoT Security Attacks

73

J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251 21

Markov models to detect anomalous behaviors of a safety-critical

system, thus predicting a system failure before it happens. While

this work focuses on safety-critical detection, our proposal tackles

security-critical detection (attacks) in IoT networks. Furthermore,

their model is state-based and this could be a problem for attack

detection because an attack can be registered at any time (our sys-

tem does not need to be in a specific state for the attack to be

detected).

In addition, Petersen, To, and Maag (2017) add an ML technique

together with CEP to the detection engine of a Mobile Ad Hoc Net-

work Intrusion Detection System (MANET IDS), which is capable

of recognizing DoS attacks as well as re-writing IDS rules on the

fly. Similarl y to our work, their work proposes the integration of

ML and CEP for detecting attacks. However, while Petersen et al.’s

work focuses on the MANET protocol, our work focuses on MQTT.

Moreover, they propose SVM, but this algorithm requires finding a

specific kernel, a task that is hard if the domain expert does not

know the data distribution. SVM requires tuning other parameters

such as gamma, degree, etc. Our proposal does not need to know

the data distribution or to find the correct parameters. Unlike that

work, we propose a complete architecture for detecting different

types of IoT security attacks (not only DoS ones) in real time. Ad-

ditionally, our architecture provides a model-driven graphical tool

for event pattern definition and automatic code generation, hiding

all implementation details from domain experts.

Therefore, taking into account the evaluation of known

IDS/SIEMs provided in Section 5.5 , together with the description

of other research proposals described in this section, we can af-

firm that currently there are no tools or proposals which can be

deployed on devices with limited resources, such as a Raspberry

Pi, and which can detect and predict IoT unknown attacks in real

time. However, when deploying the architecture on a more power-

ful device, we obtain a significantly good performance and, to the

best of our knowledge, there are no existing model-driven propos-

als integrating CEP and ML for detecting IoT security attacks and

threats. Thus, we are providing a unique graphical tool which will

permit user, who do not necessarily have any programming knowl-

edge to graphically design and automatically deploy means for at-

tack detection.

7. Conclusions and future work

In this work, we have proposed and implemented an intelligent

architecture combining CEP and ML that is capable of easily man-

aging dynamic patterns for detecting IoT security attacks. Dynamic

patterns have some event properties that depend on the values

that are automatically computed by a linear regression and SVR

predictor, a component that is also proposed in this paper.

Thanks to the use of the MEdit4CEP model-driven tool, domain

experts (non experts in CEP and ML) can graphically model these

patterns, which are then automatically transformed in Esper EPL

code and deployed into the CEP engine at runtime.

The integration of CEP and ML has several benefits over using

pure CEP without dynamic prediction. Firstly, we do not need to

find correct fields, values and margins manually to compare fea-

tures or event properties, since we make use of dynamic predic-

tion. Secondly, if the network environment changes, our architec-

ture lets the CEP engine quickly adapt to the new scenario. There-

fore, using linear regression and SVR to calculate expected pattern

values enables the detection of new attacks in real time.

In order to validate our proposal, the architecture has been ap-

plied to an IoT network prototype constructed in a hospital with

the aim of detecting attacks (TCP, UDP and Xmas port scans, and

DoS) made by a malicious device. The results confirm that this ar-

chitecture works effectively if it uses a model that can be adapted

to the context.

As future work, we plan to define more event patterns for de-

tecting other types of attacks. Additionally, we will extend the pre-

dictor with the ability to automatically find which packet features

are essential for our domain context. Moreover, we will automate

alerts of “necessary training” when our network changes signifi-

cately.

Funding

This work was supported by the Spanish Ministry of Science,

Innovation and Universities and the European Union FEDER Funds

[grant numbers FPU 17/02007, RTI2018-093608-B-C33, RTI2018-

098156-B-C52 and RED2018-102654-T]. This work was also sup-

ported by the JCCM [grant number SB-PLY/17/180501/ 0 0 0353].

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Credit authorship contribution statement

José Roldán: Conceptualization, Software, Validation, Investi-

gation, Resources, Writing - original draft, Visualization. Juan

Boubeta-Puig: Conceptualization, Methodology, Software, Inves-

tigation, Resources, Writing - original draft, Writing - review

& editing, Supervision, Funding acquisition. José Luis Martínez:

Conceptualization, Methodology, Investigation, Writing - original

draft, Writing - review & editing, Funding acquisition, Supervi-

sion, Project administration. Guadalupe Ortiz: Conceptualization,

Methodology, Investigation, Writing - original draft, Writing - re-

view & editing, Funding acquisition.

Acknowledgments

Boubeta-Puig would like to thank the High-Performance Net-

works and Architectures Research Group for their hospitality when

visiting them at the University of Castilla-La Mancha, Spain, where

part of this work was developed.

References

Al-Garadi, M. A. , Mohamed, A. , Al-Ali, A. , Du, X. , & Guizani, M. (2018). A survey of

machine and deep learning methods for Internet of Things (IoT) security. arXiv

preprint arXiv:1807.11023 .
AlienVault (2018). Usm appliance deployment requirements. https://www.

alienvault.com/documentation/usm- appliance/sys- reqs/hardware- spec.htm .
Accessed 16 October 2019.

AlienVault (2019). Alienvault usm appliance. https://www.alienvault.com/
documentation/usm- appliance/initial- setup/ossim- installation.htm . Accessed 16

October 2019.

Andrea, I., Chrysostomou, C., & Hadjichristofi, G. (2015). Internet of things: Security
vulnerabilities and challenges. In 2015 IEEE symposium on computers and com-

munication (ISCC) (pp. 180–187). doi: 10.1109/ISCC.2015.7405513 .
Antonakakis, M. , April, T. , Bailey, M. , Bernhard, M. , Bursztein, E. , Cochran, J. , . . .

Zhou, Y. (2017). Understanding the mirai botnet. In 26th USENIX security sympo-
sium (USENIX security 17) (pp. 1093–1110). Vancouver, BC: USENIX Association .

Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer

Networks , 54 (15), 2787–2805. doi: 10.1016/j.comnet.2010.05.010 .
Baldoni, R., Montanari, L., & Rizzuto, M. (2015). On-line failure prediction in safety-

critical systems. Future Generation Computer Systems, 45 , 123–132. doi: 10.1016/j.
future.2014.11.015 .

Basak, D. , Pal, S. , & Patranabis, D. C. (2007). Support vector regression. Neural Infor-
mation Processing, 11 , 203–224 .

Boubeta-Puig, J. , Ortiz, G. , & Medina-Bulo, I. (2014). Approaching the Internet of
Things through integrating SOA and complex event processing. In Z. Sun, &

J. Yearwood (Eds.), Handbook of research on demand-driven web services: The-

ory, technologies, and applications. In IGI Global book series Advances in Web
Technologies and Engineering (AWTE) (pp. 304–323). IGI Global .

Boubeta-Puig, J., Ortiz, G., & Medina-Bulo, I. (2015). MEdit4CEP: A model-driven so-
lution for real-time decision making in SOA 2.0. Knowledge-Based Systems, 89 ,

97–112. doi: 10.1016/j.knosys.2015.06.021 .

74

22 J. Roldán, J. Boubeta-Puig and J. Luis Martínez et al. / Expert Systems With Applications 149 (2020) 113251

Buczak, A. L., & Guven, E. (2016). A survey of data mining and machine learning
methods for cyber security intrusion detection. IEEE Communications Surveys Tu-

torials, 18 (2), 1153–1176. doi: 10.1109/COMST.2015.2494502 .
EsperTech (2019a). Esper - Complex Event Processing. http://www.espertech.com/

esper/ Accessed 6 November 2019.
EsperTech (2019b). Esper - Complex Event Processing Scalability. http://www.

espertech.com/2019/03/07/6- million- events- per- second/ Accessed 6 November
2019.

Gad, R., Boubeta-Puig, J., Kappes, M., & Medina-Bulo, I. (2012). Hierarchi-

cal events for efficient distributed network analysis and surveillance. In
Proceedings of the 2nd international workshop on adaptive services for the

future internet and 6th international workshop on web APIs and service
mashups . In WAS4FI-Mashups ‘12 (pp. 5–11). Bertinoro, Italy: ACM. doi: 10.1145/

2377836.2377839 .
Gad, R. , Kappes, M. , Boubeta-Puig, J. , & Medina-Bulo, I. (2013). Employing the CEP

Paradigm for Network Analysis and Surveillance. In Proceedings of the ninth

advanced international conference on telecommunications (pp. 204–210). Rome,
Italy: IARIA .

Gharibian, F., & Ghorbani, A . A . (2007). Comparative study of supervised machine
learning techniques for intrusion detection. In Fifth annual conference on com-

munication networks and services research (CNSR ‘07) (pp. 350–358). doi: 10.1109/
CNSR.2007.22 .

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (iot): A

vision, architectural elements, and future directions. Future Generation Computer
Systems, 29 (7), 1645–1660. doi: 10.1016/j.future.2013.01.010 .

Hammarberg, D. (2014). The best defenses against zero-day exploits for various–
sized organizations. SANS Institute InfoSec Reading Room, 21 .

Holm, H. (2014). Signature based intrusion detection for zero-day attacks: (not) a
closed chapter? In 2014 47th Hawaii international conference on system sci-

ences (pp. 4 895–4 904). doi: 10.1109/HICSS.2014.600 .

IBM (2019). System requirements for virtual appliances. https://www.
ibm.com/support/knowledgecenter/en/SS42VS _ 7.3.2/com.ibm.qradar.doc/

c _ qradar _ ha _ vrt _ ap _ reqs.html Accessed 16 October 2019.
Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru, C., & Li, B. (2018). Manip-

ulating machine learning: Poisoning attacks and countermeasures for regres-
sion learning. In 2018 IEEE symposium on security and privacy (SP) (pp. 19–35).

doi: 10.1109/SP.2018.0 0 057 .

Kayacik, H. G. , Zincir-Heywood, A. N. , & Heywood, M. I. (2005). Selecting features for
intrusion detection: A feature relevance analysis on kdd 99 intrusion detection

datasets. In Proceedings of the third annual conference on privacy, security and
trust: 94 (pp. 1722–1723) .

Kousiouris, G., Akbar, A., Sancho, J., Ta-shma, P., Psychas, A., Kyriazis, D., & Var-
varigou, T. (2018). An integrated information lifecycle management framework

for exploiting social network data to identify dynamic large crowd concentra-

tion events in smart cities applications. Future Generation Computer Systems, 78 ,
516–530. doi: 10.1016/j.future.2017.07.026 .

Kulkarni, R. V., & Venayagamoorthy, G. K. (2009). Neural network based secure
media access control protocol for wireless sensor networks. In 2009 Interna-

tional joint conference on neural networks (pp. 1680–1687). doi: 10.1109/IJCNN.
2009.5179075 .

Li, H., Ota, K., & Dong, M. (2018). Learning IoT in edge: Deep learning for the inter-
net of things with edge computing. IEEE Network , 32 (1), 96–101. doi: 10.1109/

MNET.2018.1700202 .

LogRhythm (2017). Product overview network monitor. https://logrhythm.
com/pdfs/datasheets/lr- network- monitor- datasheet.pdf Accessed 16 October

2019.
LogRhythm (2019). Logrhythm netmon freemium. https://logrhythm.com/products/

logrhythm- netmon- freemium/ Accessed 6 November 2019.
Luckham, D. (2012). Event processing for business: Organizing the real-time enterprise .

New Jersey, USA: John Wiley & Sons .

Mathew, A. (2014). Benchmarking of complex event processing engine - ES-
PER. https://www.cse.iitb.ac.in/internal/techreports/reports/TR- CSE- 2014- 61.pdf

Accessed 16 October 2019.
Meidan, Y., Bohadana, M., Shabtai, A., Guarnizo, J. D., Ochoa, M., Tippenhauer, N. O.,

& Elovici, Y. (2017). Profiliot: A machine learning approach for iot device iden-
tification based on network traffic analysis. In Proceedings of the symposium

on applied computing . In SAC ‘17 (pp. 506–509). New York, NY, USA: ACM.

doi: 10.1145/3019612.3019878 .

Mihescu, M. C. (2011). Classification of learners using linear regression. In 2011
federated conference on computer science and information systems (FedCSIS)

(pp. 717–721) .
MuleSoft (2019). Mule ESB. https://www.mulesoft.com/resources/esb/what-mule-

esb Accessed 27 March 2019.
Narudin, F. A., Feizollah, A., Anuar, N. B., & Gani, A. (2016). Evaluation of machine

learning classifiers for mobile malware detection. Soft Computing, 20 (1), 343–
357. doi: 10.10 07/s0 050 0- 014- 1511- 6 .

NumPy (2019). NumPy. http://www.numpy.org/ Accessed 27 March 2019.

OASIS (2019). MQTT Version 5.0. http://docs.oasis-open.org/mqtt/mqtt/v5.0/
mqtt-v5.0.html Accessed 27 March 2019.

Oracle (2019). Virtualbox. https://www.virtualbox.org/ Accessed 27 March 2019.
Ozay, M., Esnaola, I., Yarman Vural, F. T., Kulkarni, S. R., & Poor, H. V. (2016). Ma-

chine learning methods for attack detection in the smart grid. IEEE Transactions
on Neural Networks and Learning Systems, 27 (8), 1773–1786. doi: 10.1109/TNNLS.

2015.2404803 .

Pandas (2019). Pandas. https://pandas.pydata.org/ Accessed 27 March 2019.
Papazoglou, M. (2012). Web services and SOA: Principles and technology (2nd). Essex,

England; New York: Pearson Education .
Papazoglou, M., & Heuvel, W. V. D. (2006). Service-oriented design and develop-

ment methodology. International Journal of Web Engineering and Technology ,
2 (4), 412–442. doi: 10.1504/IJWET.2006.010423 .

Pechta, J. (2017). What are the limitations/restrictions for qradar community

edition? https://developer.ibm.com/answers/questions/411519/what-are-the-
limitationsrestrictions-for-qradar-co/ Accessed 16 October 2019.

Petersen, E., To, M. A., & Maag, S. (2017). A novel online CEP learning engine for
MANET IDS. In 2017 IEEE 9th Latin-american conference on communications

(LATINCOM) (pp. 1–6). doi: 10.1109/LATINCOM.2017.8240196 .
Garcia-de Prado, A., Ortiz, G., & Boubeta-Puig, J. (2017). COLLECT: COLLaborativE

context-aware service oriented architecture for intelligent decision-making in

the Internet of Things. Expert Systems with Applications , 85 , 231–248. doi: 10.
1016/j.eswa.2017.05.034 .

Python Software Foundation (2019). Python. https://www.python.org/ .
Raj, R., Sahu, R. K., Chaudhary, B., Prasad, B. R., & Agarwal, S. (2017). Real time

complex event processing and analytics for smart building. In 2017 conference
on information and communication technology (CICT) (pp. 1–6). doi: 10.1109/

INFOCOMTECH.2017.8340593 .

Raynovich, R. (2017). What is the growth rate of iot markets? http://www.futuriom.
com/articles/news/iot- growth- rate/2017/04 Accessed 15 March 2019.

Rondeau, C. M., Temple, M. A., & Lopez, J. (2019). Industrial iot cross-layer foren-
sic investigation. Wiley Interdisciplinary Reviews: Forensic Science, 1 (1), e1322.

doi: 10.1002/wfs2.1322 .
Scikit-learn (2019). Scikit-learn. https://scikit-learn.org/stable/ Accessed 27 March

2019.

Shah, S., & Issac, B. (2018). Performance comparison of intrusion detection systems
and application of machine learning to snort system. Future Generation Com-

puter Systems, 80 , 157–170. doi: 10.1016/j.future.2017.10.016 .
Splunk (2019). Reference hardware. https://docs.splunk.com/Documentation/Splunk/

8.0.0/Capacity/Referencehardware Accessed 16 October 2019.
Tan, Z., Jamdagni, A., He, X., Nanda, P., & Liu, R. P. (2011). Denial-of-service attack

detection based on multivariate correlation analysis. In B.-L. Lu, L. Zhang, &
J. Kwok (Eds.), Neural information processing (pp. 756–765). Berlin, Heidelberg:

Springer Berlin Heidelberg. doi: 10.1145/24 90428.24 90450 .

Taylor, H. (Ed.). (2009). Event-driven architecture: How SOA enables the real-time
enterprise. Upper Saddle River, NJ: Addison-Wesley .

Terroso-Saenz, F., Gonzlez-Vidal, A., Ramallo-Gonzlez, A. P., & Skarmeta, A. F. (2019).
An open IoT platform for the management and analysis of energy data. Future

Generation Computer Systems, 92 , 1066–1079. doi: 10.1016/j.future.2017.08.046 .
Vegh, L., & Miclea, L. (2016). Complex event processing for attack detection in a

cyber-physical system. In 2016 ieee international conference on automation, qual-

ity and testing, robotics (AQTR) (pp. 1–6). doi: 10.1109/AQTR.2016.7501296 .
Wireshark (2019). Wireshark. https://www.wireshark.org/ Accessed 17 March 2019.

Xiao, L., Wan, X., Lu, X., Zhang, Y., & Wu, D. (2018). IoT Security techniques based on
machine learning: how do IoT devices use AI to enhance security? IEEE Signal

Processing Magazine , 35 (5), 41–49. doi: 10.1109/MSP.2018.2825478 .
Zimmermann, H. (1980). OSI Reference model - The ISO model of architecture

for open systems interconnection. IEEE Transactions on Communications , 28 (4),

425–432. doi: 10.1109/TCOM.1980.1094702 .

Chapter 3. Integrating Complex Event Processing and Machine Learning: an
Intelligent Architecture for Detecting IoT Security Attacks

75

CHAPTER 4

Detecting security attacks in
cyber-physical systems: a comparison
of Mule and WSO2 intelligent IoT
architectures

• Title: Detecting security attacks in cyber-physical systems: a comparison of Mule
and WSO2 intelligent IoT architectures.

• Authors: José Roldán-Gómez, Juan Boubeta-Puig, Gabriela Pachacama-Castillo,
Guadalupe Ortiz, Jose Luis Martínez

• Type: Journal paper.

• Journal: PeerJ Computer Science.

• Publisher: PeerJ.

• ISSN: 2376-5992

• Status: Published.

• Publication date: November 2021.

• Paper Number: 787.

• DOI: 10.7717/peerj-cs.787

• JCR IF/ranking: 2.411/Q2 (JCR2021).

77

https://doi.org/10.7717/peerj-cs.787

Detecting security attacks in cyber-physical
systems: a comparison of Mule and WSO2
intelligent IoT architectures
José Roldán-Gómez1, Juan Boubeta-Puig2, Gabriela
Pachacama-Castillo3, Guadalupe Ortiz2 and Jose Luis Martínez1

1 Research Institute of Informatics (i3a), Universidad de Castilla La Mancha, Albacete, Spain
2 Department of Computer Science and Engineering, University of Cadiz, Cadiz, Spain
3 School of Engineering, University of Cadiz, Cadiz, Spain

ABSTRACT
The Internet of Things (IoT) paradigm keeps growing, and many different IoT
devices, such as smartphones and smart appliances, are extensively used in smart
industries and smart cities. The benefits of this paradigm are obvious, but these IoT
environments have brought with them new challenges, such as detecting and
combating cybersecurity attacks against cyber-physical systems. This paper addresses
the real-time detection of security attacks in these IoT systems through the combined
used of Machine Learning (ML) techniques and Complex Event Processing (CEP).
In this regard, in the past we proposed an intelligent architecture that integrates ML
with CEP, and which permits the definition of event patterns for the real-time
detection of not only specific IoT security attacks, but also novel attacks that have not
previously been defined. Our current concern, and the main objective of this paper,
is to ensure that the architecture is not necessarily linked to specific vendor
technologies and that it can be implemented with other vendor technologies while
maintaining its correct functionality. We also set out to evaluate and compare the
performance and benefits of alternative implementations. This is why the proposed
architecture has been implemented by using technologies from different vendors:
firstly, the Mule Enterprise Service Bus (ESB) together with the Esper CEP engine;
and secondly, the WSO2 ESB with the Siddhi CEP engine. Both implementations
have been tested in terms of performance and stress, and they are compared and
discussed in this paper. The results obtained demonstrate that both implementations
are suitable and effective, but also that there are notable differences between
them: the Mule-based architecture is faster when the architecture makes use of two
message broker topics and compares different types of events, while the WSO2-based
one is faster when there is a single topic and one event type, and the system has a
heavy workload.

Subjects Data Mining and Machine Learning, Embedded Computing, Security and Privacy
Keywords Internet of things, Complex event processing, Machine learning, Pattern detection,
Security attack

INTRODUCTION
Over the past few years, expectations regarding the use of IoT devices have risen
significantly. According to data published by the IoT Analytics company, since 2015 there
has been a significant increase in the use of IoT devices, with 7,000 million of them being

How to cite this article Roldán-Gómez J, Boubeta-Puig J, Pachacama-Castillo G, Ortiz G, Martínez JL. 2021. Detecting security attacks in
cyber-physical systems: a comparison of Mule andWSO2 intelligent IoT architectures. PeerJ Comput. Sci. 7:e787 DOI 10.7717/peerj-cs.787

Submitted 2 June 2021
Accepted 28 October 2021
Published 23 November 2021

Corresponding author
José Roldán-Gómez,
jose.roldan@uclm.es

Academic editor
Anand Nayyar

Additional Information and
Declarations can be found on
page 32

DOI 10.7717/peerj-cs.787

Copyright
2021 Roldán-Gómez et al.

Distributed under
Creative Commons CC-BY 4.0

78

registered in 2018, and this figure is estimated to reach 21,500 million in 2025 (Lueth,
2018). With this increase in the use of such devices, new security challenges also arise, such
as ensuring the security of IoT devices (Bertino et al., 2016). Although there are quite a
number of works in the literature addressing this problem, further research and
implementation is still needed within the realm of the Internet of Things. An example
of this is the attack in 2016 in which cybercriminals exploited the vulnerabilities of
thousands of IoT devices to convert them into Domain Name System (DNS) request
generators and carry out a Distributed Denial of Service (DDoS) attack, causing an
Internet service disruption that affected several companies such as Amazon, PayPal,
Netflix, Spotify and Twitter (Moss, 2016). It is also worth mentioning that the analysis
published by the Gartner company indicated that in 2020 more than 25% of the attacks
identified in companies would involve IoT devices (Moore, 2018). Several studies show
the magnitude of the problem, revealing that, in just the first half of 2019, a hundred
million attacks were carried out against smart devices, a figure seven times higher than
the number detected in 2018. The Mirai malware was responsible for 39% of them
(Demeter, Preuss & Shmelev, 2019). In 2020 and 2021 this problem has worsened; the most
common threat remains Mirai, but new variants have also been created (Gutnikov et al.,
2021; Kaspersky, 2021).

Considering all of the above, it is clear that there are currently significant security
problems in IoT devices; if these problems are not addressed, it is certain that they will be
even more damaging in the future. Therefore, it is imperative to examine new ways of
identifying attacks on IoT devices in a timely and efficient manner, and to enable
notification and alarm submission in critical attacks. In other words, it is essential to
propose an Intrusion Detection System (IDS) for IoT devices. Such a system must be able
to receive, analyze and process a large number of records in real time. Also, it must
immediately notify security experts of attacks in progress in order to give them more
reaction time to mitigate the attacks. However, the ability of traditional rule-based IDSs to
detect security attacks in the IoT domain is limited, as they cannot detect novel attacks.
Since current malware is not static, it is highly desirable to have the ability to detect
previously-unknown attacks.

With the aim of addressing this challenge, in the past we proposed a software
architecture that integrates Complex Event Processing (CEP) and Machine Learning (ML),
and has the ability to detect, and provide notification of, security attacks on IoT
devices in real time (Roldán et al., 2020). This architecture permits the detection of not
only static but also dynamic security attacks in the IoT thanks to the use of both CEP
technology (Luckham, 2012; Boubeta-Puig, Ortiz & Medina-Bulo (2015)) and ML
techniques (Buczak & Guven, 2016).

Once we had proved the viability of building this architecture by combining CEP
and ML, we observed a number of potential limitations that should be studied; in
particular, we were concerned with the fact that the architecture is necessarily linked to the
technologies of specific vendors, and also that other alternative implementations may
not achieve the desired performance in this field of application. The architecture we
proposed consists of the integration of ML with a CEP engine, and the ESB of two specific

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 2/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

79

vendors, namely Esper (EsperTech, 2021) and MuleSoft (MuleSoft, 2021b). We thus
thought it might be advisable to be able to implement this architecture on other platforms;
for example, on the well-known WSO2 suite (WSO2, 2021c).

This gave rise to our first research question (RQ1): can a real-time data stream
processing architecture be implemented with the WSO2 ESB (WSO2, 2021d) together with
the WSO2 Siddhi CEP engine (WSO2, 2021b) and be integrated with ML techniques?
Assuming that it is feasible to implement the architecture with the CEP engine and the
ESB of other vendors, in particular with those offered by WSO2, we are necessarily
concerned about what impact this may have on the performance of the system, given that,
as we have explained above, a real-time response is required to stop security attacks on the
IoT.

This leads us to our second research question (RQ2): can a streaming data
processing architecture based on the integration of ML techniques with the WSO2 CEP
engine and ESB achieve or improve upon the performance of the previously proposed
architecture (Roldán et al., 2020)? In addition, we consider the possibility that various
implementations of the integration architecture of CEP, ESB and ML may present a
more or less advantageous performance depending on the type of attack to be detected,
that is, the type of pattern necessary for each attack. Likewise, there may be variations in
how these systems support situations of stress.

This inevitably leads us to the third research question (RQ3): what kind of event
patterns are processed faster with WSO2/Siddhi and which ones with Mule/Esper, and
which of the two architectures is more suitable for supporting high-stress situations?

Once all this analysis has been carried out, we undoubtedly arrive at the question in
which the domain experts are most interested (RQ4): which of these architecture
implementations is the best to be deployed in an IoT security attack detection
environment? To be able to answer these research questions requires the implementation
of the architecture analogous to the one presented in Roldán et al. (2020) and replacing the
technologies by the ones in the WSO2 suite. It also requires the implementation of a
realistic security attack environment in an IoT network by carrying out various attacks
against the TCP, UDP and MQTT protocols, as well as analyzing the response of the
architectures in terms of performance and stress tests.

Therefore, the main aim of this paper is twofold: firstly, we aim to demonstrate that our
intelligent architecture, which integrates CEP and ML in order to detect IoT security
attacks in real time, can be implemented with different integration platforms such as
Mule and WSO2, different CEP engines such as Esper and Siddhi and different ML
algorithms such as linear regression (Montgomery, Peck & Vining, 2021). Secondly we
aim to provide a comprehensive analysis of the performance and benefits of the
architecture depending on the different vendor technologies used for its implementation;
in particular, a comparison of the architecture implementation with Mule and Esper versus
WSO2 and Siddhi is included. In this way, we provide a comparative analysis that can
be very useful for the developer when choosing between one technology and another for
the implementation of the architecture, depending on the requirements of the specific
application domain and case study.

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 3/35

80

In addition to the research questions and the objectives to be achieved, in this work we
rely on a series of assumptions that can be extracted from different works, These are:

� CEP works successfully in IoT environments. There are different works in which CEP
architectures are successfully deployed in IoT environments (Roldán et al., 2020;
Corral-Plaza et al., 2020).

� CEP engines and ESBs from different vendors can be integrated with our architecture to
detect cybersecurity threats in real time: this architecture has already been deployed
with Mule (Roldán et al., 2020) and there are works describing how to deploy WSO2 in
an IoT environment (Fremantle, 2015).

The rest of the paper is organized as follows. The Background section describes the
background to the paradigms and technologies used in this work. The Related work section
describes the most relevant works in the literature, and the Architecture for IoT security
section presents the architecture we propose for detecting attacks on IoT devices and
how the implementation with the WSO2 suite differs from that of Esper CEP and Mule
ESB. The Comparing architecture performance and stress section explains the comparison
of the performance and stress tests conducted for these architectures, which have been
implemented with Esper/Mule and WSO2. Then, the Results section presents the
experiments and results obtained, the Discussion section discuss and answer the four
research questions. Finally, the Conclusions and future work section contains our
conclusions and some lines for future research.

BACKGROUND
This section describes the background to security in the IoT, ML, SOA 2.0 and CEP.

Security in the Internet of things
The IoT and cyber-physical system devices are increasingly present in our lives. The
features offered by these devices are very attractive and they can be used for many different
purposes, among which, we can highlight domotics, the automation and control of
production processes, video surveillance and security, and medicine and health care.
The various uses that have been given to these devices and the ability to access them via the
Internet have attracted the interest of hackers. Unfortunately, the approach followed by
developers in the design of security measures for IoT devices has not been as successful
as their growth, and this is made evident by the number of cyber-attacks detected in
the first half of 2019, which surpassed a hundred million, which is seven times higher
than the previous year (Demeter, Preuss & Shmelev, 2019). The vector used by attackers in
those attacks was mainly brute force, taking advantage of the weak default configuration of
the devices and gaining access to them with the default credentials (Demeter, Preuss &
Shmelev, 2019). These attacks took advantage of the vulnerabilities of the IoT devices to
infect them with malicious code and then manipulate them to achieve their goal. The
idea behind that malware focused on the creation of bots to be marketed for the carrying
out of Denial of Service (DoS) attacks. One of the most widely-spread (and also the first)

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 4/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

81

pieces of malware specially designed for these devices was called Mirai, which is a botnet
that inserts malicious code into IoT devices so that they initiate a DoS attack against a
certain target. This caused shock and aroused the interest of hackers in these devices.

Another weakness of IoT and cyber-physical system devices is the use of unsafe network
services and protocols, due mainly to these devices having several constraints, such as a
small memory and a limited battery, which prevent developers from using a usual
security setup. These vulnerabilities have been exploited to carry out several attacks that
could have been prevented if the necessary measures had been taken. A lack of security
in the storage and transfer of data that allows the observation and analysis of the
information transmitted by these devices is another critical weakness in the security of IoT
devices. In this regard, Message Queuing Telemetry Transport (MQTT) is a very common
protocol in the IoT (OASIS, 2019). MQTT is a binary protocol that reduces the
overhead compared with other application layer protocols. It is a publish/subscribe-based
protocol in which a server (there can be more than one), known as the message broker,
manages the flow of information, which is organized as a hierarchy of topics. Each
client can be a subscriber and a publisher simultaneously. This protocol is similar to
MQTT-SN and has several weaknesses, such as allowing the sending of many MQTT
packets of a massive size, which overloads the broker. This attack causes a DoS in the
MQTT network. Furthermore, an MQTT subscription fuzzing attack could gain
information about the available topics because nodes are not authenticated and the
information is not ciphered. Moreover, an MQTT disc-wave attack can exploit a failing in
several implementations of the MQTT protocol. The specification of MQTT establishes
that each client has a unique ID, so if a new client tries to register this ID again, the broker
should reject it. However, many implementations allow a new client to connect with
a registered ID, causing the existing client with that ID to be ejected from the
previously-created connection.

Finally, a very common attack that can appear in an IoT-based network is scanning.
Attackers can perform this procedure to discover devices and open ports in the network.
By extending the scanning, attackers can cause a DoS in the network by sending large
numbers of reconnaissance packets and congesting the network. The attack generates
a large volume of traffic to try to saturate the network and so prevent users from
accessing the system. The attack can also take advantage of flaws in the code of an
application or part of the open-source code that uses the application. Two of the most
common attacks of this type are TCP and UDP flood attacks (Warburton, 2021). When the
connection is established through the TCP protocol, the client and the server exchange
flags to initiate, close or restart the connection, or indicate that the request is urgent; the
attacker sends several SYN flags asking to initiate a connection with the server, which is
blocked when there are too many ACK requests waiting and the server runs out of
resources to serve legitimate clients. A UDP port scan attack consists of sending a UDP
packet to multiple ports on the same destination system, then analyzing the response and
determining service and host availability. The attacker can determine whether the port is
open, closed or filtered through a firewall or packet filter.

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 5/35

82

Machine learning
Machine Learning (ML) can be described as a set of techniques, technologies, algorithms
and methodologies used to predict, cluster and classify entities, which can be events,
objects, or anything else that can be described with attributes, also known as features, and
entity behaviors. Broadly speaking, the best way to obtain these predictions is to model the
behavior and attributes of these entities. There are many different algorithms to model
these entities using functions which are plotted with these algorithms, and datasets of
entities. The behavior, features and context of each entity are different. Therefore, the best
algorithm does not exist, as each entity type has its correct algorithm or algorithms, if they
even exist. For this reason, it is necessary to analyze these entities and their contexts,
preprocess the datasets to allow them to be managed by these algorithms, and perform a
feature selection (if it is necessary) to discover the most descriptive set of features.
Sometimes, once the feature selection has been made, we can easily obtain the distribution
of the entities, which is very useful for choosing the algorithm in a more precise way.

There are different types of machine learning techniques and algorithms, which can be
classified as follows:

� Supervised learning. In this approach, the model is trained with labelled entities, i.e. the
model knows the type of each entity in the training dataset. Also, it is possible to find
regression techniques that aim to predict a numeric value.

� Unsupervised learning. This set of techniques does not require labelled entities, so the
model learns how to group or classify them with similarity measures.

� Reinforcement learning. This kind of ML uses a prize/penalty approach. When our
model performs a correct action, we can provide it with good feedback. When it fails,
then it receives a penalty.

In this paper, we have used linear regression (Montgomery, Peck & Vining, 2021)
because our dataset has a linear distribution. We would like to highlight that our approach
can be adapted to other mathematical models, if needed.

Event-driven service-oriented architectures
Service-Oriented Architecture (SOA) is a paradigm for the design and implementation
of loosely-coupled distributed system architectures whose implementation is
fundamentally based on services. SOA services offer a well-defined interface in accordance
with standards and facilitate communications between the service provider and the
consumer in a decoupled way by using standard protocols. Thus, these architectures
provide easy interoperability between third party systems in a flexible way, and therefore
facilitate system maintenance and evolution when changes are required (Papazoglou,
2012).

ED-SOA, or SOA 2.0, has evolved from the traditional SOA. The distinguishing feature
of SOA 2.0 is that it facilitates communication between users, applications and services
through events, instead of using remote procedure calls (Luckham, 2012). With the growth
of service components and processes, and the inclusion of events in event-driven

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 6/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

83

service-oriented applications, a new infrastructure is required to support the decoupled
communications and to maintain applications flexibly. These requirements are fulfilled by
an ESB, which permits interoperability among several communication protocols and
heterogeneous data sources and targets (Papazoglou, 2012). In this way, an ESB provides
and supports interoperability among diverse applications and components through
standard interfaces and messaging protocols, also reinforcing the reliability of the
communication as well as ensuring their scalability. There are several ESBs available, and
in this paper we have selected two well-known ones for their evaluation, namely Mule and
WSO2.

The Anypoint platform offers support for the design, implementation and management
of APIs and integration (MuleSoft, 2021a). It includes Mule (MuleSoft, 2021b), an
integration and ESB platform that provides assistance to developers in interconnecting
applications, and provides support for various transport protocols, as well as for the
transformation of different data formats. It delivers message routing as well as IoT and
cloud integration. In addition, it provides a graphical interface for the development of
business-to-business integration applications.

WSO2 is an open-source decentralized approach which provides support for building
decoupled digital products that are ready to market, with a main focus on APIs and
microservices, and a wide range of complementary products and solutions (WSO2, 2021c).
WSO2 offers WSO2 Enterprise Integrator, an integration platform which consists of a
centralized integration ESB with capabilities for data, process and business-to-business
integration. WSO2 ESB (WSO2, 2021d) provides support for multiple transport protocols,
data formats and flow integration, as well as IoT and cloud service integration.
The product also includes an analysis system for comprehensive monitoring.

As we can see, both ESBs provide similar features and can be used in conjunction with
their integration platform with many plugins and solutions for further functionalities, such
as stream and event processing.

Complex event processing
Despite all the advantages of SOA 2.0 mentioned in the previous subsection, this type
of architecture requires the use of an additional technology that makes it possible to
analyze and correlate the vast amounts of data that are present in the field of the IoT in real
time. CEP (Luckham, 2012) fulfills this functionality appropriately as it is a technology
that allows the analysis and correlation of heterogeneous data streams in real time in
order to detect situations of interest in the domain in question. In particular, the software
that is capable of analyzing the data in real time is known as the CEP engine. In order to
detect situations of interest, a series of event patterns are defined in the CEP engine
(Valero et al., 2021). These patterns represent the conditions that allow us to detect that
such a situation has occurred. These rules are applied to the engine’s incoming data, which
are known as simple events, while the situations of interest detected by the pattern are
named complex events. Thus, with CEP we can improve and speed up the decision-making
process (Boubeta-Puig, Ortiz & Medina-Bulo, 2015; Benito-Parejo, Merayo & Núñez
(2020); Corral-Plaza et al., 2021).

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 7/35

84

There are several CEP engines available, and in this paper we have selected two well-
known ones to be evaluated, namely Esper and WSO2 CEP.

Esper (EsperTech, 2021) is an open-source Java-based software engine for CEP,
which can quickly process and analyze large volumes of incoming IoT data. Esper comes
with the Esper Event Processing Language (EPL), which extends the SQL standard and
permits the precise definition of the complex event patterns to be detected. The Esper
compiler compiles EPL into byte code in a JAR file for its deployment, and at runtime this
byte code is loaded and executed. Esper performs real-time streaming data processing,
using parallelization and multithreading when necessary, and it is highly scalable. In
addition, it provides the option of implementing distributed stream processing over several
machines as well as horizontal scalability, should it be necessary. According to its
documentation, Esper 8.1.0 can process around 7.1 million events per second (EsperTech,
2019).

WSO2 CEP is provided within the WSO2 Stream Processor. WSO2 CEP is an open-
source CEP engine that facilitates the detection and correlation of events in real time, as
well as the notification of alerts, counting in addition with the support of enriched
dashboard tools for monitoring. It can be deployed in standalone or distributed modes,
and is highly scalable. It uses a streaming processing engine with memory optimization,
being able to find patterns of events in real time in milliseconds. According to its
specification, a single WSO2 CEP node can handle more than 100 K events per second on a
regular 4-core machine with 4 GB of RAM and several million events within the JVM
(WSO2, 2021c). The cornerstone of the WSO2 CEP is Siddhi (WSO2, 2021b). It uses a
language similar to SQL that allows complex queries involving time windows, as well as
pattern and sequence detection. In addition, CEP queries can be changed at runtime
through the use of templates.

ESB has been used in our system as a tool for transport and information management.
This use is quite simple to implement but if the parameters are not specified properly, it
could cause problems.

RELATED WORK
There is an interesting comparison between Mule, WSO2 and Talend conducted by Górski
& Pietrasik (2017). Note that Talend is beyond the scope of this work. The authors
implemented seven different use cases and tested them with 5, 20 and 50 users
simultaneously. Moreover, their work provides measurements of throughput, standard
deviation and CPU usage for each experiment, and their results are closely aligned
with ours, i.e., WSO2 is always faster except when the output message is enormous
(221,000 bytes of output message in this case). This is not a problem for our proposal
because an IDS does not need big output messages. Moreover, WSO2 obtains a better
throughput, whereas the CPU usage is similar in both cases. On the other hand, Mule
provides a lower standard deviation, i.e., Mule is more constant than WSO2 when
processing different types of events.

Bamhdi’s work (Bamhdi, 2021) is also interesting. In contrast to our work, his paper
does not show an active performance comparison between WSO2 and Mule, but instead

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 8/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

85

provides a feature comparison between four ESB platforms (WSO2 and Mule are included
among them). Although Bamhdi’s work is focused on comparing open source platforms
against proprietary ones, it allows us to compare specific features of Mule and WSO2.
This comparison, which analyzes 15 features, shows that WSO2 supports the 15 listed
capabilities, whereas Mule supports. The only feature which Mule cannot provide is web
migration from 5.0 to 6.0; note that WSO2 is the only one that satisfies this feature.

Dayarathna & Perera (2018) compare WSO2 with other ESBs, but Mule is not
considered in their work, which provides a brief feature comparison between the Esper
(basic version) and Siddhi CEP engines. According to the authors, each language provided
by a CEP engine has its pros and cons. On the one hand, Esper (basic version)
provides nested queries and debugging support, while Siddhi registered a higher
performance than Esper: 8.55 million events/second versus 500,000 events/second.

Another work which is focused on CEP engines is that of Giatrakos et al. (2020).
It does not directly compare WSO2 against Mule or Siddhi against Esper, but instead
describes different CEP paradigms. In particular, it explains different selection policies,
consumption policies and windows. Moreover, the paper describes the scalability and
parallelization of several CEP engines. Although it is quite different from our work, it can
be useful in order to understand our work and learn about other CEP engines.

Freire, Frantz & Roos-Frantz (2019) adopt a different approach in which they do not
conduct performance experiments directly, but experts enumerate the features of different
ESBs. These features are grouped into three dimensions: message processing, hotspot
detection and fairness execution. Additionally, Freire et al.’s work defines two types of
features: subjective and objective. The authors assign values for each feature, which allows
them to obtain a score for each ESB. According to their paper, Mule should be faster than
WSO2, but the problem is that this is not demonstrated through experiments. This
approach is useful because it allows the measuring of different ESB platforms without
implementing experiments; however, it would have been more useful if they had carried
out experiments to support their results.

Our paper provides a real performance comparison betweenMule andWSO2, following
a similar methodology to the one proposed in the papers mentioned, i.e., executing
and deploying the proposed platforms under equal conditions and measuring events in
relation to time. More specifically, we have analyzed different pattern types, namely
time-window-based patterns and prediction patterns. The latter are a novelty with respect
to other works, as each network event is compared with a prediction event, and this acts as
an anomaly detector.

ARCHITECTURE FOR IOT SECURITY
This section describes our proposed SOA 2.0 architecture, which integrates CEP and ML
paradigms in order to detect attacks on IoT devices. Then, two implementations of
this architecture, one using Mule and the other WSO2, are presented with the aim of
comparing them under the same conditions in order to find the strengths and benefits of
each, which is the novelty and contribution of this research.

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 9/35

86

Architecture proposal
Our proposed architecture for detecting attacks on IoT devices is described below. This
architecture, which is an improved version of the architecture we presented in Roldán et al.
(2020), is composed of three different parts.

The first module of the architecture, the data sources, consists of the data obtained
from the network and the pre-trained model, if available. Otherwise, the model would have
to be trained. As shown in Fig. 1, this module may be detached from the rest of the
architecture, because it can be replaced by any computer network with an MQTT broker as
collector. However, we consider it useful to analyze the whole system to understand its
behavior. Note that in this new version of our architecture, an MQTT broker can be
used with different topic numbers, with the aim of managing data grouped by type.
Additionally, this new version permits the use of pre-trained models as data sources, which
allows us to migrate our model from our architecture to other deployments. In addition,
pre-trained models provide greater flexibility because they allow training the model
outside (or inside) our deployed architecture.

The second module of the architecture, which is in fact the main module, receives raw
network data and, optionally, a pre-trained model. This module is responsible for making

Figure 1 Generic architecture to detect attacks on IoT devices.
Full-size DOI: 10.7717/peerj-cs.787/fig-1

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 10/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

87

decisions on the basis of the network data analyzed in real time. This new version of our
architecture is more flexible since different CEP engines can be used according to the user’s
needs.

At this point, the pipeline of the second module should be explained in detail. Through
an MQTT inbound endpoint, the raw network data produced by data sources can reach
the ESB. These data are preprocessed to make them consumable for the network event
generator. The event generator provides network events which can be received and
processed in real time by the CEP engine. Moreover, our architecture needs a trained
model to predict the network event values. In particular, this model can be used to
predict the type of network packet via a predicted value and a threshold, which is
computed using the training data. In this case, our model has been built using a linear
regression, and is used to predict values and a threshold from a key feature, or features,
which is the packet length in our case. These features will vary with each case.

The last module is composed of data sinks which receive the notifications about the
decision-making process conducted by the second module. Databases, event systems,
emails, logs, or any other system required by end users to receive such notifications are
examples of data sinks. Due to its simplicity, an explanatory diagram is not included.

We would like to point out that our architecture allows us to fit the model with raw
sensor data; this traffic should be isolated and without any security attacks. There are
two ways to obtain prediction patterns: the first is to set a pre-trained model, while the
second is to train the model with the isolated network traffic. Regardless of the method
which is selected, the architecture uses this model to predict the expected value of each
incoming network packet. This prediction is used to create a prediction event which is
compared with its corresponding network event. In this way, our architecture is able to
obtain patterns which can detect anomalous packets by using the real value, the predicted
value and a calculated threshold, since the absolute value of the subtraction of the real
value and the predicted value must be smaller than the threshold; otherwise, the packet is
anomalous.

Equation (1) describes our predictor in a formal way, where the number 1 means that
the network packet belongs to the category used to train the model and obtain the ERROR.

f ðxÞ ¼
1 if ðabsðreal Value� predicted ValueÞ � ERRORÞ

0 if ðabsðreal Value� predicted ValueÞ.ERRORÞ

8>><
>>:

(1)

It is important to note that we can fit the model with more attacks; for example, if
we have traffic from a DoS attack, we can refit our model to detect this attack. The best way
to generate patterns is to attack the architecture or obtain traffic from attacks. As
mentioned above, we have improved the architecture to accept pre-trained models.

An initial deployment of the architecture could be composed of a few patterns that can
be proposed and designed by the domain expert, and the anomaly detector, which uses
legitimate traffic. When an anomalous pattern is triggered, anomalous packets can be used

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 11/35

88

to generate a new pattern to detect this kind of anomaly again. This means that our
architecture can improve and gradually become more accurate over time.

Architecture implementation with Mule
In this subsection we explain how our architecture for IoT security has been implemented
by using the Mule ESB together with the Esper CEP engine.

The Mule-based architecture is composed of three data flows: DataReception
AndManagement, ComplexEventReceptionAndDecisionMaking and EventPattern
AdditionToEsper (see Fig. 2).

Figure 2 Screenshot of the implemented Mule-based architecture.
Full-size DOI: 10.7717/peerj-cs.787/fig-2

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 12/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

89

TheDataReceptionAndManagement flow is responsible for receiving data from IoT data
sources, transforming them into an event format and then sending them to the Esper
CEP engine. Specifically, this flow is implemented with an MQTT inbound endpoint in
which a topic is defined to receive the data obtained from data sources. Then, a Java
transformer allows the transformation of the received JSON data into Java Map events,
which are sent to an Esper CEP engine through a customized message component.

The ComplexEventReceptionAndDecisionMaking flow receives the complex events that
are automatically generated by the CEP engine upon detection of previously deployed
patterns, and transforms these complex events into JSON format. These are then saved in
log files, which are a type of data sink for the architecture.

Finally, the EventPatternAdditionToEsper flow allows the runtime deployment of new
event patterns in the CEP engine. To this end, a file input endpoint frequently checks
whether there is a new file with an EPL extension, and if there is the event pattern code
contained in this file is transformed into a string, which is then deployed in the Esper CEP
engine.

Architecture implementation with WSO2
Figure 3 depicts our architecture for IoT security that is implemented with the WSO2 ESB.
Unlike the implementation of the Mule-based architecture, which was integrated with
the external Esper CEP engine, the implementation of the WSO2-based architecture does
not require integration with an external CEP engine since WSO2 provides the Siddhi CEP
engine by default.

As shown in Fig. 3, the architecture receives the data obtained from data sources
(NetworkPacket and NetworkPrediction) by using an MQTT broker with two topics. Then,
these data are matched through the different event patterns (queries) implemented with
SiddhiQL and previously deployed in the Siddhi CEP engine. When a complex event is
automatically created upon a pattern detection, it is saved in a log file, which is a data sink
for the architecture.

Figure 3 Screenshot of the implemented WSO2-based architecture. Full-size DOI: 10.7717/peerj-cs.787/fig-3

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 13/35

90

COMPARING ARCHITECTURE PERFORMANCE AND
STRESS
This section presents our comparison of the performance and stress tests conducted for the
two architectures implemented with Mule and WSO2.

Proposed approach
Before analyzing each architecture component in depth, a schematic overview of the steps
followed to address this comparison are explained below:

� First, a virtualized MQTT network, in which clients publish periodically, is deployed.

� Then, packets are collected from that network to define a normal scenario, in which the
system is not under attack.

� Afterwards, a malicious client is introduced into the network and this client launches the
attacks. Packets that generate attacks are collected to perform the experiments.

� A number of these packets are preprocessed and used to train the linear regression
model. The mean square error for each category to be predicted with the regressor is also
extracted.

� The values of the packets that were not used for training are predicted and saved. They
will be used to perform the experiments.

� Then, event patterns are defined. To perform a complete comparison, we create a
pattern per attack that will be able to detect the attack, as a domain expert would do,
except for DoS, which is detected with a regressor because in practice it is difficult to
establish a specific pattern for this type of attack. In addition, we create the
FeatureAnomaly pattern, which is able to detect anomalies using the linear regressor.
This pattern is used to detect unknown attacks, such as Subfuzzing, DoS or Discwave.
And then there is the ProtocolAnomaly pattern, which detects any unknown protocol
that should not be present in the network.

� Both platforms, Mule and WSO2, are deployed with their corresponding patterns.

� The simulator is used to perform the experiments (see next subsection) in such a way
that these experiments are reproducible.

� Finally, the metrics of the experiments are extracted for comparison.

Simulator
To ensure the reproducibility of the experiments, we implemented an MQTT network
simulator. We chose an MQTT simulator because, as mentioned above, it is a widely-used
protocol in the IoT paradigm. Moreover, MQTT networks, by the nature of the
protocol, are usually centralized because the broker acts as a centralizer, so that all MQTT
packets pass through it. This makes it very easy to set up a network-based IDS in the
broker, because there is no need to redirect traffic to another device. This simulator is
capable of sending network packets to an MQTT broker, taking as data source different
CSV files which contain real network traffic that was previously generated and stored.
This is essential because it allows us to use real traffic and to combine the reproducibility of

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 14/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

91

the experiments with data that have been generated in a real MQTT network.
The main advantages of our simulator are that it can reliably send such network packets
while taking the delay between packets into account, and it allows us to generate several
scenarios to test both the proposed architectures.

Figure 4A outlines this MQTT network simulator. Note that when we wish to generate
heavy workloads, we can use the sum of deltas from the packets or the number of packets
as the threshold which is used to stop the generation of packets.

Figure 4 MQTT network (A) and MQTT simulator (B).
Full-size DOI: 10.7717/peerj-cs.787/fig-4

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 15/35

92

The behavior of the simulator is quite simple. First, it reads the CSV files, which first
allows us to avoid the delay that is due to reading each row of the CSV while we are sending
them.

When the simulator has read both CSV files (legitimate traffic, and the specific attack), it
starts to send packets with MQTT, these being sent using JSON format. The number of
packets is defined as described above.

Figure 4B shows an MQTT network diagram where there are a certain number of
legitimate devices, 4 in our case, and 1 malicious device which attacks the network in
different ways. This network is similar to the network used to obtain the network traffic.

Event patterns
In our previous work (Roldán et al., 2020), we defined and implemented twelve event
patterns in Esper EPL for detecting the following security attacks:

� TCP/SYN port scan: the malicious device sends a round of 10 or more TCP packets with
the SYN flag to three or more different ports of the broker in 1 s. If the port is open, the
broker sends a SYN/ACK packet, otherwise it sends an RST packet. The TCP_SYN
pattern implements this attack by making use of an intermediate pattern called
SrcDst_TCP_1s_Batch.

� UDP port scan: the malicious device sends a round of 10 or more empty UDP packets to
three or more different ports of the broker in 5 s. If the broker sends any response,
then the port is open, but if the broker does not send a response, the port could be open.
If the broker sends ICMP unreachable, the port should be closed. And if it sends a
different error (not unreachable), the port should be filtered. The UDP_Port_Scan
pattern implements this attack by making use of an intermediate pattern called
SrcDst_UDP_5s_Batch.

� Xmas port scan: the malicious device sends a round of 10 or more TCP packets with
PSH, FIN and URG flags to 2 or more different ports of the broker in 1 s. If the
broker does not respond, the port should be open or filtered. If the broker sends an RST
packet, it should be closed. If the broker sends an ICMP unreachable error, it should be
filtered. The Xmas_Scan pattern implements this attack by making use of an
intermediate pattern called SrcDst_Xmas_1s_Batch.

� TELNET Mirai: the malicious device simulates the first stage of Mirai, sending connect
packets with different tuples (username/password). The pattern can be detected if the
attacker sends more than 5 TELNET packets in 1 min. The TELNET_Mirai pattern
implements this attack by making use of an intermediate pattern called
Src_TELNET_1m_Batch.

� MQTT disconnect wave: the malicious device sends many MQTT packets with the
connect command. As sending more than 1 connect command is strange, the pattern can
be detected if the broker receives more than 5MQTT connect commands in 1 min from a
single IP address. The MQTT_Disconnect_Wave pattern implements this attack by
making use of an intermediate pattern called Src_MQTT_1m_Batch.

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 16/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

93

� MQTT subscription fuzzing: the malicious device tries to subscribe to all topics, so the
pattern can be detected if an MQTT client subscribes to more than 20 topics in 5 min.
The MQTT_Subscription_Fuzzing pattern implements this attack by making use of
an intermediate pattern called Src_MQTT_5m_Batch.

In the present work, we have used these twelve event patterns implemented in Esper
EPL to test the Mule-based architecture. Moreover, we have implemented analogous
patterns but in SiddhiQL to test the WSO2-based architecture.

Additionally, in this work we have split the Anomaly pattern, proposed in Roldán et al.
(2020), into 2 new patterns: ProtocolAnomaly and FeatureAnomaly. The first pattern
allows us to detect protocols which are not expected because this may suggest that the
system is under attack. The second pattern allows us to detect anomalous packets in
expected protocols. Thus this pattern split allows us to classify anomalies more accurately.

Listing 1 shows the FeatureAnomaly pattern implemented in Esper EPL, while Listing 2
contains the implementation of the same pattern but using the SiddhiQL language.
This pattern implements Eq. (1) and allows us to detect unmodeled attacks, such as the
DoS with big messages. Moreover, it will detect other attacks, such as disconnect wave or
subscription fuzzing, even if we do not define specific patterns to detect them. The
ProtocolAnomaly pattern implemented in Esper EPL is shown in Listing 3, while Listing 4
contains the same pattern using the SiddhiQL language.

We have implemented two types of event patterns to detect such attacks. The first
type uses a time batch window (SrcDst_TCP_1s_Batch, SrcDst_UDP_5s_Batch,
SrcDst_Xmas_1s_Batch, Src_TELNET_1m_Batch, Src_MQTT_1m_Batch and
Src_MQTT_5m_Batch) to trigger a complex event when a condition is met. The second
type of pattern allows the comparison of messages coming from two broker topics, one
that manages prediction and threshold data while the other topic manages real packet
information. In this case, the pattern is activated when the difference between the
prediction and the real values is higher than a certain threshold; this is useful because we
can compare the performance for different attacks but also with different types of patterns.

Machine learning model
Selecting a machine learning model is a very important step in effectively deploying the
architecture. Although this paper does not focus on ML processes, it is important to give a
brief explanation of the model we have used.

The first step in defining our ML model was to select the most important features.
For this purpose we applied the criteria proposed by KDD99, which are adaptable
to our MQTT dataset. In addition, we also added features obtained from MQTT.

Once the features have been selected, they are normalized and binarized when
necessary. Then we used Extremely Randomized Trees with our dataset to arrange the
features by importance. After that, we selected the most important features (Geurts, Ernst
& Wehenkel, 2006).

Table 1 show the importance of the binarized features. One or several features are
chosen to be the key feature/s, and these are predicted with the rest of the features

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 17/35

94

obtained. Furthermore, this prediction will be compared with the real value for each event,
with the error threshold being defined using the mean square error obtained when we train
the model.

By using pre-processed features, we can select the model. In this case, our data features
fit a linear distribution very well. Therefore, we chose a linear regression to predict these
key features. This model can change depending on the whole IoT network.

Tests
By implementing a network simulator, we were able to measure the performance of our
proposed architecture implemented with WSO2 and Mule, and compare them. We
designed 14 experiments with seven different attacks against MQTT, and each test was
composed of legitimate traffic and one specific attack. Specifically, we carried out seven

Listing 1 FeatureAnomaly pattern implemented in Esper EPL.

@Name(“FeatureAnomaly”)

@Tag(name=“domainName”, value = “IoTSecurityAttacks”)

insert into FeatureAnomaly select a2 . id as id,

current time stamp() as time stamp, a1 . destIp as destIp

from pattern[((every a1 = NetworkPacket((a1 . protocol = ‘MQTT’ or

a1 . protocol = ‘TCP’)))

-> a2 = NetworkPrediction((a2 . i d = a1 . id and

(a2 . packetLengthPredict < (a1 . packetLength

- a2 . packetLengthPredictSquaredError) or a2 . packetLengthPredict >

(a1 . packetLength

+ a2 . packetLengthPredictSquaredError)))))]

Listing 2 FeatureAnomaly pattern implemented in SiddhiQL.

@info(name= “FeatureAnomaly”)

from ((every a1 = NetworkPacket[(a1 . protocol == ‘MQTT’

or a1 . protocol == ‘TCP’)]) −> a2

= NetworkPrediction[(a2 . i d == a1 . id and

(a2 . packetLengthPredict < (a1 . packetLength

− a2 . packetLengthPredictSquaredError) or

a2 . packetLengthPredict > (a1 . packetLength

+ a2 . packetLengthPredictSquaredError)))])

select a2 . id a s id,

time : timestampInMilliseconds() as time stamp,

a1 . destIp as destIp

insert into FeatureAnomaly;

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 18/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

95

experiments (one per attack) which used the delay of each packet in order to simulate a
network realistically, and seven experiments without a delay, which allowed us to measure
the performance with heavy workloads. Thus, the proposed tests were as follows:

� TCP-SYN scan (with delay/without delay)

� UDP port scan (with delay/without delay)

� XMAS port scan (with delay/without delay)

Listing 3 ProtocolAnomaly pattern implemented in Esper EPL.

@Name(“ProtocolAnomaly”)

@Tag(name=“domainName”, value= “IoTSecurityAttacks”)

insert into ProtocolAnomaly

select a1.id as id,

current_timestamp() as timestamp,

a1.destIp as destIp

from pattern[(every a1 = NetworkPacket((a1.protocol != ‘TCP’ and

a1.protocol != ‘UDP’

and a1.protocol != ‘MQTT’ and

a1.protocol != ‘ARP’ and a1.protocol != ‘DHCP’

and a1.protocol != ‘MDNS’ and

a1 . protocol != ‘NTP’ and a1.protocol != ‘ICMP’

and a1.protocol != ‘ICMPv6’ and

a1.protocol != ‘DNS’ and a1.protocol != ‘IGMPv3’)))]

Listing 4 ProtocolAnomaly pattern implemented in SiddhiQL.

@info(name=“ProtocolAnomaly”)

from (every a1 = NetworkPacket[(a1.protocol != ‘TCP’ and

a1.protocol != ‘UDP’

and a1.protocol != ‘MQTT’ and

a1.protocol != ‘ARP’ and a1.protocol != ‘DHCP’

and a1.protocol != ‘MDNS’ and

a1.protocol != ‘NTP’ and a1.protocol != ‘ICMP’

and a1.protocol != ‘ICMPv6’ and

a1.protocol != ‘DNS’ and a1.protocol != ‘IGMPv3’)])

select a1.id as id,

time:timestampInMilliseconds() as timestamp,

a1.destIp as destIp

insert into ProtocolAnomaly;

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 19/35

96

� Mirai first stage (with delay/without delay)

� MQTT disconnect wave (with delay/without delay)

� MQTT subscription fuzzing (with delay/without delay)

RESULTS
This section presents and discusses the experiments and the results obtained when
comparing the performance of our architecture implemented with WSO2 and Mule, as
well as the limitations of each implementation.

These experiments were carried out under similar conditions for the WSO2-based
architecture, composed of the WSO2 ESB and the WSO2 CEP engine, and the Mule-based
architecture that integrates Mule ESB with the Esper CEP engine. We would like to point
out that WSO2 provides some extra performance features such as multiworkers and
PMML models(WSO2, 2020, 2021a), which could enhance the architecture’s performance.
However, we did not integrate these features in our proposed architecture in order to
create similar conditions for both systems.

The results obtained for the two types of tests conducted in this work (performance and
stress tests) are discussed below. The implementation code can be accessed in the Roldán-
Gómez et al. (2021) repository.

Performance tests
The results for the performance tests are presented in the following subsections.

Estimated computational complexity
Although it is difficult to give an exact figure for computational complexity because of the
internal operations performed by the CEP engines, we estimate the computational
complexity on the basis of the steps that we can calculate. Note that this estimation
assumes that the model and preprocessing steps are as mentioned. Obviously, this will
change if another model or steps are used during the preprocessing step.

To define the computational complexity, we consider the following variables: n, which
defines the number of packets, which F is the number of variables where each step is
applied (this value will be constant for each step); and v, which defines the different values
of each category and is used only for the binarization of categorical attributes. First, we
calculate the computational complexity of each step, then the total for the training stage,
and then the total at runtime.

The estimated computational complexities are as follows: min-max scaler O(2nF1), fill
empty values O(nF2), binarization of categorical attributes O(2nF3v), and training linear
regression model OðnF2

4 þ F3
4Þ. All these steps only have to be carried out once. In

addition: predict a value with the regressor and create n events O(F5n). In summary, the
estimated computational complexity in training is as follows:

Oð2nF1 þ nF2 þ 2nF3v þ nF2
4 þ F3

4Þ:

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 20/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

97

And the estimated computational complexity at runtime is:

OðF5nÞ:

Since we do not know the exact inner workings of CEP engines, it is difficult to calculate
the remaining steps. That is why performance experiments, such as those carried out in
this paper, are so important.

TCP SYN scan
The first experiment performed was composed of legitimate traffic (a simple MQTT
network) and a TCP SYN scan. We used our architecture as an IDS to detect attacks or
scans.

Figure 5 shows the results obtained for the TCP-SYN scan test executed for 5 min on
both the WSO2-based architecture and the Mule-based one. The X-axis represents the
execution time in milliseconds, while the Y-axis shows the different complex event types
detected in real time during the execution of the test.

Table 1 Feature importance.

Feature name Feature importance

Destination port (1883) 0.259

Calculated window size 0.240

Protocol (TCP) 0.122

Protocol (MQTT) 0.100

IP source (192.168.1.11) 0.092

Information (Publish message) 0.032

Source port (59662) 0.030

IP source (192.168.1.7) 0.029

Source port (62463) 0.027

Source port (52588) 0.016

Packet length 0.005

Figure 5 TCP_SYN attack comparison. Full-size DOI: 10.7717/peerj-cs.787/fig-5

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 21/35

98

As we can see, the WSO2 implementation triggers the TCP_SYN complex event first.
Therefore, we can conclude that the WSO2 achieves an earlier detection than the
Mule-based one. In this case, TCP_SYN starts sooner in the WSO2 scenario, but this delay
is shorter than the detection time difference.

UDP port scan
The UDP scan is slower than the TCP one, and it is useful to study the performance in a
different way. This experiment allowed us to compare the performance when the attack
has a low packet sending ratio. As in the case of the TCP SYN Scan experiment, there
was normal traffic and a UDP port scan.

Figure 6 shows the results obtained for this UDP port scan experiment. In conclusion,
we can say that WSO2 was faster than Mule again. Mule generated a null window, not
being able to detect the third UDP_Port_Scan complex event. It is important to note that
the difference is smaller than in Fig. 5; this may be because the attacks, in both cases,
started at the same time.

Xmas port scan
This scan is not very common and shows how our architecture is able to detect more
unusual attacks. From the point of view of the experiment, it should be like the TCP_SYN
scan, as both have similar packet sending ratios and event generation characteristics.

Figure 7 shows that WSO2 was faster than Mule, even though the Xmas port scan attack
started sooner in the Mule scenario. This experiment is useful because it allowed us to
confirm the superiority of WSO2 when there is not a comparison between different events.

Mirai first stage
This scenario simulates the first stage of Mirai. This attack tries to connect with Telnet
using a username/password list. The main aim of this experiment was to check the
behavior of our system under common IoT attacks. Figure 8 shows a comparison of the
results for the Mirai scenario, executing it on the WSO2-based architecture and the
ESB-based one. Again, WSO2 detected the first complex event faster than Mule.

Figure 6 UDP scan attack comparison. Full-size DOI: 10.7717/peerj-cs.787/fig-6

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 22/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

99

DoS big message

This scenario simulates a common DoS attack in which the attacker sends big messages
quickly to the broker.

This experiment is different to the other ones because time windows are not used.
Instead of time windows, each packet is matched with its prediction. As we mentioned
above, there are two different ways to detect attacks using our predictor. In this case,
the system trains the model with legitimate and isolated traffic, allowing us to detect
anomalous packets. Note that each packet which does not match with its prediction, and
whose difference exceeds the threshold, can be classified as anomalous. Additionally, we
could have fitted a model to detect each specific attack.

Figure 9 illustrates that, in this case, Mule was faster than WSO2, since WSO2 needed
more time to detect all the malicious packets. Therefore, we can conclude that Mule offers
better performance when we need to compare different events (network events and
prediction events in this case).

Figure 8 Telnet-Mirai attack comparison. Full-size DOI: 10.7717/peerj-cs.787/fig-8

Figure 7 XMAS scan attack comparison. Full-size DOI: 10.7717/peerj-cs.787/fig-7

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 23/35

100

MQTT disconnect wave
This scenario provides useful knowledge about both platforms. Here there are time
windows and an anomalous packet detector, which works by matching each packet with its
prediction, as we did in the DoS experiment. The advantage of this experiment is that it
allowed us to check the behavior of the whole proposal deployed with the predictor
working. Note that in a real scenario we would not use both methods (time windows and
prediction), but it was useful and appropriate to test the performance.

As we can conclude from Figs. 10 and 11, Mule again worked better with predictions (by
using two topics) than WSO2. On the other hand, WSO2 again detected the first complex
event earlier than Mule when using time windows.

Subscription fuzzing
In this scenario, we used both methods again (time windows and predictions), but this
attack is slower than the discwave one, which meant that the delay between packets
was longer than in the discwave attack. This experiment shows the behavior of our

Figure 9 DoS big message attack comparison. Full-size DOI: 10.7717/peerj-cs.787/fig-9

Figure 10 Discwave attack comparison (using time windows).
Full-size DOI: 10.7717/peerj-cs.787/fig-10

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 24/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

101

proposal when the system receives an attack with a lower packet sending ratio than DoS or
discwave.

Figures 12 and 13 show that there are two interesting facts that we can extract from this
experiment. The first is that WSO2 detected the second complex event very late when
using time windows. As it uses a 5-min window, the second time window was closed
after the attack finished. But the important thing is that, in this case, WSO2 and Mule
presented a similar performance with predictions. This is due to the long delay between
packets in this experiment. WSO2 again registered the first detection sooner. It seems
that Mule was processing a heavy workload when we compared two different events, but
WSO2 provided a better brute performance when the system compared features/properties
in the same event.

Stress test
Additionally, we carried out 7 more experiments in which the network packets had no
delay. Although this is not a realistic case, it is very useful because it allows us to study the

Figure 11 Discwave attack comparison (using FeatureAnomaly pattern).
Full-size DOI: 10.7717/peerj-cs.787/fig-11

Figure 12 Subfuzzing attack comparison (using time windows).
Full-size DOI: 10.7717/peerj-cs.787/fig-12

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 25/35

102

difference in performance between the two architecture implementations in greater
depth. The figures in this subsection compare the last simple event detected with the first
one, as well as the last complex event detected with the first one, measuring the time
differences between these events.

TCP-SYN without delay

For each attack mentioned above, we implemented a stress scenario.
In this case, we executed the TCP-SYN scan 100 times, which took about 1 min.
Figure 14 shows the difference between the last and the first simple events detected, as

well as that for the last and first complex events detected. Our goal was to discover the
processing speed difference between the platforms.

As we can see, WSO2 was faster at processing simple events and complex events than
Mule when there was a single broker topic, so this experiment confirms the results
obtained in the previous section. It seems that, regardless of the packet delay, WSO2 is
faster at processing simple events and complex events when there are no relationships
between them.

Figure 13 Subfuzzing attack comparison (using FeatureAnomaly pattern).
Full-size DOI: 10.7717/peerj-cs.787/fig-13

Figure 14 TCP-SYN without delay comparison. Full-size DOI: 10.7717/peerj-cs.787/fig-14

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 26/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

103

UDP scan without delay
In this case, the UDP scan was launched 100 times, which took about 37 s.

Figure 15 depicts a similar result to the TCP-SYN experiment: WSO2 was faster again. It
is interesting that the differences in the experiments without a delay between WSO2
and Mule are far bigger than in those with a delay; this is because these experiments
generate many more events than the experiments with a delay.

XMAS scan without delay
The XMAS scan was executed 100 times again, which took about 60 s.

As we can see in Fig. 16, the results are consistent with those we have observed above.
In this experiment, WSO2 was faster again.

Mirai first stage without delay
The first stage of Mirai was executed 100 times, which took about 48 s.

Figure 17 shows that WSO2 was faster again at processing simple events.

DoS big message without delay
The DoS scenario does not use time windows, instead it compares each packet with its
prediction. We executed the DoS experiment without delay once, which took about 20 s.

Figure 15 UDP scan without delay comparison. Full-size DOI: 10.7717/peerj-cs.787/fig-15

Figure 16 XMAS Scan without delay comparison. Full-size DOI: 10.7717/peerj-cs.787/fig-16

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 27/35

104

The results are very interesting, as illustrated in Fig. 18. They show that Mule was faster
than WSO2 when there was an operation between 2 broker topics. The performance
difference between implementations was even bigger than in the experiments with one
type of simple event.

MQTT disconnect wave without delay
We executed the discwave attack for about 27 s, and used the FeatureAnomaly prediction
pattern to detect it.

Fig. 19 shows that Mule was faster again when we compared 2 different events. This
experiment had the highest workload, and therefore the difference between WSO2 and
Mule was even bigger than before.

MQTT subscription fuzzing without delay
This experiment consisted in running the subfuzzing attack for approximately 47 s.

As we can see in Fig. 20, Mule was much faster again, so we can conclude that WSO2
is only faster than Mule when there are no comparison operations between different
events.

In short, each CEP engine has different advantages. The Esper CEP engine integrated
with the Mule ESB is better when there are comparisons between different events, so

Figure 18 DoS without delay comparison. Full-size DOI: 10.7717/peerj-cs.787/fig-18

Figure 17 Mirai first stage without delay comparison. Full-size DOI: 10.7717/peerj-cs.787/fig-17

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 28/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

105

Esper/Mule performs better on patterns where different events are compared. As an
example, we can see this behavior in the anomalous packet pattern. However, when there
are no comparisons between different events, WSO2 is faster than Esper/Mule. We can
conclude that WSO2 provides a better raw performance, in other words, WSO2 is able
to process network packets faster than Esper/Mule but its performance is worse when there
are comparisons between events.

DISCUSSION
With the obtained results, we can discuss and answer the four research questions posed in
Introduction section:

Answers to the Research Questions

� RQ1: Can a real-time data stream processing architecture be implemented with the
WSO2 ESB together with the Siddhi CEP engine and be integrated with ML techniques?

– We can definitely affirm that it is possible to implement a streaming data processing
architecture using WSO2 ESB together with the Siddhi CEP engine and integrate
them with ML techniques. In fact, we have implemented an architecture equivalent to

Figure 20 Subscription fuzzing without delay comparison.
Full-size DOI: 10.7717/peerj-cs.787/fig-20

Figure 19 Discwave without delay comparison. Full-size DOI: 10.7717/peerj-cs.787/fig-19

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 29/35

106

the one presented in Roldán et al. (2020), but using the said WSO2 technologies. We
have also tested its functionality in a realistic environment consisting of security
attacks in the field of the IoT.

� RQ2: Can a streaming data processing architecture based on the integration of ML
techniques with the WSO2 CEP engine and ESB achieve or improve upon the
performance of the previously proposed architecture (Roldán et al., 2020)?

–We can undoubtedly say that WSO2 CEP and ESB can achieve a performance similar
to that achieved by integrating Esper CEP and Mule ESB in an equivalent streaming
data processing architecture for detecting security attacks in the IoT. We have
carried out a series of tests with a number of typical attacks on communication
protocols in the IoT environment, and we have seen that both architectures achieve an
appropriate and similar performance, although we did detect that each of them
can achieve a better performance with certain types of patterns, which allows us to
answer our next research question.

� RQ3: What kind of event patterns are processed faster with WSO2/Siddhi and which
ones with Mule/Esper, and which of the two architectures is more suitable for
supporting high-stress situations?

– On the one hand, we have observed that the WSO2-based architecture is faster at
processing simple events when there are no pattern comparisons between different
event types. This is because WSO2 has a higher performance when processing
simple events. On the other hand, the Mule-based architecture has shown to be faster
when comparing different types of events. The behavior of the architectures under
stress will depend on the type of pattern conditions. If we are able to avoid patterns
with comparisons between events of different types, WSO2 will be faster in a high-
stress situation, since its ESB has a higher performance when processing simple
events. Otherwise, Mule will be faster.

� RQ4: Which of these architecture implementations is the best to be deployed in an IoT
security attack detection environment?

– Both implementations are effective, but in this context we advocate the choice of
WSO2 because it allows us to integrate the different types of events in a general
unified event. This dramatically increases the performance of WSO2. Both ESBs can
be deployed in an IoT environment, but WSO2 is faster when using this general event
(as we can see from the stress experiments). Despite this, Mule can be deployed
successfully too, but its performance is worse than that of WSO2.

CONCLUSIONS AND FUTURE WORK
This paper has presented and compared two implementations of an intelligent SOA 2.0-
based architecture integrated with CEP technology and ML techniques that are designed to

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 30/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

107

detect security attacks against IoT systems. Each of the implementations incorporates a
CEP engine and an ESB from prestigious vendors: Esper CEP and Mule ESB on the one
hand, and WSO2 ESB and Siddhi CEP on the other.

The validation process, through which the behavior of both architectures was evaluated
under the same conditions in a realistic scenario of security attacks on IoT protocols,
allowed us to draw the following relevant conclusions:

� Both implementations of the architecture allow us to detect well-known attacks in the
field of IoT protocols, with the corresponding event patterns of these attacks.

� Thanks to the use of ML techniques, the architecture can detect novel attacks that have
not previously been defined through specific event patterns.

� Our architecture is able to work as a pure rule-based IDS with patterns defined by an
expert, as well as allowing the addition of patterns for detecting non-modeled attacks in
order to act as an anomaly detection architecture.

� Both architecture implementations present a suitable degree of efficiency for the field of
security attacks in the IoT, but each one has its own advantages and drawbacks.

� The Mule-based architecture is faster when the architecture makes use of 2 message
broker topics to compare the values of their features.

� The WSO2-based architecture is faster when there is a single topic and the system has a
heavy workload.

� To mitigate the performance degradation, suffered by the system under heavy
workloads, the operations between the topics can be modified by joining the prediction
and network packet data in a general topic, thus mitigating this problem when
comparing 2 topics in the WSO2-based architecture.

� In the Mule-based architecture it is more difficult to overcome this problem because our
experiments have shown that the performance of Mule does not improve when there is a
single type of topic.

Although our work achieved the proposed objectives, there are certain limitations in
specific contexts. One is that although, the architecture makes it possible to define a
threshold automatically, it is still necessary to perform a feature selection process. Another
is that despite the fact that the architecture is capable of defining a threshold for one or
more features, it is not able to fully generate the pattern.

As future work, we plan to test our architecture in a different network to validate our
proposal with other protocols and conditions. We would like to point out that the
performance of our proposal is subject to a correct ML process (data extraction, data
preprocessing, algorithm selection, etc.). It would also be of interest to implement the
architecture with additional ESBs and CEP engines to extend the comparison with the
products of other vendors. Another interesting line of future work would be to automate
the process of feature selection, as proposed in Wajahat et al. (2020), thus providing
useful information for the selection of the machine learning model with different

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 31/35

108

underlying structures in network traffic. These modifications should solve the current
limitations of the architecture mentioned above.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Spanish Ministry of Science, Innovation and
Universities and the European Union FEDER Funds [grant numbers FPU 17/02007,
RTI2018-093608-B-C33, RTI2018-098156-B-C52 and RED2018-102654-T]. This work
was also supported by the JCCM [grant number SB-PLY/17/180501/ 000353] and the
Research Plan from the University of Cadiz and Grupo Energetico de Puerto Real S.A.
under project GANGES [grant number IRTP03’ UCA]. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Spanish Ministry of Science, Innovation and Universities and the European Union FEDER
Funds: FPU 17/02007, RTI2018-093608-B-C33, RTI2018-098156-B-C52 and RED2018-
102654-T.
JCCM: SB-PLY/17/180501/ 000353.
Research Plan from the University of Cadiz and Grupo Energetico de Puerto Real S.A.
under project GANGES: IRTP03_UCA.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� José Roldán-Gómez conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

� Juan Boubeta-Puig conceived and designed the experiments, analyzed the data,
performed the computation work, prepared figures and/or tables, authored or reviewed
drafts of the paper, and approved the final draft.

� Gabriela Pachacama-Castillo performed the computation work, authored or reviewed
drafts of the paper, and approved the final draft.

� Guadalupe Ortiz conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

� Jose Luis Martínez conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 32/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

109

Data Availability
The following information was supplied regarding data availability:

The data is available at Mendeley: Roldán-Gómez, José; Boubeta-Puig, Juan;
Pachacama-Castillo, Gabriela; Ortiz, Guadalupe; Martínez, José Luis (2021), “Dataset for
Detecting Security Attacks in Cyber-Physical Systems: A Comparison of Mule and WSO2
Intelligent IoT Architectures”, Mendeley Data, V1, doi: 10.17632/fvb9pp5xsh.1.

The code is available as a Supplemental File and the code and patterns are available at
GitHub: https://github.com/josE4roldan/Detecting-security-attacks-in-cyber-physical-
systems-a-comparison-of-mule-and-WSO2-intelligent-IoT.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.787#supplemental-information.

REFERENCES
Bamhdi A. 2021. Requirements capture and comparative analysis of open source versus

proprietary service oriented architecture. Computer Standards & Interfaces 74:103468
DOI 10.1016/j.csi.2020.103468.

Benito-Parejo M, Merayo MG, Núñez M. 2020. An evolutionary technique for supporting the
consensus process of group decision making. In: 2020 IEEE International Conference on Systems,
Man, and Cybernetics (SMC). 2201–2206.

Bertino E, Choo KKR, Georgakopolous D, Nepal S. 2016. Internet of things (IoT): smart and
secure service delivery. ACM Transactions on Internet Technology 16(4):1–7
DOI 10.1145/3013520.

Boubeta-Puig J, Ortiz G, Medina-Bulo I. 2015.MEdit4CEP: a model-driven solution for real-time
decision making in SOA 2.0. Knowledge-Based Systems 89:97–112
DOI 10.1016/j.knosys.2015.06.021.

Buczak AL, Guven E. 2016. A survey of data mining and machine learning methods for cyber
security intrusion detection. IEEE Communications Surveys Tutorials 18(2):1153–1176
DOI 10.1109/COMST.2015.2494502.

Corral-Plaza D, Medina-Bulo I, Ortiz G, Boubeta-Puig J. 2020. A stream processing architecture
for heterogeneous data sources in the Internet of Things. Computer Standards & Interfaces
70(C):103426 DOI 10.1016/j.csi.2020.103426.

Corral-Plaza D, Ortiz G, Medina-Bulo I, Boubeta-Puig J. 2021. MEdit4CEP-SP: a model-driven
solution to improve decision-making through user-friendly management and real-time
processing of heterogeneous data streams. Knowledge-Based Systems 213:106682
DOI 10.1016/j.knosys.2020.106682.

Dayarathna M, Perera S. 2018. Recent advancements in event processing. ACM Computing
Surveys 51(2):1–36 DOI 10.1145/3170432.

Demeter D, Preuss M, Shmelev Y. 2019. IoT: a malware story. Securelist. Available at https://
securelist.com/iot-a-malware-story/94451/ (accessed 9 May 2021).

EsperTech. 2019. 7+ Million events-per-second. EsperTech. Available at https://www.espertech.
com/2019/03/07/6-million-events-per-second/ (accessed 9 May 2021).

EsperTech. 2021. Esper. Available at http://www.espertech.com/esper/ (accessed 9 May 2021).

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 33/35

110

Freire DL, Frantz RZ, Roos-Frantz F. 2019. Ranking enterprise application integration platforms
from a performance perspective: an experience report. Software: Practice and Experience
49(5):921–941 DOI 10.1002/spe.2679.

Fremantle P. 2015. A reference architecture for the Internet of Things. Available at https://www.
researchgate.net/publication/308647314_A_Reference_Architecture_for_the_Internet_of_Things
(accessed 18 September 2021).

Geurts P, Ernst D, Wehenkel L. 2006. Extremely randomized trees.Machine Learning 63(1):3–42
DOI 10.1007/s10994-006-6226-1.

Giatrakos N, Alevizos E, Artikis A, Deligiannakis A, Garofalakis M. 2020. Complex event
recognition in the big data era: a survey. The VLDB Journal 29(1):313–352
DOI 10.1007/s00778-019-00557-w.

Gutnikov A, Badovskaya E, Kupreev O, Shmelev Y. 2021. Analytical report on DDoS attacks in
the second quarter of 2021. Securelist. Available at https://securelist.com/ddos-attacks-in-q2-
2021/103424/ (accessed 29 September 2021).

Górski T, Pietrasik K. 2017. Performance analysis of Enterprise Service Buses. Journal of
Theoretical and Applied Computer Science 10:16–32.

Kaspersky. 2021. Kaspersky Security Bulletin 2020-2021. EU statistics. Available at
https://securelist.com/kaspersky-security-bulletin-2020-2021-eu-statistics/102335/
(accessed 29 September 2021).

LuckhamDC. 2012. Event processing for business: organizing the real-time enterprise. Hoboken, NJ:
John Wiley & Sons.

Lueth KL. 2018. State of the IoT 2018: number of IoT devices now at 7B–market accelerating.
Available at https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-
now-7b/ (accessed 9 May 2021).

Montgomery DC, Peck EA, Vining GG. 2021. Introduction to linear regression analysis. Hoboken:
John Wiley & Sons.

Moore S. 2018. Gartner says 25 percent of customer service operations will use virtual customer
assistants by 2020. Available at https://www.gartner.com/en/newsroom/press-releases 855 /2018-
02-19-gartner-says-25-percent-of-customer-service-\operati 856 ons-will-use-virtual-customer-
assistants-by-2020.

Moss S. 2016. Major DDoS attack on Dyn disrupts AWS, Twitter, Spotify and more. Available at
https://www.datacenterdynamics.com/en/news/major-ddos-attack-on-dyn-disrupts-aws-twitter-
spotify-and-more/# (accessed 9 May 2021).

MuleSoft. 2021a. Enterprise hybrid integration platform | Anypoint platform. Available at
https://www.mulesoft.com/platform/enterprise-integration (accessed 9 May 2021).

MuleSoft. 2021b. Mule ESB | Enterprise Service Bus | Open Source ESB. Available at https://www.
mulesoft.com/platform/soa/mule-esb-open-source-esb (accessed 9 May 2021).

OASIS. 2019. MQTT Version 5.0. Available at http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.
0.html (accessed 9 May 2021).

Papazoglou M. 2012. Web services and SOA: principles and technology. Second Edition. Essex,
New York: Pearson Education.

Roldán J, Boubeta-Puig J, Martinez JL, Ortiz G. 2020. Integrating complex event processing and
machine learning: an intelligent architecture for detecting IoT security attacks. Expert Systems
with Applications 149:113251 DOI 10.1016/j.eswa.2020.113251.

Roldán-Gómez J, Boubeta-Puig J, Ortiz G, Pachacama G, Martìnez JL. 2021.Detecting-security-
attacks-in-cyber-physical-systems-a-comparison-of-mule-and-WSO2-intelligent-IoT. GitHub.

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 34/35

Chapter 4. Detecting security attacks in cyber-physical systems: a comparison of
Mule and WSO2 intelligent IoT architectures

111

Available at https://github.com/josE4roldan/Detecting-security-attacks-in-cyber-physical-
systems-a-comparison-of-mule-and-WSO2-intelligent-IoT-.

Valero V, Diaz G, Boubeta-Puig J, Macia H, Brazalez E. 2021. A compositional approach for
complex event pattern modeling and transformation to colored Petri nets with black sequencing
transitions. IEEE Transactions on Software Engineering DOI 10.1109/TSE.2021.3065584.

Wajahat M, Yele A, Estro T, Gandhi A, Zadok E. 2020. Analyzing the distribution fit for storage
workload and internet traffic traces. Performance Evaluation 142:102121
DOI 10.1016/j.peva.2020.102121.

Warburton D. 2021. DDoS attack trends for 2020. Available at https://www.f5.com/labs/articles/
threat-intelligence/ddos-attack-trends-for-2020 (accessed 18 September 2021).

WSO2. 2020. Separating the worker and manager nodes. Available at https://docs.wso2.com/
display/ADMIN44x/Separating+the+Worker+and+Manager+Nodes (accessed 9 May 2021).

WSO2. 2021a. PMML based predictive analytics extension. Available at https://docs.wso2.com/
display/DAS310/PMML+Based+Predictive+Analytics+Extension (accessed 9 May 2021).

WSO2. 2021b. Siddhi. Available at http://siddhi.io/ (accessed 9 May 2021).

WSO2. 2021c. WSO2 | The open source technology for digital business. Available at https://wso2.
com/ (accessed 9 May 2021).

WSO2. 2021d. WSO2 enterprise service bus. Available at https://wso2.com/products/enterprise-
service-bus/ (accessed 9 May 2021).

Roldán-Gómez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787 35/35

112

CHAPTER 5

Attack pattern recognition in the
Internet of Things using Complex
Event Processing and Machine
Learning

• Title: Attack Pattern Recognition in the Internet of Things using Complex Event
Processing and Machine Learning.

• Authors: José Roldán-Gómez, Juan Boubeta-Puig, Juan Manuel Castelo Gómez,
Javier Carrillo-Mondéjar, José Luis Martínez Martínez

• Type: Conference paper.

• Conference: 2021 IEEE International Conference on Systems, Man, and Cybernetics
(SMC)

• Publisher: IEEE.

• ISSN: 2577-1655.

• Status: Published.

• Publication date: January 2022.

• DOI: 10.1109/SMC52423.2021.9658711

• GGS ranking: A-.

113

https://doi.org/10.1109/SMC52423.2021.9658711

Attack Pattern Recognition in the Internet of Things using Complex Event
Processing and Machine Learning

José Roldán-Gómez1, Juan Boubeta-Puig2, Juan Manuel Castelo Gómez1,
Javier Carrillo-Mondéjar1 and José Luis Martı́nez Martı́nez1

Abstract— The Internet of Things (IoT) paradigm demands
adapting traditional cybersecurity solutions to address the
inherent limitations of IoT environments, in particular their
low computational power and limited amount of memory and
bandwidth. The Complex Event Processing (CEP) technology
has proven to be useful in this context by deploying a CEP
engine for detecting real-time attacks in an IoT network. How-
ever, CEP is only capable of detecting attacks that have been
previously modeled as event patterns. This requires a domain
expert who knows the conditions that must be satisfied so that
certain attacks can be detected, thus identifying unmodeled
ones is not possible. This paper aims to address this problem
by proposing a machine learning algorithm that allows for
the automatic creation of CEP patterns based on categorized
data if the goal is to classify attacks, or even uncategorized
data if the objective is to detect anomalies. An evaluation
of the effectiveness of the automatically generated patterns
for recognizing different attacks in IoT environments is also
conducted in this paper.

I. INTRODUCTION

The Internet of Things (IoT) is an increasingly common
paradigm in our everyday lives. It has the potential to com-
pletely change the way in which we interact with machines
and devices. The IoT can be analyzed from the point of view
of a global network comprised of devices (also known as
things) [1]. Undoubtedly, the IoT could become a key pillar
of our lives in the medium and long term. As such, IoT-based
approaches already exist in a wide range of applications,
either from an industry and an academic perspective. In
addition, the ability to interconnect all devices offers new
possibilities in fields such as healthcare, economics, engi-
neering, or resource management, among many other fields.

The IoT has a number of peculiarities; first, it is a very
heterogeneous paradigm, from the point of view of both
devices and protocols. It is possible to find very diverse
devices with different computational capabilities, although
most devices used in this context have very low processing

*This work has been supported by the Spanish Ministry of Science and
Innovation and the European Regional Development Funds under projects
RTI2018-098156-B-C52 and RTI2018-093608-B-C33, by the JCCM un-
der project SB-PLY/17/180501/00035, by the Spanish Ministry of Sci-
ence, Innovation and Universities under grants FPU 17/02007 and FPU
17/03105, and by the University of Castilla-La Mancha under grant 2018-
PREDUCLM-7476.

1José Roldán-Gómez, Juan Manuel Castelo Gómez, Javier
Carrillo-Mondéjar and José Luis Martı́nez Martı́nez are with the
University of Castilla-La Mancha, Campus Universitario s/n, 02071,
Albacete, Spain {jose.roldan, juanmanuel.castelo,
javier.carrillo, joseluis.martinez}@uclm.es

2Juan Boubeta-Puig is with the Department of Computer Science and
Engineering, University of Cadiz, Avda. de la Universidad de Cadiz 10,
11519 Puerto Real, Cádiz, Spain juan.boubeta@uca.es

power and limited amount of memory and bandwidth. In
addition, it combines the use of both classic protocols and
ones specifically for this new paradigm.

However, this set of features also has an effect on the
cybersecurity paradigm. The impossibility of implementing
traditional security measures due to this lack of resources
means that it is necessary to adapt or generate new ones
that can address current threats without consuming too many
resources [2].

In addition to these problems associated with the limita-
tions of memory, network and computational capacities, the
trend of malware and threats must be taken into account. In
fact, signature detection is becoming increasingly fragile, as
there is is a large amount of polymorphic malware and ones
belonging to the same family with slight differences can be
found. Behavior-based threat detection is becoming useful as
a supplement to signature-based detection [3].

A technology capable of operating in low capacity envi-
ronments is Complex Event Processing (CEP) [4]. A CEP
engine is the software for detecting situations of interest
(event patterns) through the analysis and correlation of
huge amounts of data. However, a CEP engine is not able
to detect certain behaviors not previously modeled by an
expert. This poses the challenge of, without having to design
a new technology, finding a way to create CEP patterns
automatically from the behavior of the occurred events.

To solve such fundamental problems of automatic CEP
pattern creation, this paper proposes a Machine Learning
(ML) algorithm that uses the Principal Component Analysis
(PCA) [5]. Since PCA reduces the dimensionality of a
given dataset, the proposed algorithm is appropriate for IoT
environments where there are limited resources.

Therefore, the main research objective of this work is
to develop a ML algorithm that integrates the CEP tech-
nology (1) to automatically generate patterns for abnormal
events, detecting unmodeled attacks, (2) to greatly reduce
the network usage required to detect attacks, and (3) be-
ing relatively lightweight, which is ideal for environments
with low requirements. Furthermore, an evaluation of the
effectiveness of the automatically generated patterns for
recognizing different attacks in IoT environments is carried
out in this paper.

This paper is organized as follows. Section II introduces
the concepts necessary to understand the rest of the paper.
Section III describes our proposal. Once the algorithm is
presented, we introduce the test environment and perform an
evaluation of the algorithm in Section IV. This is followed by

2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
17-20 October, 2021. Melbourne, Australia

978-1-6654-4207-7/21/$31.00 ©2021 IEEE 1919

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

ys
te

m
s,

M
an

, a
nd

 C
yb

er
ne

tic
s (

SM
C

) |
 9

78
-1

-6
65

4-
42

07
-7

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

SM
C

52
42

3.
20

21
.9

65
87

11

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on August 31,2022 at 09:30:39 UTC from IEEE Xplore. Restrictions apply.

114

Section V which discusses solutions related to our proposal.
Finally, Section VI highlights the conclusions and future
research lines.

II. BACKGROUND

This section briefly introduces CEP technology and ML.

A. Complex Event Processing

CEP is a technology capable of capturing and analyzing a
huge number of simple events to infer relevant situations in a
particular domain [6], [7]. These simple events are produced
from the devices to be monitored. It should be noted that
they are called simple events because, as a general rule, they
are the fundamental unit of information of the system, that
is, raw data without any type of preprocessing or derived
data.

The main feature of CEP is that conclusions can be drawn
in real time by processing these simple events when there is
prior knowledge of the correlation of these events. These
conclusions are known as complex events, since they are
directly derived from these simple events. The obtaining of
these complex events, or situations of interest in the domain,
occurs through the definition of patterns. Patterns are defined
by domain experts, who specify the conditions to be met in
order to generate such complex events. Each CEP engine
provides its own Event Processing Language (EPL), for
example, Esper EPL or SiddhiQL [8], [9].

One of the main advantages of CEP over other traditional
solutions is the large amount of information it is able to
process in real time, in addition to its quick response time
when a complex event occurs. There is also evidence of
successful integration of CEP with IoT environments [10].

B. Machine Learning

ML refers to the set of algorithms, techniques and systems
capable of obtaining knowledge based on data previously
gathered and directly related to the problem domain. Due to
its high success rate, partly due to the increase in process-
ing power on modern computers, ML is spreading widely
and being used in many applications in various fields of
knowledge [11]. These fields include, for example, medical
diagnostics, object recognition, search engines or inferring
a user’s preferences among many others. One of the most
interesting applications in this context is the use of ML
to improve computer security. This ranges from fraud or
malware detection systems to network attack or Denial of
Service (DoS) detection systems [12], [13], [14].

Basically, there are two different types of algorithms
depending on the information they need: supervised and
unsupervised. On the one hand, supervised algorithms need
the data from which they learn to be correctly labeled, what
allows them to learn to categorize or predict values based
on their characteristics. On the other hand, unsupervised
algorithms do not need to train with labeled categories, the
goal of these algorithms may be looking for patterns in the
data, or finding different categories in it and group them,
among many other applications [15].

In this work, we use PCA, which reduces the dimen-
sionality of a dataset given a number of components in an
unsupervised way. The algorithm finds linear combinations
of the features to create the target components in such a
way that these components are orthogonal and maximize
the variance as much as possible. Thus, PCA reduces the
dimension while minimizing the loss of information [5].

III. PROPOSED ALGORITHM

This section describes our algorithm for recognizing attack
patterns. An explanatory diagram of the proposal can be
found in Figure 1.

A. Dimensionality Reduction

The first stage of our algorithm consists in reducing the
dimensionality of the dataset. This stage can be divided into
three steps. This first stage consumes the input. The input
is composed of training data, which are obtained from the
system (in this case an IoT network). The elements belonging
to the training dataset must be correctly labeled in order to
identify the category of each element.

1) Preprocessing: Raw data can rarely be used directly
for training the model, therefore it is necessary to carry out
a preprocessing work in which the data are accommodated to
the algorithm that is going to be used. Some of the treatments
that can be given to the data are the following:

• Treatment of empty values: This involves filling in the
empty fields of the records that do not have data. There
are many ways to fill them either the mean, the mode, or
an arbitrary value among many other options. Although
with the latter one must be especially careful because
it can affect the performance of subsequent algorithms.

• Normalization: This is to normalize the different values
in magnitude and scale. This is usually done to avoid
that features with very high values have more weight
than they should have in the later stages of the algo-
rithm.

• Binarization: It consists in giving numeric values to
non-numeric features, it is necessary because PCA is
not able to directly consume alphanumeric data.

• Others: In other scenarios it may be necessary to per-
form more preprocessing steps. This proposal is flexible
and can be adapted to different preprocessing methods.

2) PCA: Once the data have been preprocessed, it is
ready to be used for training the PCA model, which is
capable of reducing the dimensionality of the elements.
When the model has been trained, it is possible to reduce
each new element into n components almost immediately.
This reduction is ideal for IoT systems because the network
bandwidth decreases as a consequence. In this case it is
reduced by up to 85%, because events with 20 features are
reduced to events with 3 features.

This will be an advantage over other solutions, because the
algorithm can obtain functional patterns while considerably
reducing the need for bandwidth and computational capacity.
The number of components to be used will depend on the
context, in this case study three components were used.

1920

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on August 31,2022 at 09:30:39 UTC from IEEE Xplore. Restrictions apply.

Chapter 5. Attack Pattern Recognition in the Internet of Things using Complex
Event Processing and Machine Learning

115

Fig. 1. Diagram with the stages of the proposal.

A larger number of components allows for more infor-
mation to be collected, but requires more bandwidth and
computational time.

3) Category Separation: The elements are divided into
categories, this is simple since the dataset must be labeled.

B. Threshold Definition

The second stage is the fundamental novelty of this work.
This phase allows finding patterns that make it possible
to differentiate the elements from different categories. It
consists of four steps.

1) Obtaining the mean of the components: This step
consists in averaging each of the components with respect
to its category, so that we obtain n averages, being n the
number of components.

2) Obtaining the standard deviation of the component:
Once the averages have been calculated, the standard de-
viation of each component with respect to the mean of its
category is calculated. This allows defining a threshold for
classifying an element in that category. A higher standard
deviation indicates that the threshold must be higher.

3) Obtaining the proportion of variance explained of
the components: The proportion of variance explained for
each component is calculated with values ranging from 0
to 1 and representing the percentage of information that
each component collects. This provides information on the
importance of each component, which is crucial for assigning
a weight to each component during the classification process.

4) Building the equation: Equation 1 defines in a formal
way the classifier function, which will finally generate the
corresponding pattern. Being x each one of the elements
with reduced dimension that we want to check, in this way,
x will have n components. The letters m and v represent
the mean of each component with respect to its category
and the proportion of variance explained of each component
respectively. Finally, std is the standard deviation of each
component with respect to the mean of its category.

To check whether an element corresponds to a family, the
difference of each component with the mean is checked. This
value must be positive, as the square root of the difference
is squared. This value is multiplied by the proportion of
variance explained of that component. In this way, the
components with a higher weight are more decisive than
those with a lower weight. The weighted differences are
summed to obtain a single value that will be compared to
the threshold for that category.

To generate the threshold, the standard deviations with re-
spect to the mean of that category weighted by the proportion
of variance explained of the component are used. The values
obtained are summed to obtain a single value that defines the
threshold. So a higher standard deviation results in a higher
threshold. The same is true for the proportion of variance
explained, a higher proportion of variance explained assigns
more weight to the standard deviation of that component.

In certain categories there may be minority items that
belong to the category but are quite different from the rest
of the category. If there are only a few elements, they

1921

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on August 31,2022 at 09:30:39 UTC from IEEE Xplore. Restrictions apply.

116

f(x) =

{
f(x) =

∑n
i

√
(xi −mi)2 · vi ≤ (

∑n
i stdi · vi) + α if x belongs to the category

f(x) =
∑n

i

√
(xi −mi)2 · vi > (

∑n
i stdi · vi) + α if x does not belong to the category

(1)

may not have sufficient influence on the standard deviation
with respect to the mean of that category. To improve the
performance in these situations, a correction element acting
as bias is introduced, which allows to increase the threshold
based on cross-validations or empirically.

C. Pattern Generation

At this time it is simply necessary to turn that equation
into a CEP pattern. This stage is divided into two steps.

1) EPL selection: In this step you choose the EPL to
be used, in this case the Siddhi engine is used to generate
patterns that are deployed in WSO2 [9], [16], [17].

2) Pattern Definition: Once that the function which de-
scribes the pattern has been obtained, it is necessary to
transform it into the syntax of the EPL to be used. This
is achieved by defining the equation in the chosen syntax
and filling the parameters (means, proportion of variance
explained and threshold) with the values obtained in the
previous stage.

An important detail to note is that the algorithm can
generate patterns for two different purposes. In the first case
the pattern detects anomalies, in the second case it detects
known attacks. In the former, the model will be trained with
data from the scenario in a normal state. In the latter, it is
necessary to have data from those attacks labeled.

Listing 1. Pattern generated in Siddhi.
from mqtt_stream[

math:abs(c1 - -1.0706718) * 0.44575194) +
(math:abs(c2 - 1.20521006) * 0.23347243) +
(math:abs(c3 - 0.03525247) * 0.08234665) >
(0.2789)]

select c1, c2, c3
insert into AnomalyStream;

Listing 1 shows the pattern that is generated. In this case
there is only one pattern that aims to find anomalies within
the system, so events that exceed the given threshold are sent
to the anomaly stream.

IV. EVALUATION

This section describes the test environment and the oper-
ation of the patterns generated by the proposed algorithm.

We use a dataset which is composed of packets extracted
from a network using MQTT (Message Queue Telemetry
Transport) [18]. MQTT is a lightweight IoT-oriented publish-
subscribe protocol and has been selected as it is widely
used in IoT systems. In this system, we launched various
scans and attacks. This experiment is able to show how well
the proposal works in environments with different kinds of
attacks. The scanners and attacks used are the following ones:

• Subscription fuzzing: In this attack the malicious client
tries to subscribe to different topics using brute force

Fig. 2. Threshold and calculated values for the Anomaly detection pattern.

or dictionaries, it can be used when we have access to
a MQTT/MQTT-SN system.

• Disconnection wave: This attack attempts to spoof the
MQTT/MQTT-SN protocol id and launch the discon-
nect command. If the system configuration is not cor-
rect, then it is possible to steal the id of the legitimate
device and eject it from the system. The goal of this
attack is to disconnect all devices from the system.

• TCP syn scan: This is the classic scanner used to check
which TCP ports are open. The attacker starts with
a SYN packet, if they receive a SYN/ACK then they
assume that the port is open, if they receive a RST then
they assume that it is closed.

• UDP scan: This involves sending UDP packets to each
port to be scanned. If a UDP response is received, then
the port is considered open, if no response is received,
the port is either open or filtered. A packet of ICMP type
port unreachable error means that the port is closed
and any other type of ICMP error means that the port
is filtered.

• Xmas scan: This is a rather unusual scanner. It involves
sending to each TCP port a packet with the FIN, PSH
and URG flags set to 1. If no response is received,
the port is considered open or filtered. If an RST is
received, it is considered a closed port. If any ICMP
packet unreachable error is received, it is considered a
filtered port.

• Telnet connection: In this experiment, packets are sent
trying to connect via Telnet with different users and
passwords. The goal is to simulate the first stage of
Mirai which is a very common malware [19].

Several patterns have been deployed. First, an anomaly
pattern that attempts to detect any packets that may be
malicious. This pattern should detect all malicious packets
regardless of the type of attack. An example of an anomaly

1922

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on August 31,2022 at 09:30:39 UTC from IEEE Xplore. Restrictions apply.

Chapter 5. Attack Pattern Recognition in the Internet of Things using Complex
Event Processing and Machine Learning

117

TABLE I
NUMERICAL REPRESENTATION OF THE PERFORMANCE OF THE GENERATED PATTERNS

Patterns True Positive True Negative False positive False negative Recall Precission F1 score
Anomaly detection 9095 3918 82 0 1 0.991 0.996
Disconnection wave detection 4000 9095 0 0 1 1 1
Subscription fuzzing detection 1783 11095 0 217 0.891 1 0.942
Subscription fuzzing detection* 2000 11095 0 0 1 1 1
TCP SYN scan detection 999 12093 0 3 0.997 1 0.998
UDP port scan detection 580 12506 0 9 0.984 1 0.991
XMAS scan detection 999 12094 0 2 0.998 1 0.999
Telnet connection detection 503 12592 0 0 1 1 1

* means that a correction element is used.

detector pattern deployed would be as shown in Listing 1.
In addition to this pattern, six other patterns have been

generated, one per attack. The purpose of each pattern is to
detect the packets that correspond to that attack. Each one
is evaluated based on the classic metrics of precision, recall
and F1 score.

A. Anomaly Detection Pattern

The goal of this pattern is to detect any existing anomalies.
That is, any packet that could be a malicious one.

Figure 2 shows a graphical representation of the results.
It should be noted that the packets which trigger the pattern
are those whose position is above the threshold. Since these
packets are outside the non-malicious category, they should
be classified as anomalies. The results are adequate since no
anomaly is left out of pattern.

Only 82 packets out of 4000 non-malicious packets are
detected as anomalies, this is because they are ping request
packets sent to the broker. As they are rare events in a
system in which packets of type publish are much more
common, this means that these events are not detected as
“normal events” by the model. In an environment in which
it is necessary to avoid false positives, an additional pattern
can be generated by making the corresponding categorical
separation. However, since this is a common situation in
anomaly detection, these packets are included in the results
to see how they are affected.

Table I shows the results based on the current value and its
prediction. This table shows false positives, false negatives,
true positives and true negatives. It also provides the well-
known metrics of precision, recall and F1-score.

Therefore, it can be concluded that the anomaly pattern
works very well.

B. Disconnection Wave Detection Pattern

This pattern detects only attacks of type disconnection
wave. This pattern does not look for anomalies but for a
particular attack category.

Figure 3(a) shows good results, all packets of this type
are detected. Moreover, no items outside this category are
detected. It is important to note that the packets that trigger
the pattern are those whose position is below the threshold.
This occurs with all specific attack patterns.

Table I shows the numerical representation of the good
scores. The results in this case are appropriate.

C. Subscription Fuzzing Detection Pattern

This pattern detects the subscription fuzzing attack. In this
case, the use of the corrector element of the algorithm is very
clear, because there are packets in this attack that are quite
different from each other. Therefore, we use the correction
element to improve the accuracy of the threshold. If the
algorithm is used without the correction element, 217 packets
would not be detected as attacks. As this attack generates
many packets, it is not necessary to detect all of them in a
real scenario. That is, even without a correction element, the
system is able to detect this attack.

Figure 3(b) shows the good results of the pattern with
correction element.

Table I shows the numerical results. The results would not
be bad even without using a corrector element, but it shows
the improvement of using it in the right way.

D. TCP SYN Scan Detection Pattern

In this case, it is a matter of detecting TCP SYN port
scanners. In particular, three different scanners without reg-
ulating element have been used to check that the algorithm
classifies well similar packets that are of different families.

These results are illustrated in Figure 3(c) and summarized
in Table I. Only 3 packets are not detected and no other
scanner is detected with this pattern. So, it can be concluded
that the results are appropriate.

E. UDP Scan Detection Pattern

This pattern detects UDP scanners. Figure 3(d) shows
the graphical representation of the results and Table I the
numerical representation. In this case, 9 packets are above
the threshold.

Even though 9 packets remain above the threshold, the
results of this pattern are still good.

F. XMAS Scan Detection Pattern

This pattern detects the XMAS scan. As previously men-
tioned, it is not a very common scan nowadays. Since it is
similar to TCP SYN, it is interesting to check if the proposal
differentiates both scans.

Figure 3(e) shows the graphical representation of the
results and Table I the numerical representation. It can be
seen that only 2 packets from the category are not detected,
and no packets from outside the category are detected by

1923

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on August 31,2022 at 09:30:39 UTC from IEEE Xplore. Restrictions apply.

118

(a) Threshold and calculated values for the Disconnection wave pattern. (b) Threshold and calculated values for the Subscription fuzzing pattern.

(c) Threshold and calculated values for the TCP SYN scan pattern. (d) Threshold and calculated values for the UDP port scan pattern.

(e) Threshold and calculated values for the XMAS scan pattern. (f) Threshold and calculated values for the Telnet connection pattern.

Fig. 3. Results of patterns generated to detect specific attacks.

mistake, despite being quite similar at the feature level with respect to XMAS scan.

1924

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on August 31,2022 at 09:30:39 UTC from IEEE Xplore. Restrictions apply.

Chapter 5. Attack Pattern Recognition in the Internet of Things using Complex
Event Processing and Machine Learning

119

The results are very good again, as can be checked in
Table I. Therefore, it can be concluded that the different
scanners are classified correctly.

G. Telnet Connection Detection Pattern

This pattern detects Telnet connections. The idea is to test
if the algorithm is effective against the first stage of Mirai.

Figure 3(f) shows the graphical representation and Table I
shows the numerical representation of the good obtained
results.

V. RELATED WORK

There are some relevant pieces of research addressing
this topic. Simsek et al. [20] offer an approach based on
Deep Learning (DL) and data mining methods for pattern
extraction. Although this work is interesting, it has two
limitations. Firstly, the use of DL is only feasible when there
is a substantially large amount of data. Secondly, it does not
offer any form of network data compression, and DL usually
works best with a high-dimensional dataset. Considering the
limited computational, memory and network capacity of IoT
devices, we consider that this mechanism may not be the
best in some contexts.

Luong et al. [21] does not attempt to generate CEP patterns
automatically, instead they choose to adapt the ML models
to use the inputs from the streams used by a CEP engine. In
this way, they achieve a hybrid model that can be adequate in
certain applications. However, this model does not solve the
automatic generation of patterns, and forces the devices (or
things) receiving the data streams to implement the algorithm
to be used or to store the already trained model.

Another related work is published by Sun et al. [22].
This work does not address the problem of generating new
patterns, but rather the updating of existing patterns. It uses
a Support Vector Machine (SVM) approach to update rules
in which a loss function determines the quality of the rules,
while an activation function determines whether the rule is
good or not.

Petersen et al. [23] propose to use k-means to create
clusters. In this way, their SVM-based proposal allows us
to apply a rule to each category of events.

There are other different approaches to improve security in
the IoT paradigm. Ding et al. [24] review different strategies
to generate models capable of detecting insecure states in an
IoT network.

Finally, our previous work [10] shows how it is possible
to automatically define thresholds using regression models
that best fit the distribution of the data for the particular use
case. This work does not focus on the creation of a complete
pattern, but on finding the values of the patterns defined by
the domain experts and facilitating their work.

In contrast to the mentioned proposals, our proposed
algorithm allows defining precise patterns automatically and
operating without a high bandwidth cost.

VI. CONCLUSIONS AND FUTURE WORK

This work proposes an algorithm, which integrates CEP
and ML approaches for recognizing attack patterns in IoT
scenarios. This algorithm makes it possible to automatically
generate CEP patterns by reducing the network bandwidth
usage, with datasets that do not need to be extremely large.
Additionally, this proposal can be implemented with low-
performance devices [25]. The results obtained from the
conducted experiments are very promising.

Several research lines can be addressed to improve our
proposal in different contexts. PCA is especially good when
it is possible to find linear relationships in the features
so that the components can collect enough information to
reduce dimensionality without losing too much information.
However, if an adequate characterization of the data is not
achieved, or the distribution of the data does not allow it,
PCA results may not be optimal. A possible improvement is
to use PCA with kernels (KPCA) [26], this solution tries to
map the distribution of the data so that a linear representation
of the data can be made. However, it is necessary to return the
data to its original dimension, so this enhancement is likely
to slightly change the way in which patterns are created.
To achieve this, the original idea can be used but these
kernels, which represent the mappings between the different
dimensions in the patterns, must be included. Moreover, it
would be very interesting to test our algorithm in other
contexts such as healthcare, home automation or precision
agriculture.

REFERENCES

[1] A. Thierer and A. Castillo, “Projecting the growth and economic
impact of the Internet of things,” George Mason University, Mercatus
Center, June, vol. 15, 2015.

[2] T. Heer, O. Garcia-Morchon, R. Hummen, S. L. Keoh, S. S.
Kumar, and K. Wehrle, “Security Challenges in the IP-based
Internet of Things,” Wireless Personal Communications, vol. 61,
no. 3, pp. 527–542, Dec. 2011. [Online]. Available: https:
//doi.org/10.1007/s11277-011-0385-5

[3] D. Gibert, C. Mateu, and J. Planes, “The rise of machine learning for
detection and classification of malware: Research developments, trends
and challenges,” Journal of Network and Computer Applications, vol.
153, p. 102526, 2020.

[4] D. C. Luckham and B. Frasca, “Complex Event Processing in Dis-
tributed Systems,” Stanford University, Tech. Rep., 1998.

[5] A. M. Martinez and A. C. Kak, “PCA versus LDA,” IEEE transactions
on pattern analysis and machine intelligence, vol. 23, no. 2, pp. 228–
233, 2001.

[6] D. Luckham, Event Processing for Business: Organizing the Real-Time
Enterprise. New Jersey, USA: John Wiley & Sons, 2012.

[7] J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo, “MEdit4CEP: A
model-driven solution for real-time decision making in SOA 2.0,”
Knowledge-Based Systems, vol. 89, pp. 97–112, Nov. 2015. [Online].
Available: https://doi.org/10.1016/j.knosys.2015.06.021

[8] EsperTech, “Esper,” http://www.espertech.com/esper/, 2021.
[9] WSO2, “Siddhi,” http://siddhi.io/, 2021.

[10] J. Roldán, J. Boubeta-Puig, J. Luis Martı́nez, and G. Ortiz,
“Integrating complex event processing and machine learning: An
intelligent architecture for detecting IoT security attacks,” Expert
Systems with Applications, vol. 149, p. 113251, 2020. [Online].
Available: https://doi.org/10.1016/j.eswa.2020.113251

[11] K. Das and R. N. Behera, “A survey on machine learning: concept,
algorithms and applications,” International Journal of Innovative Re-
search in Computer and Communication Engineering, vol. 5, no. 2,
pp. 1301–1309, 2017.

1925

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on August 31,2022 at 09:30:39 UTC from IEEE Xplore. Restrictions apply.

120

[12] M. Ozay, I. Esnaola, F. T. Yarman Vural, S. R. Kulkarni, and H. V.
Poor, “Machine learning methods for attack detection in the smart
grid,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 27, no. 8, pp. 1773–1786, Aug 2016.

[13] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation
of machine learning classifiers for mobile malware detection,” Soft
Computing, vol. 20, no. 1, pp. 343–357, Jan 2016.

[14] Z. Tan, A. Jamdagni, X. He, P. Nanda, and R. P. Liu, “Denial-of-
service attack detection based on multivariate correlation analysis,”
in Neural Information Processing, B.-L. Lu, L. Zhang, and J. Kwok,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, Jan. 2011, pp.
756–765.

[15] M. A. Al-Garadi, A. Mohamed, A. Al-Ali, X. Du, and M. Guizani,
“A Survey of Machine and Deep Learning Methods for Internet of
Things (IoT) Security,” arXiv preprint arXiv:1807.11023, 2018.

[16] “Complex event processor,” 2021. [Online]. Available: https:
//wso2.com/products/complex-event-processor/

[17] “Streaming Integrator,” 2020. [Online]. Available: https://wso2.com/
integration/streaming-integrator/

[18] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S–A
publish/subscribe protocol for Wireless Sensor Networks,” in 2008
3rd International Conference on Communication Systems Software and
Middleware and Workshops (COMSWARE’08). IEEE, 2008, pp. 791–
798.

[19] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi,
M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason,
D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and
Y. Zhou, “Understanding the Mirai Botnet,” 2017, pp.
1093–1110. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis

[20] M. U. Simsek, F. Yildirim Okay, and S. Ozdemir, “A deep
learning-based CEP rule extraction framework for IoT data,”
The Journal of Supercomputing, Jan 2021. [Online]. Available:
https://doi.org/10.1007/s11227-020-03603-5

[21] N. N. T. Luong, Z. Milosevic, A. Berry, and F. Rabhi, “An open
architecture for complex event processing with machine learning,” in
2020 IEEE 24th International Enterprise Distributed Object Comput-
ing Conference (EDOC), 2020, pp. 51–56.

[22] Y. Sun, G. Li, and B. Ning, “Automatic Rule Updating based on
Machine Learning in Complex Event Processing,” in 2020 IEEE 40th
International Conference on Distributed Computing Systems (ICDCS),
Nov. 2020, pp. 1338–1343.

[23] E. Petersen, M. Antonio To, S. Maag, and T. Yamga, “An Unsupervised
Rule Generation Approach for Online Complex Event Processing,” in
2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA), Nov. 2018, pp. 1–8.

[24] D. Ding, Q.-L. Han, X. Ge, and J. Wang, “Secure State Estimation and
Control of Cyber-Physical Systems: A Survey,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 176–190,
Jan. 2021.

[25] D. H. Hoang and H. D. Nguyen, “A PCA-based method for IoT net-
work traffic anomaly detection,” in 2018 20th International Conference
on Advanced Communication Technology (ICACT), 2018, pp. 381–
386.

[26] H. Hoffmann, “Kernel PCA for novelty detection,” Pattern
Recognition, vol. 40, no. 3, pp. 863–874, 2007. [Online]. Available:
https://doi.org/10.1016/j.patcog.2006.07.009

1926

Authorized licensed use limited to: Universidad de Castilla La Mancha. Downloaded on August 31,2022 at 09:30:39 UTC from IEEE Xplore. Restrictions apply.

Chapter 5. Attack Pattern Recognition in the Internet of Things using Complex
Event Processing and Machine Learning

121

CHAPTER 6

An automatic Complex Event
Processing rules generation system for
the recognition of real-Time IoT attack
patterns

• Title: An Automatic Complex Event Processing Rules Generation System for the
Recognition of Real-Time IoT Attack Patterns.

• Authors: José Roldán-Gómez, Juan Boubeta-Puig, Javier Carrillo-Mondéjar, Juan
Manuel Castelo Gómez and Jesús Martínez del Rincon

• Type: Journal paper.

• Journal: Engineering Applications of Artificial Intelligence

• Publisher: Elsevier.

• ISSN: 0952-1976

• Status: Under review

• JCR IF/ranking: 7.802/Q1 (JCR2021).

123

An Automatic Complex Event Processing Rules

Generation System for the Recognition of Real-Time

IoT Attack Patterns

José Roldán-Gómeza, Juan Boubeta-Puigb, Javier Carrillo-Mondéjara, Juan
Manuel Castelo Gómeza, Jesús Mart́ınez del Rinconc

aUniversity of Castilla-La Mancha, Campus Universitario s/n, Albacete, 02006, Spain
bDepartment of Computer Science and Engineering, University of Cadiz, Avda. de la

Universidad de Cadiz 10, Puerto Real, Cadiz, 11519, Spain
cCentre for Secure Information Technologies (CSIT),Queen’s University

Belfast, Belfast, BT3 9DT, UK

Abstract

In recent years, the Internet of Things (IoT) has rapidly grown, crucially
becoming the core of many application areas, and allowing the integration
of sensors, smartphones, wearables together with IoT devices. However, the
number of cyber attacks against these types of devices has grown as fast
as the paradigm itself. Certain inherent characteristics of the paradigm, as
well as the limited computational capabilities of the devices involved, make
it difficult to deploy classical security measures. This is why it is necessary
to design, implement and study new solutions in the field of cybersecurity.
In this paper, we propose an architecture that is capable of generating Com-
plex Event Processing (CEP) rules automatically by integrating them with
machine learning technologies. While the former is used to automatically
detect attack patterns in real time, the latter, through the use of the Prin-
cipal Component Analysis (PCA) algorithm, allows the characterization of
events and the recognition anomalies. This combination makes it possible to
achieve efficient CEP rules at computational level, with the results showing
that the CEP rules obtained using our approach substantially improve upon
the performance of the classical CEP rules that can be independently defined
by a domain expert.

Keywords: CEP rules generation, Cybersecurity, Internet of Things, CEP,
Machine learning

Preprint submitted to Engineering Applications of Artificial Intelligence August 31, 2022

124

1. Introduction

The Internet of Things (IoT) is a new paradigm that has been growing
at a tremendous pace, especially over the last few years. It is clear that it
can transform our way of life, but it is a mistake to think of the IoT as only
something for the future. Proof of this is that we already interact with it
via devices such as smartphones and wearables. Moreover, it can be applied
in countless contexts, such as smart healthcare or smart cities among many
others [1, 2, 3]. The growth of this paradigm brings with it a series of new
problems and challenges in many fields [4], such as the one in which we
focus in this paper: real-time network attack detection. The devices that are
typically used in such environments have limited properties, the most relevant
being having small memories, a low-bandwidth communication channel, a
low-end processor, and cheap sensors. These factors make it difficult to
directly migrate the solutions used in classic systems to the IoT without prior
adaptation, as they consume a higher number of resources than IoT devices
can provide [5]. These characteristics, coupled with the ever-increasing use
of these devices [6, 7], are leading to cybercriminals targeting this paradigm,
with recent reports highlighting the high number of threats against it [8].

In order to recognize attacks in real time it is necessary to use technologies
that can be deployed in IoT environments, and one of these technologies is
Complex Event Processing (CEP) [9].

CEP is a technology that is able to work perfectly on devices with limited
resources [10], which makes it ideal to be used in IoT devices. A CEP engine is
a software component designed to detect specific situations. This is achieved
through the analysis and correlation of a large number of previously defined
simple events. Unfortunately, the main problem with using CEP to design
an architecture capable of detecting attacks in real time is that we will never
detect attacks for which we do not have CEP rules, which are usually defined
by a domain expert.

This work attempts to remedy this problem by proposing an architec-
ture which integrates CEP and Machine Learning (ML) technologies that
can recognize attack CEP rules in such a way that it is able to automatically
generate the CEP rules necessary to detect different attacks in real time. In
order to satisfy the requirement of being a low computational power solu-
tion, the machine learning component used is Principal Component Analysis
(PCA) [11]. PCA has two objectives: the first one is reducing the size of
single events in the CEP engine; and the second is facilitating the charac-

2

Chapter 6. An Automatic Complex Event Processing Rules Generation System
for the Recognition of Real-Time IoT Attack Patterns

125

terization of different attacks, so that a CEP rule can be defined to detect
each one of them. This architecture is also able to identify anomalies, mean-
ing that CEP rules can be generated to detect and classify them later, and
to find similar attacks when it is an unknown attack, or an anomaly. The
latter is useful in order to deploy countermeasures quickly and take advan-
tage of CEP’s ability to detect attacks in real time. A solution based on the
Mahalanobis distance has been employed to achieve this purpose [12].

In this work we formulate five Research Questions (RQs) in order to
achieve our research objectives. These questions are as follows:

• (RQ1) Are the CEP rules generated capable of systematically detect-
ing attacks?

• (RQ2) Will these rules perform adequately for IoT environments?

• (RQ3) Are the rules generated efficient at the network traffic level?

• (RQ4) Can CEP rules detect unknown attacks?

• (RQ5) Is it possible to add an attack classification mechanism by prox-
imity?

The proposed architecture is based on our previous work [13], in which
we designed a preliminary algorithm capable of generating CEP rules. The
novelties of the present work are the following:

• Simplified attack detection CEP rules have been implemented in order
to generate a scenario comparable to the CEP rules obtained by our
algorithm.

• The throughput of the CEP rules generated is measured against the
productivity of CEP rules that are not generated by our architecture.

• A comparison is made of network usage when using our architecture
and when not using it.

• A discussion of the advantages of the CEP rules obtained with our
algorithm compared with the classical CEP rules is presented.

3

126

• A new mechanism based on the Mahalanobis distance is proposed for
creating pure classification rules that determine which attack family is
the closest. This function is useful when an anomaly is detected, as
unknown attacks can be linked with existing ones according to their
behavior. From an incident response viewpoint, it may provide crucial
information on what countermeasures may be effective when facing an
unknown attack.

The rest of the article is structured as follows. Section 2 defines the
fundamental concepts necessary to understand the technical aspects of this
work. Section 3 analyzes the proposals from the community that deal with
the problem of automatic CEP rule generation and highlights the substantial
differences between our work and the state of the art. Section 4 provides an
in-depth description of the components of the proposal and explains how it is
deployed in an IoT network. Section 5 lists all the steps performed for gener-
ating the CEP rules to be used in the experiments, which are then described
in Section 6, which also introduces the metrics we used and discusses the
results obtained. In addition, the research questions formulated above are
answered in this section. Finally, Section 7 presents the conclusions drawn
from the experiments.

2. Background

This section describes the background to security in the IoT, ML and
CEP.

2.1. Security in the Internet of Things

Unfortunately, the development of security measures for IoT devices has
not been as successful as their growth. This is evidenced by the number
of cyberattacks detected in the first half of 2019, which exceeded 100 mil-
lion [14], a 7-fold increase compared with the 2018. The main attack vector
used by criminals is still dictionary attacks, a technique which exploits weak
credentials to gain access to devices [15]. Once access to the device has been
gained using these credentials, the device can be infected with malicious code,
allowing the attacker to easily manage it. In general, this malware is usually
used to create bots, which are later sold or rented to carry out Distributed
Denial-of-Service attacks (DDoS). One of the first and most prevalent pieces
of malware is Mirai, which targets the Telnet protocol [8].

4

Chapter 6. An Automatic Complex Event Processing Rules Generation System
for the Recognition of Real-Time IoT Attack Patterns

127

But not only conventional protocols are the target of cybercriminals, the
newly IoT developed ones are also of interest for them. A good example of
this is the Message Queuing Telemetry Transport (MQTT), which is a very
popular network protocol used in the IoT [16] that is designed to reduce over-
heads as much as possible at the application layer. MQTT message sending
is publish/subscribe-based, which is a scheme that proposes that clients pub-
lish information on a topic that is collected by a broker. This broker acts as
a server that manages the flow of messages, which is organized as a hierarchy
of topics, and sends these messages to all clients that are subscribed to this
topic. Despite being widely used, this protocol has several weaknesses, which
include unencrypted communications by default, the possibility of introduc-
ing devices into the network without the need for a username and password,
and the ability to obtain all available topics regardless of the importance of
the information they contain. It also allows the disconnection of legitimate
devices by connecting another device with the same ID.

Besides MQTT, there are other common threats to IoT networks. The
most recurrent technique used by cybercriminals for detecting visible devices
and open ports is scanning. This action does not constitute an attack as
such, but usually precedes it. In addition, there are volumetric attacks,
such as DDoS attacks coming from captured IoT devices, which are usually
performed by generating very high traffic flows to saturate the network or
the target device. Common types of DDoS are TCP and UDP flooding, DNS
reflection or LDAP reflection, among many others [17].

Among the main reasons why such simple attacks are effective against IoT
devices, we can highlight the use of insecure services, networks and protocols,
and the inherent limitations of the paradigm’s devices, such as processors
with low computational capacities, limited memory capacity or constrained
network connectivity. These limitations also promote implementations that
do not take into account security by default in the design. It is therefore
necessary to develop, implement or adapt solutions to detect threats and
mitigate their impact specifically for the IoT paradigm.

2.2. Complex Event Processing

CEP is a technology capable of capturing, analyzing and correlating a
large number of events in order to detect specific and relevant situations in a
given domain [18]. Simple events can be obtained from different sources and
have different attributes depending on the problem domain. The processing
of these simple events allows CEP to infer information with a higher level of

5

128

semantic knowledge in real time. To achieve this, CEP rules are defined in
such a way that if these rules are fulfilled, a complex event that represents
a situation of interest is generated [19]. It is important to understand the
key concepts of CEP technology. The first one is the CEP engine, which
is the software element in charge of performing the processing of complex
events. It receives the simple events, correlates them with the CEP rules
and, when necessary, generates complex events. In our specific case, we use
WSO2 CEP. CEP rules are the elements that allow the detection of events.
In other words, CEP rules are patterns described and implemented by a
domain expert that describe situations of interest to be identified and are
written in an Event Processing Language (EPL) that may vary depending
on the CEP engine used. In our case each CEP rule can identify a family of
attacks. In the case of WSO2 CEP, the EPL used is SiddhiQL [20]. Another
key concept are simple events, which are the raw data that are received
by the CEP engine. In this case, where real-time network attack detection
is pursued, these simple events will be the network packets. However, this
may change depending on the context and the problem under study. The last
important concept is that of a complex event. Complex events are equivalent
to a situation of interest and are generated by CEP rules. When one of these
rules is fulfilled, a complex event is generated. In our case a complex event
means that an attack of a particular family has been detected.

The main advantage of CEP when compared with other traditional data
analysis software lies mainly in its performance. CEP is able to process a
large amount of data and report it in real time, thus offering a reduction in
decision-making process times

2.3. Principal Component Analysis

PCA is a statistical method that tries to reduce the complexity of a sam-
ple space by reducing its dimensions. Using PCA, if we have an element x, a
simple event in this case, represented by n variables, the objective is to find
a representation with m variables where m<<n. These new variables are
calculated as linear combinations of the original ones, and are called com-
ponents. Each component is linearly independent of the rest. In this way,
PCA manages to maximize the amount of information represented by each
component, without redundancy in the information of different ones. That
is, if an element x is composed by the vector of variables n = {n1, n2, ..., nn},
the new variables of the vector m = {m1,m2, ...,mm} will have the repre-
sentation that we can observe in Equation 1. We can observe that each

6

Chapter 6. An Automatic Complex Event Processing Rules Generation System
for the Recognition of Real-Time IoT Attack Patterns

129

variable is weighted with a weight α. A variable with a higher weight has
more importance in that component. An advantage of this model is the ease
of converting an element from the original space to the reduced one when we
have the PCA model trained.

mi = n1 ∗ α1 + n2 ∗ α2 + n3 ∗ α3 + ...+ nn ∗ αn (1)

Each component collects an amount of information called explained variance
ratio, represented by rv. The first components always have a higher rv than
the last ones. In a perfectly linear scenario, the sum of the explained variance
ratios of the components could be 1. In practice we seek to approximate this
value as closely as possible while keeping the dimension reduction as high as
possible.

In this work, PCA will allow us to reduce the sizes of simple events and
generate accurate CEP rules with a reduced sample space. This is a novelty
that offers promising results.

2.4. Mahalanobis distance

The Mahalanobis distance is a distance function that takes into account
the covariance between the variables. The main advantage of the Maha-
lanobis distance is that it weights the scale differences that may exist between
the different variables as well as the correlation that may exist between them
(although this last property is not needed in our case because the compo-
nents are linearly independent). In this proposal the Mahalanobis distance
allows us to include an additional mechanism that determines the similarity
of a simple event with respect to the different families of known attacks.

d(x− µ) =

√
(x− µ)T Σ−1 (x− µ) (2)

The Equation 2 represents the calculation of the difference between the
element x and the mean of a category µ. Σ−1 represents the inverse co-
variance matrix, which allows a transformation to be performed so that the
covariances have weight in the distance function.

In this case we will apply the Mahalanobis distance to simple events
reduced with PCA, this allows us to modify the distance function to take
into account the explained variance ratio of the different components. In
this way, our distance function will give more weight to the components with
a higher rv. The first step is to obtain the V E matrix as the diagonal matrix
with the explained variance ratios of each component. We can see how it is

7

130

obtained in Equation 3. Equation 4 shows the Mahalanobis distance weighted
with the explained variance ratios.

V E = diag(rv1, rv2, ..., rvm) (3)

d(x−mu) =

√
(x− µ)T (Σ−1 × V E) (x− µ)) (4)

Thus Equation 4 allows to know the closest family to a new simple event
that does not fit any of the current CEP rules. It is important to understand
that this function does not define the threshold used for the CEP rules, but
a proximity function that provides an additional mechanism to know the
closest family of an event that may be an anomaly. This mechanism can be
useful to act against that anomaly based on the closest known family.

3. Related work

In this section we review the work related to the proposed work.
There are several works that deal with threat detection using machine

learning algorithms(i.e [21, 22]). However, our work address the open issue
of using CEP engines to perform the detection by generating CEP rules
automatically, due to their high data processing capacity. Therefore, this
section focuses exclusively on papers that attempt to generate CEP rules.

There are some relevant works that try to solve the problem of automatic
rule generation in CEP. It is possible to classify the proposals according to
the need for prior rules.

3.1. Proposals that require previous rules

Yunhao Sun et al. [23] focuses their work on generating new rules, based
on previous CEP rules that already exist. The requirements to use this
proposal is to have historical data to train the models and the CEP rules that
generate these historical data. First, a loss function is defined to measure
the difference between the results of the previous rules with respect to the
real values, and an activation function based on the unipolar S-curve whose
objective is to decide whether a new CEP rule is good. Then this new CEP
rule is added to rules set. With that new set of rules, clusters containing all
the elements of each family are created and a rule is generated to represent
those families. Although this work manages to update previous rules in a
satisfactory way, it is not able to create them from scratch.

8

Chapter 6. An Automatic Complex Event Processing Rules Generation System
for the Recognition of Real-Time IoT Attack Patterns

131

Other approach where the authors employ CEP in a completely different
way is in the work proposed by Nathan Tri Luong et al. [24]. In this work, the
authors use CEP to perform the pre-processing of the data and Tensor Flow,
as additional component, to classify the different events. The limitation of
this architecture is that it does not use CEP to perform the classification,
which may result in not fully utilizing the capability of the CEP engines to
correlate a large amount of data.

Finally, Haoyu Ren et al. [25] use a completely different approach, which
is focused on optimizing performance in IoT environments. The advantage of
this work is that is not very common to find proposals focused on performance
in IoT environments. This proposal employs a micro CEP engine and a
model based on Tensorflow Lite Micro with pre-built neural networks. These
neural networks are updated to adapt to the behavior of a real system. The
difference of this work with respect to the state of the art is that the output of
these neural networks feed the CEP engine, which uses simple rules defined
manually. Thus, the classification is performed by these neural networks
and the CEP engine simply processes the results of the neural networks.
Therefore, the main limitation of this proposal is that the CEP rules are
defined manually and it does not take advantage of the potential of CEP to
process a large amount of data.

3.2. Proposals that does not require previous rules

In this group we find proposals that do not require prior rules, but label
complex events based on historical data. Ralf Bruns and Jürgen Dunkel. [26]
adapt the bat algorithm to the CEP rule search by structuring the different
elements forming a rule in a tree scheme. This tree structure allows the
algorithm to generate new CEP rules. The results obtained are promising,
however, it needs a context in which complex events are known as a function
of simple events. This requirement is not always easy to reach without prior
rules.

Another work that manages to extract rules automatically without prior
rules is the one proposed by José Roldán-Gómez et al. [27]. The rules are
constructed by predicting the value of the most important feature for each
category. If the difference between the actual value and the prediction exceeds
the calculated threshold, this event does not correspond to that category.
The results obtained are very promising, although the main limitation of
this work is the difficulty that may exist in generating certain rules based
only on a key variable and an expected value.

9

132

Reference Performance focused Need for prior rules Novelty / Highlight

[23] Yes Yes Pre-filtering rules before training improves performance.
[24] No Yes It uses CEP for performing data preprocessing.
[26] No No It uses Bat algorithm for generating new rules.
[27] No No It is based on comparing the prediction of key features with their actual values.
[25] Yes Yes Manually defined CEP rules and pretrained neural networks.
[28] No No It uses GRU and Furia for generating CEP rules in an unsupervised manner
This work Yes No PCA enables the generation of high-performance CEP rules

Table 1: Comparative table of state-of-the-art works.

Finally, Mehmet Ulvi Simsek et al. [28] compare different algorithms to
label simple events, then uses the most common algorithms for rule extrac-
tion. The paper concludes that GRU (used for labeling) together with the
FURIA algorithm (used for rule extraction) obtain the best results in their
experiments. The comparison made in this paper is certainly of high aca-
demic value. However, the proposal requires an enormous amount of data to
train deep learning algorithms.

Table 1 shows a comparison of the state of the art analyzed papers fo-
cusing on the need for prior rules, and the focus on the performance of
the papers. As we can see this proposal focused on performance without the
need for prior rules is an improvement over other work in the state of the art.
Although the use of PCA is very common in classical machine learning ap-
plications, it is not commonly used in CEP environments for rule generation.
This novelty offers very promising results that improve the computational
performance of manually generated CEP rules.

4. Architecture for IoT security

This section describes in detail the proposed architecture, which inte-
grates the use of PCA, Mahalanobis and CEP in order to automatically
generate CEP rules capable of detecting both modeled and unmodeled at-
tacks. Firstly, we explain the system architecture with the rule generator
deployed, as well as the context in which the proposal works. Then we will
analyze in depth the different phases of the rule generator to understand how
it works.

4.1. Proposed architecture

Figure 1 shows our proposed architecture deployed on an IoT network.
The first step for generating CEP rules is to obtain training data for gen-
erating the model. To achieve this, the different packets are extracted from

10

Chapter 6. An Automatic Complex Event Processing Rules Generation System
for the Recognition of Real-Time IoT Attack Patterns

133

the broker. These packets must be correctly labeled to train the model to
later feed the CEP rule generator, which provides three outputs. The first
output is a pre-trained PCA model that will reduce the dimensionality of
simple events and generate lighter rules that offer better computational per-
formance. This PCA model is used in rule generation, but it is also sent
to MQTT clients for generating reduced simple events to enable real-time
attack detection with the CEP rules generated by our proposal. The second
output is the CEP rules, which feed the CEP engine and are in charge of
detecting the different attacks suffered by the system. The third and last
output is the covariances and averages of the different families. These are
sent to the clients and allow using the Mahalanobis distance to add an addi-
tional mechanism for identifying the closest family in simple events that do
not match any generated CEP rule.

Once the CEP rule generator has sent its three outputs to the different
components that use them, the operation is as follows: Firstly, MQTT clients
send the reduced simple events to the broker. To achieve this, the network
packets, which are the simple events in our context, are reduced with the
PCA pre-trained model. In addition, in these reduced events, the closest
known family according to the Mahalanobis distance is also sent, using the
means and covariances that the clients also have thanks to the CEP rule
generator. Then, the broker, by means of an attack detection topic, sends
these reduced single events to the CEP engine. Then, the CEP Engine will
compare that single event with its different CEP rules, which were generated
with the CEP rule generator. If the simple event falls within the threshold
of any CEP rule, a complex event is generated that associates that simple
event with the attack that defines that rule. If the simple event fits within
the anomaly pattern and does not fit with any known attack, a complex
event is generated indicating that it is an anomaly together with the closest
family of that anomaly. This is possible thanks to the Mahalanobis distance.
If a simple event is a legitimate packet it will not fit into any rule. Finally,
when these complex events are generated, they are sent to an endpoint. This
endpoint can be in charge of taking actions against the different attacks,
these actions do not fall within the scope of this work.

4.2. CEP rules generator stages

Once the architecture as a whole has been detailed, we focus on the
operation of the CEP rule generator. To achieve this goal, this pipeline is
composed of 3 stages, which are as follows:

11

134

CEP Rules
generator

CEP Rules

MQTT Broker

Labeled
network traffic

PCA model

Category means
and covariances

MQTT client

PCA model

Category means
and covariances

MQTT client

PCA model

Category means
and covariances

MQTT client

MQTT clients

CEP Engine

Endpoint

Network
traffic

PCA Model,
category means and covariances

Labeled
network
traffic

(training)

Reduced
network
traffic

(detection)

CEP
Rules

Attacks
detected

Figure 1: Diagram of the complete system with rule generator deployed.

Pipeline

PCA projection

PCA

CEP rule generation

Threshold definition

Mean of the
components

Standard deviation of
the components

Proportion of variance
explained of the

components

Inequation construction

CEP rule definition

Category separation

Labeled Traffic
(training)

Input Stages

Preprocessing

Output

CEP rule generated

PCA model

EPL selection

Category means and
covariances

MQTT Clients

CEP Engine

Figure 2: Proposed architecture pipeline for generating CEP rules.

• PCA projection. This stage generates a PCA model that is able to
reduce the dimensionality of the different events of the system by pro-

12

Chapter 6. An Automatic Complex Event Processing Rules Generation System
for the Recognition of Real-Time IoT Attack Patterns

135

jecting the input data into a space of reduced dimensionality. In order
to obtain a successful projection, preprocessing of the training dataset
is first required. This step requires an adaptation according to the
training dataset. In this case it consists of 3 phases.

– Filling of empty fields. Since features belonging to different proto-
cols are used, we will find many packets in which there is no value
for these features. It is necessary to fill in these values to train
our model. The usual techniques, such as using the mean, median
or mode are not valid because the values of these characteristics
simply do not exist in the packets in which they do not appear.
That is why they have been filled with the value ”-1”, as using a
negative value in a dataset in which there are no negative numbers
makes it possible to highlight a difference in a significant way.

– Categorization of non-numerical variables. PCA requires the val-
ues to be numeric, but there are some features such as IP addresses
and ports that cannot be treated as such. To solve this problem
a one-hot encoding scheme is used. This allows each category to
be identified as a binary feature.

– Scaling of values. The scales of the dataset features are very dif-
ferent, which can be a problem for PCA because features with
larger numerical values will have more weight than features with
smaller numerical values. To solve this problem we use a min-
max scaler, which makes it possible to equalize the scales of the
different numerical features.

Once the data have been correctly preprocessed, the PCA model can be
trained. This results in a trained model that reduces the dimensionality
of future events.

Once the PCA model has been generated, the training dataset is sepa-
rated by using the training labels so that each category or class can be
mathematically modelled as a Normal distribution.

• Threshold definition. The objective of this stage is to generate a func-
tion to classify each sample, which is modeled as a single event, in its
corresponding category. This function will be translated into a CEP
rule in the next stage.

13

136

Given a training dataset X = [x1, x2, . . . xt, . . . xT] of T samples and
corresponding category labels Y = [y1, y2, . . . yt, . . . yT], each sample is
an array composed of n components xt = [x1, x2, . . . xi, . . . xn].

For each category j ∈ [1, c] being c the total number of known cat-
egories, the mean of each component i, which is defined as mj

i with
respect to its category, is obtained, and then the standard deviation,
defined as stdji of each component with respect to its category, is cal-
culated as follows:
mj

i = 1/R
∑

xr
i∀r ∈ R : yr = j

stdji =
√

1/(R− 1)
∑

(xr
i −mj

i)
2∀r ∈ R : yr = j.

In addition, the proportion of variance explained, defined as rvi for each
component, is extracted. Note that the latter does not make use of the
division by categories, so a single rvi for all categories exists. By using
these elements, an inequation similar to the one shown in Equation 5 is
constructed for n components. If the left-hand side of the inequation is
smaller than the right-hand side, which is the threshold that is defined,
this event corresponds to the category used to construct this CEP rule.
In addition, a corrective element (α) is added to the inequation to
increase the threshold value. This element is intended for categories
that have events that may be quite different from each other, so that
the original threshold is below that of the events that are farther away
from the mean.

• CEP rule generation. Once we have the inequation, it is necessary to
transform it into a CEP rule, which is the objective of this stage. The
first step is to choose a particular EPL, which will depend on the one
provided by the CEP engine to be used. In this case WSO2 is used,
and it provides Siddhi as the EPL. Finally, it only remains to build the
rule by adapting it to the syntax of the chosen EPL. Listing 1 shows
the template used to generate the CEP rules and the explanation of
each part of the CEP rule generated with Siddhi.

These steps make it possible to generate rules capable of detecting
known attacks. In addition, if non-malicious events are used in the
training data, we can generate a rule capable of detecting unknown at-
tacks, and this allows it to perform the function of an anomaly detector.
This CEP rule is built with non-malicious traffic, and the threshold is
inverted, so any sample above the threshold is considered an anomaly.

14

Chapter 6. An Automatic Complex Event Processing Rules Generation System
for the Recognition of Real-Time IoT Attack Patterns

137

Listing 1: Template used for CEP rule generation

1 @info (name={attack name})
2 from ((every a1 = {pca input stream}
3 [((math : abs ({ f i r s t component} −
4 {mean o f f i r s t component }) ∗
5 { exp la ined var iance r a t i o o f f i r s t component }) +
6 . . .
7 . . .
8 (math : abs ({n component}−
9 {mean o f n component }) ∗
10 { exp la ined var iance r a t i o o f n componet })
11 <
12 ({ standard dev i a t i on o f f i r s t component} ∗
13 { exp la ined var iance r a t i o o f f i r s t component}+
14 . . .
15 . . .
16
17 { standard dev i a t i on o f n component} ∗
18 { exp la ined var iance r a t i o o f n component}+
19 { c o r r e c t i v e element })]))
20 s e l e c t ∗
21 i n s e r t i n to { stream name} ;

The first two lines of the CEP rule, which can be seen in Listing 1,
define the name of the rule (attack name), and also specify the name
of the simple events to be checked by the rule (pca input stream). The
code between lines 3 and 10 defines the left-hand side of the inequation.
As can be seen, this part is variable, as it depends on the number of
components extracted by the PCA model. The absolute value function
is used to guarantee positive distances. Line 11 defines the sign of the
inequality, which is inverted in the anomaly detection rules. The code
between line 12 and 19 defines the right-hand side of the inequation,
which is the part that defines the threshold with which the left-hand
side is compared. The standard deviations, the explained variance ratio
and the corrective element, if any, are used. The last two lines define
what data are sent to the output (all components in this case). It also
defines the name of the output stream (stream name).

15

138

• Proximity classification mechanism. As discussed above during the
description of the complete architecture, the clients have the means
and covariances of the different families of known attacks. This allows
the clients to calculate the Mahalanobis distance of the single events
with respect to the means of the different families. The closest family
is then sent to the CEP engine together with the reduced single event.
This is useful when there is no specific attack whose rule detects that
single event, but it falls within the anomaly CEP rule. This way we can
know that it is an anomalous attack together with the closest known
class, which can be vital to take countermeasures quickly. Although
such countermeasures are not within the focus of this paper.

Algorithm 1 CEP rules generation algorithm

Input: Labeled training data
Output: PCA trained model, Generated CEP rules

1: Preprocess dataset
2: Train pca model
3: Transform preprocessed dataset with pca
4: Category separation
5: for each component of pca do
6: Extract proportion of variance explained
7: for each category do
8: Extract mean
9: Extract std

10: end for
11: end for
12: Inequation construction
13: Select EPL
14: for each category do
15: Generate Rule
16: if proximity classification mechanism then
17: Generate proximity classification pattern
18: Extract covariance matrix;
19: end if
20: end for

A step-by-step description can be found in Algorithm 1.

16

Chapter 6. An Automatic Complex Event Processing Rules Generation System
for the Recognition of Real-Time IoT Attack Patterns

139

f(x, j) =

{
1 if f(x) =

∑n
i

√
(xi −mi)2 · rvi ≤ (

∑n
i stdi · rvi) + α

0 if f(x) =
∑n

i

√
(xi −mi)2 · rvi > (

∑n
i stdi · rvi) + α

(5)

5. Test environment

This section describes the elements necessary to understand the exper-
imental environment. These are: the dataset and its attacks, the feature
selection, and the experimental setting. In addition, different CEP rules
generated with our proposal are shown.

5.1. Dataset

The dataset is obtained from an MQTT network composed of 3 clients
and a broker. In this network a normal behavior is simulated in which the
network is not under attack. This normal behavior consists in periodically
publishing on 3 topics, one per client. The format of these data is numeri-
cal and simulates possible scenarios such as sending temperature or decibel
readings. After this, an additional client is introduced which is in charge of
performing the attacks mentioned below.

• Subfuzzing. The objective of this attack is to know the different topics
that are registered in the MQTT broker. This makes sense when it is
possible to introduce a client into the network, but the topic#, which is
the root topic in the hierarchy, is disabled. The client tries to subscribe
to all the topics to identify the existing ones. To do this, a dictionary
is used, but it can also be done by pure brute force.

• Disconnection wave. This is an attack that attempts to disconnect
all the clients from the broker. This attack works in configurations
where the broker disconnects old clients when a new client tries to
connect with the same id, since this id is used to univocally identify a
client in the network. The client sends several packets with the connect
command with the identifiers of the clients to be disconnected. A sweep
can be made through the different ids to eject all the legitimate devices
from the network.

• TCP SYN scan. This type of scanner is very common, and is used to
know the open ports on a computer, in this case the broker. If a port

17

140

is open, the broker will send an SYN/ACK packet, and if it is closed,
it will send an RST packet.

• UDP scan. The UDP scanner is used to search for open UDP ports
on a computer, the broker in this case. If the broker sends an ICMP
packet of type Unreachable, the port is closed. If the broker sends
another error, the port is considered filtered. If it sends nothing, or
sends something else, the port is considered open.

• Telnet scan. This attack attempts to simulate the first stage of Mirai.
It consists in a dictionary attack against Telnet to try to gain access to
the computer, in this case the attack is against the broker.

• Xmas scan. This is a scan targeting TCP ports. To perform this
attack, TCP packets are sent with the PSH, FIN and URG flags set.
If the response is an RST packet, the port is considered closed. If the
response is an unreachable error, the port is considered filtered. If the
port does not respond, the port may be filtered or open.

The dataset is composed of a mix of attacks, which have been chosen to
represent a realistic scenario while comprising a variety of different attack
types.

5.2. Collection and feature selection

The data collection to generate this dataset is performed using a sniffer on
the broker. With the sniffer, Wireshark in this case, a PCAP file is obtained
and converted into an easily manageable CSV file.

For the feature selection, we follow the selection made in KDD99 [29],
since it is a very well-known set, and features specific to our MQTT dataset
were also added. These additional MQTT features were chosen on the basis
of our knowledge. However, to ensure that our selection is adequate to char-
acterize our dataset we have employed extremely randomized trees [30]. This
allows us to affirm that our selection of features is correct. Table 2 shows a
ranking with different features.

5.3. Experimental setting

Once the dataset has been preprocessed, it can be used to train our PCA
model. The division between training and testing is as shown in Table 3.
As we can see in Table 3, not all categories have the same percentage in

18

Chapter 6. An Automatic Complex Event Processing Rules Generation System
for the Recognition of Real-Time IoT Attack Patterns

141

Table 2: Feature importance ranking

Feature name Feature importance
Destination port (1883) 0.259
Calculated window size 0.240
Protocol (TCP) 0.122
Protocol (MQTT) 0.100
IP source (192.168.1.11) 0.092
Information (Publish message) 0.032
Source port (59662) 0.030
IP source (192.168.1.7) 0.029
Source port (62463) 0.027
Source port (52588) 0.016
Packet length 0.005

Table 3: Splitting training/testing dataset

Percentage of training Percentage of testing

Normal 3174(20%) 12696(80%)
Discwave 19999(20%) 80000(80%)
Subfuzzing 819(20%) 3277(80%)
TCP SYN scan 700(70%) 301(30%)
UDP scan 411(70%) 177(30%)
Telnet (Mirai) 351(70%) 151(30%)
XMAS scan 900(90%) 100(10%)

the net training set. This is because there are not as many scan and telnet
events as the previous ones. If we train the PCA model with so few samples
of the latter, the resulting components may not correctly characterize these
attacks.

5.4. CEP rules generated

Once we have the PCA model, all that remains is to build CEP rules. To
do this we use a template in which we fill in the values that we have already
obtained, and which can be seen in Equation 5.

Some of the CEP rules obtained are shown in Listings 2, 3 and 4.

Listing 2: Generated CEP rule for detecting subfuzzing

@info (name=”sub fuzz ing ”)

19

142

from ((every a1 = MinimizedPacket
[((math : abs (a1 . c1 − −0.08089453) ∗
0 .45243782) +
(math : abs (a1 . c2 − −0.93639381) ∗
0 .25893292) +
(math : abs (a1 . c3 − 0 .1890189) ∗
0 .09149742)) <
(0 .050084+0.1)]))
s e l e c t ∗
i n s e r t i n to subfuzz ingStream ;

Listing 3: Generated CEP rule for detecting discwave

@info (name=”discwave ”)
from ((every a1 = MinimizedPacket
[((math : abs (a1 . c1 − −0.5369006) ∗
0 .45243782) +
(math : abs (a1 . c2 − −0.95389636) ∗
0 .25893292) +
(math : abs (a1 . c3 − −0.16195309) ∗
0 .09149742)) <
(0 . 0 0 4 8 9 8 7)]))
s e l e c t ∗
i n s e r t i n to discwaveStream ;

Listing 4: Generated CEP rule for detecting anomalies

@info (name=”anomaly ”)
from ((every a1 = MinimizedPacket
[((math : abs (a1 . c1 − −1.08021604)∗
0 .45243782) +
(math : abs (a1 . c2 − 1 .17180894) ∗
0 .25893292) +
(math : abs (a1 . c3 − 0 .0342363) ∗
0 .09149742)) >
((0 .14454024 ∗ 0.45243782)+(0.17986563 ∗
0.25893292)+
(0 .93275888 ∗ 0 .09149742))]))
s e l e c t ∗
i n s e r t i n to anomalyStream ;

6. Results and Discussion

This section analyzes the performance results of the proposed architec-
ture. This analysis can be divided into three different parts: a first part in

20

Chapter 6. An Automatic Complex Event Processing Rules Generation System
for the Recognition of Real-Time IoT Attack Patterns

143

which the ability of the proposal to classify correctly is analyzed, a second
part that focuses on the throughput of the proposal, and a last part in which
the bandwidth usage is analyzed. Then, a discussion about the research
questions posed is presented.

6.1. Classical CEP rules against generated CEP rules

To test the performance of the CEP rules generated by our architecture,
it is necessary to define classical CEP rules. In this case we define basicrules
that look at a single feature to determine whether there is an attack. In
a real environment these CEP rules would not be sufficient because they
would yield many false positives. However, the objective of these rules in
our experiments is to compare the CEP rules generated by our architecture
with the simplest possible rules. This allows the experiments to be more
representative, because if the CEP rules of our architecture offer a better
computational performance than these rules, it means that the reduced CEP
rules offer a better performance than the best case of the non-reduced CEP
rules. Some classical attack CEP rules are shown in Listings 5, 6 and 7.
These rules are built manually without using our proposal.

Listing 5: Classical CEP rule for detecting subfuzzing

@info (name=”sub fuzz ”)
from (every a1 = NetworkPacket [(a1 . p ro to co l
== ’MQTT’) and (a1 . i n f o==’Subscr ibe Request ’)
and (a1 . mqttMessageLength==7)])
s e l e c t a1 . id
i n s e r t i n to subStream ;

Listing 6: Classical CEP rule for detecting discwave attack

@info (name=”discwave ”)
from (every a1 = NetworkPacket [(a1 . p ro to co l
== ’MQTT’)
and (a1 . i n f o==’Connect Command ’)])
s e l e c t a1 . id
i n s e r t i n to discwaveStream ;

Listing 7: Classical CEP rule for detecting UDP port scan

@info (name=”udp”)
from (every a1 = NetworkPacket
[(a1 . p ro to co l == ’UDP’)])
s e l e c t a1 . id
i n s e r t i n to udpStream ;

21

144

As mentioned above, the objective is to make the rules as simple as possible so
that they can obtain an optimal performance in order to make the comparison
with the CEP rules generated by our architecture.

6.2. Metrics used

In order to correctly measure the results of the experiments we use the
following metrics:

• Average throughput This metric, which is used to measure the compu-
tational performance of CEP rules, is defined as the number of capable
events that the CEP engine is able to process per second (events per
second). In our case we have used time windows of 10 seconds. This
means that it is calculated by dividing all the events processed during
this interval by 10.

• Average event size This metric allows us to know the network usage
for each CEP rule. It is determined as the average of the sizes (bytes)
of the simple events.

• Precision. This metric measures the ability of the CEP engine to avoid
false positives. It is defined as follows:

(
TruePositive

TruePositive+ FalsePositive
)

• Recall. This metric measures the ability of the CEP rules to avoid false
negatives, defined as follows:

(
TruePositive

TruePositive+ FalseNegative
)

• F-score. This metric averages precision and recall in order to to provide
a more global view of CEP rules performance. It is defined as follows:

2 · (Precision ·Recall

Precision+Recall
)

Since this is an architecture intended for IoT environments, in which re-
sources are very limited, it is desirable that the architecture can provide
optimal classification capacity, with high throughput, while minimizing net-
work bandwidth usage as much as possible.

22

Chapter 6. An Automatic Complex Event Processing Rules Generation System
for the Recognition of Real-Time IoT Attack Patterns

145

Table 4: Metrics obtained by the generated CEP rules.
Metrics of generated rules without Mahalnobis Precision Recall F1
Discwave 1 0.9002 0.9474
Subfuzzing 1 0.9017 0.9483
Subfuzzing (with corrector) 1 1 1
TCP 1 1 1
UDP 1 0.9772 0.9885
XMAS 1 1 1
TELNET 1 0.8733 0.93236
Anomaly 0.9968 1 0.9984
Metrics of generated rules with Mahalnobis Precision Recall F1
Discwave 1 1 1
Subfuzzing 1 1 1
TCP 1 1 1
UDP 1 1 1
XMAS 1 1 1
TELNET 1 1 1

6.3. Accuracy results

This first experiment is used to measure the accuracy of the CEP rules
generated by our approach. It consists of sending all the events from the
testing to the CEP engine, which has the CEP rules defined via our proposal.
The accuracy of both the CEP rules with the threshold and the CEP rules
of classification by proximity are measured. In addition, the results obtained
with the CEP rule used to detect anomalies are also measured.

The upper part of Table 4 shows the results obtained by the proposal
for classifying each attack. The results are very good, as in the worst case
scenario (subfuzzing without corrector) an F1-score of 0.94 is obtained. We
can conclude that the architecture is able to classify attacks correctly without
problems.

Table 4 also shows the results obtained by the anomaly detection CEP
rule. As we can see, all the anomalies (attacks described above) are detected,
and very few non-anomalous packets are misclassified as anomalies.

The bottom part of Table 4 shows the results obtained by the proximity
classification mechanism. We see that it is able to approximate any single
event to its closest family. This is useful in environments with many anoma-
lies where it is necessary to implement countermeasures quickly.

23

146

Table 5: Average throughput per attack measured in events per second (events/s)

No PCA throughput PCA throughput PCA and Mahalanobis throughput

Subscription fuzzing 4575.4 7646.6 5451.4
Discconection wave 4242.2 7746.2 5417.8
TCP SYN scan 4142.6 7605.8 5453.4
UDP scan 4157 7537.4 5474.2
XMAS scan 4534.2 7833.2 5410
Telnet (Mirai first stage) 4574.8 7806.8 5519

6.4. Computational performance results

This experiment attempts to demonstrate the computational performance
improvement that can be obtained by using the CEP rules of our proposal.
In this experiment the testing datasets are sent in a loop without interruption
for 50 seconds. The objective is to send a high workload to the system and
observe how it behaves. It allows us to compare common CEP rules against
CEP rules generated with our proposal and measure their computational
performance in terms of throughput and network event sizes.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Subscription
fuzzing

Discconection
wave

TCP SYN scan UDP scan XMAS scan Telnet (Mirai
first stage

simulation)

C
EP

 E
n

gi
n

e
th

ro
u

gh
p

u
t

(e
ve

n
ts

/s
)

Average throughput PCA Average throughput PCA Mahalanobis Average throughput no PCA

Figure 3: Average throughput for PCA vs no PCA

As we can see in Figure 3 and Table 5, the performance when using the
rules generated by our proposal is far superior to that obtained when using
common CEP rules, representing an average improvement of approximately
76 percent when all attacks are taken into account. This means that the
ruless generated by our proposal are capable of processing a higher number

24

Chapter 6. An Automatic Complex Event Processing Rules Generation System
for the Recognition of Real-Time IoT Attack Patterns

147

Table 6: Average event size per attack measured in Bytes

No PCA event size PCA event size PCA and Mahalanobis event size

Subscription fuzzing 407.7271 60.7644 70.7644
Discconection wave 408.8412 61.917 71.917
TCP SYN scan 439.8443 64.8732 74.8732
UDP scan 406.1018 50.786 60.786
XMAS scan 445.8791 48.989 58.989
Telnet 403.8608 51.7634 61.7634

of events per second, which provides the system with a greater capacity for
high workload situations. When the nearest category clasification mechanism
is used, the performance improvement is limited to 24 percent over common
CEP rules.

The last part of the results focus on the size of the events. A smaller
event size means less saturation of the network.

0

50

100

150

200

250

300

350

400

450

500

Subscription
fuzzing

Discconection
wave

TCP SYN scan UDP scan XMAS scan Telnet (Mirai first
stage simulation)

Si
m

p
le

 e
ve

n
t

si
ze

 (
B

yt
es

)

Average event size PCA Average event size PCA Mahalanobis Average event size no PCA

Figure 4: Average event size for PCA vs no PCA

As we can see in Figure 4 and Table 6, the improvement in event size
is enormous. We reduced the event size by 86% on average thanks to the
dimensionality reduction. If the nearest category classification mechanism is
used, the event sizes vary very little, because only one label is sent with the
nearest family of that single event. The reduction in event size means that
we can greatly reduce network usage. This improvement is very beneficial,
especially in an architecture aimed at the IoT paradigm, in which network

25

148

utilization is a critical resource.

6.5. Answers to the Research Questions
With the results obtained, we can answer all the research questions we

posed above.

• RQ1 Are the CEP rules generated capable of systematically detecting
attacks?

– We can state that it is possible to generate CEP rules automati-
cally. The results shown in Table 4 demonstrate that it is possible
to generate functional CEP rules and that they work correctly.

• RQ2 Will these rules perform adequately for IoT environments?

– The performance of the CEP rules generated is superior to that
of simpler CEP rules. This is due to the use of PCA to char-
acterize the events and reduce the dimensionality of the events.
This allowed us to achieve a throughput increase of 76% in the
experiments performed.

• RQ3 Are the rules generated efficient at the network traffic level?

– The simple events that are sent with the CEP rules generated
are much fewer thanks to the use of PCA. In our experiments
the average event size was reduced by 86%. This drastically re-
duces network usage by improving the effectiveness of the attack
detection and facilitates real-time detection.

• RQ4 Can CEP rules detect unknown attacks?

– The results obtained from the experiments performed show that
anomaly detection CEP rules can be created. These ruless are
capable of detecting unknown attacks, for which one or more rules
that model the normal behavior of the system must be identified,
thus generating the CEP rules capable of detecting anomalies.

• RQ5 Is it possible to add an attack classification mechanism by prox-
imity?

– The results of the experiments show that it is possible to classify
by proximity, although in this case the performance improvement
is considerably lower.

26

Chapter 6. An Automatic Complex Event Processing Rules Generation System
for the Recognition of Real-Time IoT Attack Patterns

149

7. Conclusions

In this paper, we have presented an architecture capable of generating
CEP rules automatically by integrating CEP and ML technologies.

The CEP rules generated by our proposal are functional and accurate,
being able to detect attacks perfectly. In addition, using the PCA algorithm
to characterize events is a fundamental part of the proposal, as this novelty
reduces network usage and improves the computational performance of the
CEP engine. The results show that we reduce the average event size by 86%
and that we obtain a 76% improvement in throughput, which means that we
can process 76% more packets per second than common CEP rules.

Our architecture also allows the creation of CEP rules which are capable
of detecting anomalies and unknown attacks. Moreover, CEP rules have been
implemented to classify events by proximity to the different attacks. These
CEP rules obtain a very good precision performance, but it is true that they
considerably reduce the improvements in network usage and performance
obtained by the original CEP rules.

Therefore, we can affirm that the architecture is a success in terms of
detection and performance thanks to the integration of CEP rule generation
and dimensionality reduction. This combination makes it particularly useful
in resource-constrained environments, such as an IoT network.

Funding

This work was supported by the Spanish Ministry of Science, Innova-
tion and Universities and the European Union FEDER Funds [grant num-
bers FPU 17/02007 and FPU 17/03105, RTI2018-093608-B-C33, RTI2018-
098156-B-C52 and RED2018-102654-T], by the University of Castilla La
Mancha [grant number DO20184364]. This work was also supported by the
JCCM [grant number SB-PLY/17/180501/ 000353], and the Research Plan
from the University of Cadiz and Grupo Energético de Puerto Real S.A.
under project GANGES [grant number IRTP03 UCA].

References

[1] I. Calvo, M. G. Merayo, M. Núñez, A methodology to analyze heart data
using fuzzy automata, Journal of Intelligent & Fuzzy Systems 37 (6)
(2019) 7389–7399. doi:10.3233/JIFS-179348.

27

150

[2] P. Asghari, A. M. Rahmani, H. H. S. Javadi, Internet of Things appli-
cations: A systematic review, Computer Networks 148 (2019) 241–261.
doi:10.1016/j.comnet.2018.12.008.

[3] A. A. AlZubi, M. Al-Maitah, A. Alarifi, Cyber-attack detection in
healthcare using cyber-physical system and machine learning techniques,
Soft Computing 25 (18) (2021) 12319–12332. doi:10.1007/s00500-021-
05926-8.

[4] M. M. Sadeeq, N. M. Abdulkareem, S. R. Zeebaree, D. M. Ahmed, A. S.
Sami, R. R. Zebari, IoT and cloud computing issues, challenges and
opportunities: A review, Qubahan Academic Journal 1 (2) (2021) 1–7.

[5] S. A. R. Shah, B. Issac, Performance comparison of intrusion de-
tection systems and application of machine learning to Snort sys-
tem, Future Generation Computer Systems 80 (2018) 157–170.
doi:10.1016/j.future.2017.10.016.
URL https://www.sciencedirect.com/science/article/pii/S016

7739X17323178

[6] M. Stoyanova, Y. Nikoloudakis, S. Panagiotakis, E. Pallis, E. K.
Markakis, A Survey on the Internet of Things (IoT) Forensics: Chal-
lenges, Approaches, and Open Issues, IEEE Communications Surveys
Tutorials 22 (2) (2020) 1191–1221. doi:10.1109/COMST.2019.2962586.

[7] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, B. Sik-
dar, A Survey on IoT Security: Application Areas, Security Threats,
and Solution Architectures, IEEE Access 7 (2019) 82721–82743.
doi:10.1109/ACCESS.2019.2924045.

[8] Kaspersky, Kaspersky Security Bulletin 2020-2021. EU statistics, (ac-
cessed 23 December 2021) (2021).
URL https://securelist.com/kaspersky-security-bulletin-202

0-2021-eu-statistics/102335/

[9] D. Corral-Plaza, I. Medina-Bulo, G. Ortiz, J. Boubeta-Puig, A stream
processing architecture for heterogeneous data sources in the Inter-
net of Things, Computer Standards & Interfaces 70 (2020) 103426.
doi:10.1016/j.csi.2020.103426.

28

Chapter 6. An Automatic Complex Event Processing Rules Generation System
for the Recognition of Real-Time IoT Attack Patterns

151

[10] G. Ortiz, J. Boubeta-Puig, J. Criado, D. Corral-Plaza, A. Garcia-de
Prado, I. Medina-Bulo, L. Iribarne, A microservice architecture for
real-time IoT data processing: A reusable Web of things approach
for smart ports, Computer Standards & Interfaces 81 (2022) 103604.
doi:10.1016/j.csi.2021.103604.

[11] A. Martinez, A. Kak, PCA versus LDA, IEEE Transactions on
Pattern Analysis and Machine Intelligence 23 (2) (2001) 228–233.
doi:10.1109/34.908974.

[12] R. De Maesschalck, D. Jouan-Rimbaud, D. L. Massart, The Maha-
lanobis distance, Chemometrics and Intelligent Laboratory Systems
50 (1) (2000) 1–18. doi:10.1016/S0169-7439(99)00047-7.

[13] J. Roldán-Gómez, J. Boubeta-Puig, J. M. Castelo Gómez, J. Carrillo-
Mondéjar, J. L. Mart́ınez Mart́ınez, Attack Pattern Recognition in
the Internet of Things using Complex Event Processing and Ma-
chine Learning, in: 2021 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), 2021, pp. 1919–1926, iSSN: 2577-1655.
doi:10.1109/SMC52423.2021.9658711.

[14] Kaspersky, IoT under fire: Kaspersky detects more than 100 million
attacks on smart devices in H1 2019, (accessed 23 December 2021) (May
2019).
URL https://www.kaspersky.com/about/press-releases/2019 i

ot-under-fire-kaspersky-detects-more-than-100-million-atta

cks-on-smart-devices-in-h1-2019

[15] D. Demeter, M. Preuss, Y. Shmelev, IoT: a malware story - Securelist,
https://securelist.com/iot-a-malware-story/94451/, (accessed
23 December 2021) (2019).

[16] OASIS, MQTT Version 5.0, http://docs.oasis-open.org/mqtt/mqt
t/v5.0/mqtt-v5.0.html, (accessed 23 December 2021) (2019).

[17] D. Warburton, DDoS Attack Trends for 2020, (accessed 23 December
2021) (May 2021).
URL https://www.f5.com/labs/articles/threat-intelligence/d

dos-attack-trends-for-2020

29

152

[18] D. Luckham, Event Processing for Business: Organizing the Real-Time
Enterprise, John Wiley & Sons, New Jersey, USA, 2012.

[19] V. Valero, G. Dı́az, J. Boubeta-Puig, H. Macià, E. Brazález,
A Compositional Approach for Complex Event Pattern Modeling
and Transformation to Colored Petri Nets with Black Sequenc-
ing Transitions, IEEE Transactions on Software Engineering (2021).
doi:10.1109/TSE.2021.3065584.

[20] Query Guide - Siddhi, accessed 8/01/2022.
URL https://siddhi.io/en/v5.1/docs/query-guide/

[21] I. Martins, J. S. Resende, P. R. Sousa, S. Silva, L. Antunes, J. Gama,
Host-based IDS: A review and open issues of an anomaly detection sys-
tem in IoT, Future Generation Computer Systems 133 (2022) 95–113.
doi:10.1016/j.future.2022.03.001.
URL https://www.sciencedirect.com/science/article/pii/S016

7739X22000760

[22] Y. Zhang, Q. Liu, On IoT intrusion detection based on data
augmentation for enhancing learning on unbalanced samples,
Future Generation Computer Systems 133 (2022) 213–227.
doi:10.1016/j.future.2022.03.007.
URL https://www.sciencedirect.com/science/article/pii/S016

7739X22000826

[23] Y. Sun, G. Li, B. Ning, Automatic Rule Updating based on Machine
Learning in Complex Event Processing, in: 2020 IEEE 40th Interna-
tional Conference on Distributed Computing Systems (ICDCS), 2020,
pp. 1338–1343. doi:10.1109/ICDCS47774.2020.00176.

[24] N. N. T. Luong, Z. Milosevic, A. Berry, F. Rabhi, An open
architecture for complex event processing with machine learning,
in: 2020 IEEE 24th International Enterprise Distributed Object
Computing Conference (EDOC), 2020, pp. 51–56, iSSN: 2325-6362.
doi:10.1109/EDOC49727.2020.00016.

[25] H. Ren, D. Anicic, T. A. Runkler, The synergy of complex event pro-
cessing and tiny machine learning in industrial IoT, in: Proceedings of
the 15th ACM International Conference on Distributed and Event-based

30

Chapter 6. An Automatic Complex Event Processing Rules Generation System
for the Recognition of Real-Time IoT Attack Patterns

153

Systems, DEBS ’21, Association for Computing Machinery, New York,
NY, USA, 2021, pp. 126–135. doi:10.1145/3465480.3466928.
URL https://doi.org/10.1145/3465480.3466928

[26] R. Bruns, J. Dunkel, Bat4CEP: a bat algorithm for mining of
complex event processing rules, Applied Intelligence (Mar. 2022).
doi:10.1007/s10489-022-03256-2.
URL doi.org/10.1007/s10489-022-03256-2

[27] J. Roldán, J. Boubeta-Puig, J. Luis Mart́ınez, G. Ortiz, Integrating com-
plex event processing and machine learning: An intelligent architecture
for detecting IoT security attacks, Expert Systems with Applications
149 (2020) 113251. doi:10.1016/j.eswa.2020.113251.
URL https://www.sciencedirect.com/science/article/pii/S095

7417420300762

[28] M. U. Simsek, F. Yildirim Okay, S. Ozdemir, A deep learning-based CEP
rule extraction framework for IoT data, The Journal of Supercomputing
77 (8) (2021) 8563–8592. doi:10.1007/s11227-020-03603-5.

[29] H. G. Kayacik, A. N. Zincir-Heywood, M. I. Heywood, Selecting features
for intrusion detection: A feature relevance analysis on kdd 99 intrusion
detection datasets, in: Proceedings of the third annual conference on
privacy, security and trust, Vol. 94, Citeseer, 2005, pp. 1723–1722.

[30] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Machine
Learning 63 (1) (2006) 3–42. doi:10.1007/s10994-006-6226-1.

31

154

CHAPTER 7

An automatic unsupervised Complex
Event Processing rules generation
architecture for real-time IoT attacks
detection

• Title: An Automatic Unsupervised Complex Event Processing Rules Generation Ar-
chitecture for Real-Time IoT Attacks Detection.

• Authors: José Roldán-Gómez, Jesús Martínez del Rincón,Juan Boubeta-Puig and José
Luis Martínez

• Type: Journal paper.

• Journal: Wireless Networks.

• Publisher: Springer.

• ISSN: 1572-8196

• Status: Published.

• Publication date: January 2023.

• DOI: 10.1007/s11276-022-03219-y

• JCR IF/ranking: 2.701/Q2 (JCR2021).

155

https://doi.org/10.1007/s11276-022-03219-y

Springer Nature 2021 LATEX template

An Automatic Unsupervised Complex Event

Processing Rules Generation Architecture for

Real-Time IoT Attacks Detection

José Roldán-Gómez1*, Jesús Mart́ınez del Rincon2, Juan
Boubeta-Puig3 and José Luis Mart́ınez1

1*Albacete Research Institute of Informatics (I3A), University of
Castilla-La Mancha, Campus Universitario s/n, Albacete, 02006,

Spain.
2Centre for Secure Information Technologies (CSIT), Queen’s

University Belfast, Belfast, BT3 9DT, UK.
3Department of Computer Science and Engineering, University of
Cadiz, Avda. de la Universidad de Cadiz 10, Puerto Real, Cadiz,

11519, Spain.

*Corresponding author(s). E-mail(s): jose.roldan@uclm.es;
Contributing authors: j.martinez-del-rincon@qub.ac.uk;

juan.boubeta@uca.es; JoseLuis.Martinez@uclm.es;

Abstract

In recent years, the Internet of Things (IoT) has grown rapidly,
accompanied by a vast number of attacks against it. Certain
limitations of the paradigm, such as reduced processing capac-
ity and limited main and secondary memory, make it neces-
sary to study new methods to detect attacks in real time due
to the difficulty of adapting techniques used in other paradigms.
In this paper, we propose an architecture capable of generating Com-
plex Event Processing (CEP) rules for real-time attack detection in an
automatic and completely unsupervised manner. To this end, the CEP
technology, which allows for analyzing and correlating a large amount of
data in real time and can be deployed in IoT environments, is integrated
with Principal Component Analysis (PCA), Gaussian Mixture Models
(GMM) and Mahalanobis distance. This architecture has been tested
through two different experiments to simulate real attack scenarios in an

1

156

Springer Nature 2021 LATEX template

2 Article Title

IoT network. The results obtained show that the generated rules obtained
an F1 score of 0.9890 in detecting six different IoT attacks in real time.

Keywords: Attack detection, Cybersecurity, Internet of Things, CEP,
Machine learning

1 Introduction

The Internet of Everything (IoE) has grown rapidly in the last decade and it
does not seem that this growth will stop or slow down any time soon, due to the
obvious potential offered by this new paradigm. Proof of this is the increasing
number of interactions with certain applications oriented to this paradigm
through devices such as smartphones or wearables. IoE can be considered an
extension of the Internet of Things (IoT) [1]. While the two key elements of IoT
are things and networks, in IoE there are five key concepts, these are things,
networks, people, data and process [2]. IoT and IoE have been shown useful in
a myriad of contexts and applications, such as healthcare applications, home
automation, resource management and many more [3–6].

The fast growth of IoE and IoT is positive for the development of many
applications, however, this growth also comes with facing a number of chal-
lenges in different domains [7], such as heterogeneity of manufacturers and
protocols, ubiquitous computing or dependence on batteries in many cases. In
this paper we focus on the cybersecurity of IoT systems, specifically on the
detection of network attacks in IoT environments. As IoT is a subset of IoE,
the ability to detect attacks in real time in IoT environments allows us to
defend both IoT environments and improve the defense of IoE environments.

It is essential to understand that solutions from other paradigms cannot
always be directly applied in IoT environments, mainly due to the limitations
of IoT devices. These limitations include: low computational capacity, limited
bandwidth, low-cost sensors, low memory and battery usage. If we add to this
the increase in the use of this type of devices [8, 9], which has led to an increase
in cybercriminals who focus on this paradigm, this has resulted in researchers
having to adapt or design new solutions in different areas of security, such as
cryptography [10] or reliability models [11]. Within the different areas of IoT
cybersecurity, this work focuses on real-time IoT attack detection because early
detection of an attack can be vital to protect the system. This is important to
improve data protection in IoT and IoE environments.

To detect network attacks in real time within IoT environments we need
to meet two non-negotiable requirements. The first is that the system can be
deployed in IoT environments with the limitations mentioned above, the second
is that the system is able to process a large amount of data, this allows the
system to be scalable and work in networks of different sizes. Complex Event
Processing (CEP) [12] is a technology that perfectly meets these requirements.
CEP allows a large amount of data to be collected in the form of simple events.

Chapter 7. An Automatic Unsupervised Complex Event Processing Rules
Generation Architecture for Real-Time IoT Attacks Detection

157

Springer Nature 2021 LATEX template

Article Title 3

By means of rules defined by an expert, situations of interest can be extracted
from these simple events, thus forming complex events. This functionality is
ideal, for example, for detecting network attacks in real time. To this aim,
network packets are defined as simple events and the detected attacks are the
resulting complex events. The successful deployment of CEP engines in IoT
environments has been widely demonstrated [13–15]. Although CEP is very
advantageous for real-time attack detection, it has a limitation, namely the
need for a domain expert who is able to define the rules that must be followed
to carry out such detection.

This work focuses on designing and implementing an architecture capable
of generating CEP rules automatically and unsupervisely from historical data
to detect and classify network attacks without the need of a domain expert. We
will apply unsupervised dimensionality reduction and clustering techniques to
model normality using rules, and then apply anomalous data detection con-
cepts to detect attacks as deviations from normality. In this way, effective and
efficient rules can be generated without the need for labeled data in training.

To evaluate this proposal, a baseline scenario is deployed on MQTT and
attacked with six different attacks. Using these attacks, two different experi-
ments based on an evolving scenarios were attacks are added iteratively are
performed. In the first one a new attack is presented for the first time in each
iteration which, if detected, is then used to retrain and improve the model to
be tested in the next iteration. In this way we can observe how the system can
detect anomalies and generate rules to detect them by adding new families.
In the second experiment the attacks are distributed uniformly over the iter-
ations, so that in each iteration both new attacks and new packets of already
known attacks appear. This experiment is useful to check how existing rules
evolve while generating new attack families in the same iteration.

The main contributions of this paper are the following:

• The integration of PCA with GMM and Mahalanobis distance for the
first time in a CEP engine, which allows us to generate CEP rules in an
unsupervised manner.

• The generated CEP rules allow the CEP engine to be able to detect attacks
in IoT environments in real time.

• The use of dynamic tables makes it possible to generate new rules very easily
without the need to modify the CEP application in real time.

• Our proposed framework is able to, from an initial state where it has only
been exposed to normal traffic, detect unseen attacks as anomalies and
progressively and incrementally incorporate them in the rule set.

• The architecture has been successfully evaluated using a MQTT network
use case using two different experimental scenarios and achieving an average
F1 score > 0.9890%.

The remainder of the article is structured as follows. Section 2 describes the
concepts necessary to understand the whole article. Section 3 discusses related
works on generating CEP patterns automatically. Subsequently, Section 4

158

Springer Nature 2021 LATEX template

4 Article Title

describes the design and implementation of the proposal. The results are
described and discussed in Section 5. Lastly, conclusions and future work are
presented in Section 6.

2 Background

This section introduces the key concepts of this article: MQTT (Message Queue
Telemetry Transport) and CEP.

2.1 MQTT protocol

MQTT is a protocol that operates at the application layer and is supported
by TCP/IP. It is oriented to network communication through a publisher/-
subscriber scheme using topics. In this way, devices (clients) that require
information subscribe to the corresponding topic. The clients that generate this
information publish in that topic. There is a central node called broker that is
in charge of orchestrating the behavior of the network, receiving the packets
and forwarding them to the corresponding nodes. This protocol is especially
useful in IoT networks because it is especially lightweight, which has made it
very popular within the IoT paradigm [16].

2.2 Complex event processing

CEP is a technology whose objective is to detect situations of interest by
collecting and correlating events. To achieve this, as a general rule, a domain
expert defines CEP rules that allow checking specific situations in the event
streams. Thus, when a rule is fulfilled, a complex event is generated identifying
a situation of interest.

More specifically, a CEP engine is a specific software used to perform this
type of data processing in real time. In our case, Siddhi CEP [17] is used.

The language used to define the rules in a CEP engine is called Event
Processing Language (EPL). There is a plenty of EPLs, specifically SiddhiQL
is the one provided by Siddhi CEP.

Simple events are the raw data received by the CEP engine. In the case
of real-time network attack detection, these simple events will be the network
packets. However, this may change depending on the context and the problem
statement.

CEP rules are the patterns described and implemented by a domain expert.
These CEP rules describe situations of interest to be identified and are written
in a particular EPL; this may vary depending on the CEP engine used. In this
work Siddhi is used, and in our case each CEP rule can identify a family of
attacks.

Complex events identify a situation of interest and are generated by CEP
rules. Every time one of these rules is fulfilled a complex event is generated. In
our case, a complex event identifies that an attack of a particular family has
been detected.

Chapter 7. An Automatic Unsupervised Complex Event Processing Rules
Generation Architecture for Real-Time IoT Attacks Detection

159

Springer Nature 2021 LATEX template

Article Title 5

3 Related work

There are some relevant works that address the problem of CEP rule generation
from different perspectives. A detailed study of the different approaches is
necessary to understand the intrinsic novelties of our approach.

For a better understanding of the different proposals, it is convenient to
classify them. In this paper we will classify them according to two criteria. The
first criterion is the need to have prior rules for the generation of new CEP
rules. The second criterion consists of the need to label the different events in
the training data for the approach to learn, i.e. supervised or unsupervised.
Table 1 shows a comparison of all the papers analyzed in this section.

3.1 Supervised with prior rules

In this group we find proposals that require labeled training datasets and prior
rules and aim to update existing patterns. This makes it possible to generate
new rules that offer better results than the original ones. A work that fits in
this category is the one proposed by Yunhao Sun et al. [18]. In this work, a
historical set of training data and CEP rules are used. First, a loss function
is used, which is obtained from the error of the previous rule measurements
with respect to the actual labelled results. A loss function and an activation
function are used to filter out rules that are considered bad based on a manually
defined threshold. Using the remaining rules, a given set of support vectors
is determined to build a coverage region for each class. Finally, updated rules
are created by the projection of regional boundary This work is interesting
although it addresses the problem of updating rather than generating new
rules.

In the work proposed by Nathan Tri Luong et al. [19], CEP is used to
preprocess the data , while Tensor Flow is used to implement and additional
component that performs the training and classifications of the different events.
In this type of approach, CEP rules only perform the processes prior to training
and classification. The limitation of this architecture is that the bottleneck can
be transferred to the component in charge of performing the classifications.
This results in not taking full advantage of the capacity of CEP engines to
process a large amount of data.

3.2 Supervised without prior rules

In this group we find proposals that do not require prior rules, but label com-
plex events based on historical data. A paper in this category is that of Bruns
et al. [20]. This paper succeeds in adapting the bat algorithm to the CEP rule
search by structuring the different CEP operators, attribute values and time
windows in the form of a tree. In this way the algorithm determines these val-
ues in the rule they represent. The results they obtain average an F1 score of
0.9923, and are achieved using an unusual algorithm in the CEP context. The
only limitation of the proposal, in addition to required labeling for training,

160

Springer Nature 2021 LATEX template

6 Article Title

is that it needs a definition of the complex events as a function of the simple
events. This is not always easy without prior rules.

Another work that manages to extract rules automatically without prior
rules is the one proposed by Roldán-Gómez et al. [21]. In this case, the rules
are constructed from the prediction of the value of the most important feature
for a category. If the difference between the actual value and the prediction
exceeds a threshold, this simple event does not correspond to a category. This
article is able to detect all attacks, although the main limitation of this work
is the difficulty that may exist in generating certain rules based only on a key
variable and an expected value.

A natural evolution of the previous work is seen in the work of Roldán-
Gómez et al. [22]. In this work authors reduce the dimensions of individual
events using Principal Component Analysis (PCA), thereby achieving two
goals. The first is to simply characterize the individual events, the second is to
drastically improve the performance of the CEP engine and the system net-
work by reducing the dimension of the individual events. From the labels of the
individual events, the averages of the reduced events are calculated. The rule
consists of a Euclidean distance weighted by the weights of each component of
the reduced event. This difference is compared with the sum of errors of each
component weighted again with the weights of each component and with the
standard deviation of each component. The results obtained from this study
show an average F1 score of 0.9878, in addition to the reduction of the event
size and the consequent improvement of the performance of the network and
the CEP engine. A small limitation of this work is that it is a supervised way
to calculate the rule for each category.

3.3 Unsupervised with prior rules

This group is the least common as it requires unsupervised training and the
existence of rules capable of detecting items of interest. However, we can find
works such as the work of Ren et al. [14]. This one focuses on optimizing perfor-
mance in IoT environmentsas main differentiation factor from other proposals.
To achieve this goal, a micro CEP engine and a model based on Tensorflow
Lite Micro with pre-trained neural networks are used. These neural networks
(either supervised or unsupervised such as autoencoders) can be updated to
adapt to the changing behavior of a real system. The main change of this
proposal with respect to the others analyzed is that the output of these neu-
ral networks feeds the CEP engine, which has manually defined rules. It may
seem that this proposal does not fall within the scope of automatic CEP rule
generation. However, it is possible to generate simple rules that detect the out-
put of neural networks. The main limitation of this proposal is that the CEP
rules are defined manually, unlike our proposal in which they are generated
automatically.

Chapter 7. An Automatic Unsupervised Complex Event Processing Rules
Generation Architecture for Real-Time IoT Attacks Detection

161

Springer Nature 2021 LATEX template

Article Title 7

Reference Unsupervised Need for prior rules Novelty / Highlight

[18] No Yes Pre-filtering rules before training improves performance.
[19] No Yes It uses CEP to perform data preprocessing.
[20] No No It uses Bat algorithm to generate new rules.
[21] No No It compares the prediction of key features with their actual values.
[22] No No PCA allows rules to be generated with high performance.
[14] Yes Yes Defined CEP rules and pretrained neural networks will generate efficient CEP rules.
[23] Yes No It uses GRU and Furia to generate CEP rules in an unsupervised manner
This work Yes No PCA and GMM enable unsupervised generation of high-performance CEP rules

Table 1 Comparison of the works analyzed.

3.4 Unsupervised without prior rules

In this group we find proposals that do not require prior rules or labels on the
data. Some works mainly focus on labeling simple events and then use known
rule extraction algorithms. The work by Simsek et al. [23] performs a study
using different classifiers to label simple events, then uses the most common
algorithms for rule extraction. Their conclusions show that Gated Recurrent
Unit (GRU) together with the FURIA algorithm obtain the best results in
their experiments. The value of this work lies in the comparison made with
different algorithms. The fundamental disadvantages of this approach lie in the
large amount of data required for deep learning models and the computational
cost involved.

Our proposal would fall into this category. The novelty is that we achieve an
unsupervised proposal and without the need for prior rules while performing
event dimension reduction, this improves the computational performance. In
addition, our proposal is able to work correctly training with few samples, this
is an advantage over proposals based on deep learning. Finally, the performed
implementation facilitates the creation and update of new rules in a changing
system.

4 Proposed architecture

This section describes the architecture for recognizing real-time IoT attack
patterns. Figure 1 illustrates a graphical scheme of the architecture. Our pro-
posal focuses on the automatic CEP rule generator and the training data is
obtained from the IoT network. As discussed earlier these packets are not
labeled and feed the CEP rule generator.

The CEP rule generator is composed of four phases. First, after prepro-
cessing, we find the PCA phase, which is responsible for generating the PCA
model and reducing the dimensionality of network traffic. Next we find the
GMM phase, which is in charge of performing the clustering process to obtain
the different families of packages. Since it is necessary to establish a thresh-
old for each family to differentiate them from anomalous traffic and/or other
families, this is performed in the Threshold phase. Finally, the Sending phase
sends the rule parameters to the CEP engine.

These phases are discussed in detail below.

162

Springer Nature 2021 LATEX template

8 Article Title

4.1 Preprocessing

Before the first phase, it is necessary to perform a preprocessing so that the
data can be consumed by the PCA model for training. In our case we have
performed the following steps in the preprocessing:

• Filling of empty fields. The existence of different protocols results in certain
characteristics that are not present in all network packets. PCA does not
support these empty values, so it is necessary to fill them in. In our case these
fields are filled with value ”-1”, this is because there are no negative values
in the features, in this way we remarkably emphasize this empty feature.

• Categorization of non-numerical features. Non-numerical features that are
represented by text or another type of label do not allow training a PCA
model. To solve this problem a one-hot encoding scheme is used. This allows
each category to be identified as a binary feature.

• Scaling of values. PCA is conditioned by the scales of the features. This
means that variables with very high values have more weight in the model.
To solve this problem, we use a min-max scaler. This allows us to equalize
the scales of the different features.

4.2 PCA phase

This phase is responsible for generating (or updating if it is not the first gen-
eration) the PCA model using the input traffic. PCA is a statistical method
whose objective is to reduce the complexity of a sample space by reducing the
dimensions of that space. Thus, if we have an element x ∈ R n represented by
n variables, the objective is to find a representation with m variables where
m << n. These new variables are obtained by linear combinations of the orig-
inal ones. Each new variable is known as a component and each component
is linearly independent of the other components. The goal of PCA is to max-
imize the amount of information represented by each component. Thus, if an
element x ∈ X in a given dataset X is composed of the vector of variables
x = {x1, x2, ..., xn}, the new variables of the vector x′ = {x′

1, x
′
2, ..., x

′
m} with

x′ ∈ X ′ will have the representation that we can see in Eq.1:

X ′ = X ∗W (1)

where W is a n-by-m matrix of weights whose columns are the first m eigen-
vectors of XT .X, ordered according to their eigenvalues. An advantage of this
model is the ease of converting an element from the original space to the
reduced one when we have the PCA model trained.

Each resulting component collects an amount of information, this amount
is called the explained variance ratio rv. The first components always have a
higher rv than the last ones. In an ideal and perfectly linear scenario, the sum
of the explained variance ratios of all the components could be 1. In practice
we seek to approximate this as closely as possible while keeping the dimension
reduction as high as possible.

Chapter 7. An Automatic Unsupervised Complex Event Processing Rules
Generation Architecture for Real-Time IoT Attacks Detection

163

Springer Nature 2021 LATEX template

Article Title 9

To implement our proposal we use incremental PCA [24], this version allows
to recalculate the model, i.e. the new eigenvectors Wn+1 if new data are added,
using the existing eigenvectors Wn with their corresponding eigenvalues and
covariance matrix of the current PCA model, plus the new samples Xn+1. In
this way it is not necessary to generate a new model from scratch, and/or
to store the previous samples Xn in memory, if new training data arrives.
Instead, it is possible to obtain an estimate of the n + 1 iteration using the
eigenvectors and eigenvalues of n. This makes it possible to obtain new PCA
models incrementally from already trained PCA models. The advantage of this
is that we do not have to train from scratch the PCA model in each iteration,
thus achieving a lighter training in new iterations.

Once the trained PCA model is obtained, it is sent to the IoT network
broker, this model is also used to reduce the input traffic. We also extract
the variance ratios explained in each component, and we obtain the diagonal
matrix of them that will be further used for thresholding purposes in Section
4.4. This reduction is necessary for the following stages.

4.3 GMM phase

Once we have reduced the dimensionality of the traffic, Gaussian Mixture
Models (GMM) are used to cluster the traffic into different families.

GMM is a probabilistic model that assumes that for a data set X there
are K normal distributions representing all C categories present in the data,
within which all X elements are found. The goal of GMM is to find the best
combination of the parameters for the K normal distributions. In this way we
can group the elements into K different families or groupings.

p(xi) = ΣK
k=1p(xi|ck)p(ck) (2)

Eq. 2 describes the probability of element xi ∈ X as the sum of composite
probabilities it has of belonging to each family, such that p(xi) = 1. This
means that GMM assumes that all elements lie within these distributions, as
discussed above.

p(xi) = ΣK
k=1πkN (xi|µk,Σk) (3)

Eq. 3 represents the GMM model as a linear combination of the K normal
distributions. So that πk is the mixing coefficient for each distribution and
provides an estimate for each of the normal distributions.

On the other hand N (x|µk,Σk) is called the mixture model component, it
models and describes each of the normal distributions, µk is the mean and Σk

is the covariance.
The main advantage of GMM is that it allows some flexibility in each

category, so that 2 normal distributions can be very different, and it does
not have a bias for circular groups and works well even in certain non-linear
distributions [25].

In this case a variational version of the algorithm is used [26], which allows
to infer an optimal number of normal distributions. The objective of using this

164

Springer Nature 2021 LATEX template

10 Article Title

version is not to have to indicate the number of K families a priori, this allows
the process to be completely unsupervised, since we do not need to know a
priori how many families or grouping are composing the normal traffic and
how many different types of attacks we may be exposed to.

In conclusion, GMM allows us to generate families without the need to
label the training data previously, where each family is defined by its mean µk

and covariance matrix Σk.
GMM has to be recalculated with training data from previous iterations

on the new PCA model [26]. This is because each iteration modifies the PCA
model, this causes the original distributions to be useless in the new model.

4.4 Threshold phase

At this stage, the threshold is calculated for each family k using the Maha-
lanobis distance. The Mahalanobis distance is a distance function that takes
into account the covariance matrix to weight it [27]. The fundamental advan-
tage of the Mahalanobis distance is that it takes into account the scale
differences that may exist between the different variables and families as well
as the correlation that may exist between variables.

In this proposal we use the Mahalanbois distance to see the difference
of each element reduced by PCA with respect to the categories previously
obtained with GMM.

d(x, {µk,Σk}) =
√

(x− µk)
T
Σ−1

k (x− µk) (4)

The Eq. 4 describes how the difference between the element x and the mean
of a category µk is calculated. Σ−1 represents the inverse covariance matrix. Its
inclusion in the distance equation implies a weighing of such distance function,
is that families with smaller covariances (more compact families) result in
larger distances in relative terms regarding more sparse families.

In our particular case, as we apply the Mahalanobis distance to the reduced
elements resulting from PCA. To account for the differences in explained vari-
ance ratio of the different PCA components, we improve the distance function
by using the ratios as weights as indicated in eq. 5.

d(x, {µ,Σ}) =
√

(x− µ)
T
(Σ−1 × V E) (x− µ)) (5)

In this way, our distance function will give more weight to the components
with a higher rv. The first step is to obtain the V E matrix as the diagonal
matrix with the explained variance ratios of each component. Eq. 6 shows how
the matrix we use to weight the explained variance ratios is obtained.

V E = diag(rv1, rv2, ..., rvm) (6)

Using the Eq. 5, each element is compared to the mean of each family. Once
we have all the distances we can calculate the threshold for that family, using

Chapter 7. An Automatic Unsupervised Complex Event Processing Rules
Generation Architecture for Real-Time IoT Attacks Detection

165

Springer Nature 2021 LATEX template

Article Title 11

the farthest element of the family with respect to the mean and the closest
non-family element with respect to the family mean. With these distances we
calculate the midpoint, which defines the threshold for that category k.

dmax = max {d(x, {µk,Σk})},∀x ∈ k (7)

dmin = min {d(x, {µk,Σk})},∀x /∈ k (8)

Thk = (dmax − dmin)/2 (9)

Equation 7 and 8 define how to obtain the element farthest from the mean
of a family k and the closest outside the family k respectively. With these
elements, obtaining the threshold is simple as we can see in equation 9.

Proposed architecture

Dynamic CEP rules generator

PCA Phase

Incremental PCA
training

Reduction with
PCA

GMM Phase

GMM training and
clustering

Extraction of means
and covariance matrix

Threshold Phase

Calculation of distances
from the means
and obtaining
covariances

Calculation of the
threshold for each

family

Sending Phase

Sending of CEP rules

Training Traffic

Normal traffic

Attacks traffic

CEP rule

CEP rules Parameters

CEP Engine

CEP rules

IoT Network
MQTT clients

Client 1 Client 2

Client n-1 Client n

MQTT Broker

Attack Alerts

Alerts received

Reduced
Network traffic

Detected
attacks

CEP rules
parameter

CEP rules
parameters

Modelo PCA

Network traffic Network traffic

New iteration

Fig. 1 Diagram of the proposed architecture to detect IoT attacks in real time.

4.5 Sending phase

At this stage the rule parameters are sent to the CEP engine. The parameters
sent for each rule are the numerical identifier of the rule, the iteration number,
the covariance matrix of the PCA model, the threshold for the specific rule
family and the mean of each component of that specific family. The Siddhi
code is sent the first time, but it is not necessary to send it again in the
following iterations. This allows us to generate dynamic CEP rules, which is a
very interesting novelty of our proposal.

Regarding the operation of dynamic CEP rules, when the CEP rule gen-
erator generates new rules, it is not necessary to generate a new Siddhi file,

166

Springer Nature 2021 LATEX template

12 Article Title

which is used to generate an application in the Siddhi engine, instead it makes
use of dynamic tables containing the parameters of the current rules. This
implementation advantage reduces the network data transfer when updating
or generating new rules, and greatly facilitates the implementation, creation
and update.

Once in operation, the broker reduces the packets with PCA and sends
them to the CEP engine. With these reduced packets, the distance of the same
packet with respect to the average of each family is calculated with Eq. 5, if
this distance is less than the threshold of that family, the packet is considered
to belong to that family. In case a packet does not fall within the threshold of
any family, that packet is considered to be an anomaly.

The Siddhi application can be seen in Listing 1. There are 3 input
streams, which can be identified with the directive source. The first one, called
ReducedEvent, is used to receive the simple events previously reduced with the
PCA model. The second, defined as ClearEvent, is used to clear the parameters
of a particular iteration. The third, named as ThresholdParameters, is used to
add the parameters of a new iteration to the parameter table. The MeanDif-
fEvent and ComputedMeanDiffEvent streams are intermediate streams used to
store the difference from the mean and the difference from the weighted mean
respectively. DetectedEvent stores the events detected by the rules. The imple-
mentation of the Eq. 5 is carried out in the last three code blocks. Although
they can be unified in a single block, this would worsen their readability.

The great advantage of this implementation is that creating or updating
rules is simply a matter of updating the table because the structure is main-
tained. This coupled with the unsupervised operation of the proposal offers a
solution that can be deployed without the need for a domain expert.

We can also observe that the CEP engine can request new iterations to
the rule generator. In our experiments these new iterations are defined by the
training datasets, this allows us to generate reproducible experiments. In a
real deployment, new iterations could be initiated when a certain number of
anomalies are obtained, or when a specific time elapses. This will depend on
the type of network and applications.

5 Experiments and results

This section describes the experiments performed, and the results are analyzed
and discussed.

The scenario we propose is an MQTT network with three legitimate clients
and a broker. The clients generate numerical data and send it to the broker,
this allows to simulate a temperature sending scenario. To demonstrate that
unknown attacks are correctly detected and , different attacks have been imple-
mented to demonstrate the correct operation of our proposal. The attacks are
the following:

• Subscription fuzzing : This attack consists of trying to subscribe to different
topics, it can be used when we have access to an MQTT system.

Chapter 7. An Automatic Unsupervised Complex Event Processing Rules
Generation Architecture for Real-Time IoT Attacks Detection

167

Springer Nature 2021 LATEX template

Article Title 13

Traffic type Training packets/events Testing packets/events

Normal Traffic 7936 (50%) 7936 (50%)
Subscription Fuzzing 3277 (80%) 820 (20%)
Disconnection Wave 3000 (15%) 17000 (85%)
TCP Syn Scan 901 (90%) 101 (10%)
UDP Port Scan 530 (90%) 59 (10%)
Telnet 452 (90%) 51 (10%)
Xmas Scan 900 (90%) 100 (10%)

Table 2 Distribution of the dataset used.

• Disconnection wave: It consists of spoofing the id of the MQTT protocol and
launching the disconnect command, if not configured correctly it is possible
to steal the id of the legitimate device and expel it from the system. The
goal of this attack is to disconnect all devices from the system.

• TCP syn scan: This is the classic scanner used to check which TCP ports
are open. The attacker starts with a SYN packet. If he receives a SYN/ACK
he assumes the port is open, if he receives an RST he assumes it is closed.

• UDP scan: This involves sending UDP packets to each port to be scanned,
if a UDP response is received the port is considered open, if no response
is received the position is open or filtered, a packet of type ICMP port
unreachable error means that the port is closed and any other type of ICMP
error means that the port is filtered.

• Xmas scan: This is a rather unusual scanner nowadays, however we use it
in the scenario because it is different from the UDP and TCP SYN scanner.
It involves sending to each TCP port a packet with the FIN, PSH and URG
flags set to 1. If no response is received the port is considered open or filtered,
if an RST is received it is considered a closed port, if any ICMP packet is
received unreachable error it is considered a filtered port.

• Telnet connection: These are packages that try to connect via Telnet with
different users and passwords, to simulate the first stage of Mirai. The idea
is to test the proposal against a very usual scenario [28].

The training and testing datasets are generated by collecting the nor-
mal packets and the attacks. The dataset is accessible from the fol-
lowing repository https://data.mendeley.com/datasets/pzhm3jnw6w/draft?
a=1565272f-bc8b-4eac-a566-11ec45124a44 [29]. The distribution of the dataset
can be seen in Table 2. Each event is considered a separate attack in our exper-
iments so that we can more accurately measure the effectiveness of the CEP
rules.

Two different experimentation scenarios have been generated. In both
experiments, PCA models with m = 4 have been generated, which means that
4 components are used.

168

Springer Nature 2021 LATEX template

14 Article Title

Iteration number
Traffic type 1 2 3 4 5 6 7

Normal traffic X X X X X X X
Subscription Fuzzing A X X X X X X
Disconnection Wave A X X X X X
TCP Syn Scan A X X X X
UDP Port Scan A X X X
Telnet A X X
Xmas Scan A X

Table 3 Data input at each iteration in experiment 1.

5.1 Experimental Scenario 1: Detecting new attacks

The first scenario seeks to demonstrate that the proposed architecture is capa-
ble of detecting new attacks in an unsupervised and incremental manner. The
experiments of this first scenario are performed in several iterations. In the
first iteration we train only with normal packets, since this would be the usual
case when the architecture is deployed for the first time. However, please note
that it is possible for our framework to do the first training with attack packets
without problem. From the first iteration onwards, new attacks are introduced
in each iteration and the model is retrained with the packets that have not
been classified as belonging to any of the existing GMM families (i.e. their
distance to all families if larger than the learned thresholds). by any previous
rule. Please note that the predictions given by our system are used in the fol-
lowing iterations for retraining and not the real groups, in order to preserve
the unsupervised setting and not to require annotated groundtruth by human
experts. This means that high misclassification could potentially lead to con-
tamination of the exiting family models or creation of incorrect rules if the
performance of the system was poor. This is applicable to both experiments.

An important detail to take into account is that the first time an attack
is detected it will not be included in any CEP rule because it is an anomaly.
With the subsequent training of the model with the new data, the new CEP
rule will be generated. Table 3 shows the input of the different attacks in
each iteration. Each row represents one type of traffic and each column one
iteration of the experiment. The character X represents the testing dataset,
the character A represents the training dataset, which is an anomaly in that
particular iteration.The following conventional metrics are used to evaluate
the results of these experiments:

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• F1Score = 2 · Precision·Recall
Precision+Recall

Where TP are the true positives, FP are the false positives and FN are
the false negatives.

Thus a high Recall score means that a CEP rule detects many events that
actually belong to that family, a high Precision score means that that CEP

Chapter 7. An Automatic Unsupervised Complex Event Processing Rules
Generation Architecture for Real-Time IoT Attacks Detection

169

Springer Nature 2021 LATEX template

Article Title 15

Iteration number
Traffic type 1 2 3 4 5 6 7 8 9

Normal traffic X1 X2 X3 X3 X3 X3 X3 X3 X3

Subscription Fuzzing A X1 X2 X3 X3 X3 X3 X3 X3

Disconnection Wave A X1 X2 X3 X3 X3 X3 X3

TCP Syn Scan A X1 X2 X3 X3 X3 X3

UDP Port Scan A X1 X2 X3 X3 X3

Telnet A X1 X2 X3 X3

Xmas Scan A X1 X2 X3

Table 4 Data input at each iteration in experiment 2.

rule does not detect many false positives. Finally F1 Score makes use of the
two scores to obtain a balanced metric between the two.

Table 5 shows the results of the first experiment scenario. We can observe
how the proposal behaves when new attacks appear and how it converges to a
system capable of detecting and correctly classifying the packets of the different
attacks. An important detail that we can verify in the fifth iteration is that
a single rule is generated to detect UDP and TCP scans, this is because they
present a very similar behavior and characterization. This unification of both
attacks demonstrates the capacity of the generated rules to classify attacks
based on their behavior. An important detail, which highlights the system’s
ability to detect anomalies, is that the first time a new attack is sent, there
are no CEP rules for that attack.

5.2 Experimental Scenario 2: Detecting new attacks and
updating existing ones

It has been shown that rules generated in one iteration are able to detect
attacks of the same attack in the following iterations. However our system
is able not only to retrain when new events arrive, but also to incrementally
improve the model for existing events/attacks when more data is available.
This means that we can also update previous rules to make them more accu-
rate. This experiment tries to check what happens when we keep feeding the
model with events iteratively, regardless if they are classified in existing or new
attacks. The objective is to check if there is an improvement when new events
of each family are introduced progressively.

In the second experiment the testing dataset X is divided into 3 datasets
X1, X2 and X3. These datasets have the same size, that is one third of the
size of the testing dataset X as shown in Table 2. The training dataset A of
each type of traffic is similar to the previous experiment. Figure 4 shows the
datasets entering each iteration. The training dataset A of each type of traffic
is detected as an anomaly, as in experiment 1. The novelty of this scenario is
that this training now continues with the first and second testing datasets (X1

and X2) that go on to train the model once they have been detected by the
CEP rules. The third testing set of each dataset X3 never trains the model.

170

Springer Nature 2021 LATEX template

16 Article Title

Iteration Number Traffic type TP FP TN FN Precision Recall F1 score

1 Normal Traffic 7780 0 3277 156 1 0.9893 0.9900
1 Subscription Fuzzing (Anomaly) 3277 156 7780 0 0.9545 1 0.9767

2 Normal Traffic 7936 0 3820 0 1 1 1
2 Subscription Fuzzing 819 0 10936 1 1 0.9987 0.9993
2 Disconnection Wave (Anomaly) 3000 1 8755 0 0.9996 1 0.9998

3 Normal Traffic 7780 0 18721 156 1 0.9803 0.9900
3 Subscription Fuzzing 819 0 25837 1 1 0.9987 0.9993
3 Disconnection Wave 16999 0 9657 1 1 0.9999 0.9999
3 TCP Syn Scan (Anomaly) 901 158 25598 0 0.8508 1 0.9193

4 Normal Traffic 7780 0 18451 156 1 0.9803 0.9900
4 Subscription Fuzzing 819 0 25567 1 1 0.9987 0.9993
4 Disconnection Wave 16999 0 9387 1 1 0.9999 0.9999
4 TCP Syn Scan 101 1 26285 0 0.9901 1 0.9950
4 UDP Port Scan (Anomaly) 530 157 25700 0 0.7714 1 0.8709

5 Normal Traffic 7780 0 18432 156 1 0.9803 0.9900
5 Subscription Fuzzing 819 0 25548 1 1 0.9987 0.9993
5 Disconnection Wave 16999 0 9368 1 1 0.9999 0.9999
5 TCP Syn + UDP Port Scan 160 2 26206 0 0.9876 1 0.9937
5 Telnet (Anomaly) 451 157 25759 1 0.7417 0.9977 0.8509

6 Normal Traffic 7780 0 18931 156 1 0.9803 0.9900
6 Subscription Fuzzing 819 0 26047 1 1 0.9987 0.9993
6 Disconnection Wave 16999 0 9867 1 1 0.9999 0.9999
6 TCP Syn + UDP Port Scan 160 1 26706 0 0.9937 1 0.9968
6 Telnet 51 0 26816 0 1 1 1
6 Xmas Scan (Anomaly) 900 157 25810 0 0.8514 1 0.9197

7 Normal Traffic 7780 0 18131 156 1 0.9803 0.9900
7 Subscription Fuzzing 819 0 25247 1 1 0.9987 0.9993
7 Disconnection Wave 16999 0 9067 1 1 0.9999 0.9999
7 TCP Syn + UDP Port Scan 160 1 25906 0 0.9937 1 0.9968
7 Telnet 51 0 26016 0 1 1 1
7 Xmas Scan 100 0 25967 0 1 1 1

Table 5 Results of the first experiment scenario.

This is done in order to be able to correctly evaluate the CEP rules at each
iteration.

Table 6 shows the results of the second set of experiments. An average
F1 score of 0.9938 was obtained, even slightly better than those obtained in
the first scenario. The first detection of each attack is the most improved in
this new scenario. These results seem to indicate that a training reinforcement
for previously learned rules can improve the classification of CEP rules,while
keeping the ability to add unseen attacks to the rule base.

Chapter 7. An Automatic Unsupervised Complex Event Processing Rules
Generation Architecture for Real-Time IoT Attacks Detection

171

Springer Nature 2021 LATEX template

Article Title 17

Iteration Number Traffic type TP FP TN FN Precision Recall F1 score
1 Normal Traffic (Test 1) 2593 0 3277 52 1 0.9803 0.9900
1 Subscription Fuzzing (Training) 3277 52 2593 0 0.9843 1 0.9921
2 Normal Traffic (Test 2) 2592 0 3273 53 1 0.9799 0.9898
2 Subscription Fuzzing (Test 1) 273 0 5645 0 1 1 1
2 Disconnection Wave (Training) 3000 53 2865 0 0.9826 1 0.9912
3 Normal Traffic (Test 3) 2594 0 6840 51 1 0.9807 0.9902
3 Subscription Fuzzing (Test 2) 273 0 9212 0 1 1 1
3 Disconnection Wave (Test 1) 5665 0 3819 1 1 0.9998 0.9999
3 TCP SYN Scan (Training) 901 52 8532 0 0.9454 1 0.9719
4 Normal Traffic (Test 3) 2594 0 6502 51 1 0.9807 0.9902
4 Subscription Fuzzing (Test 3) 273 0 8874 0 1 1 1
4 Disconnection Wave (Test 2) 5665 0 3481 1 1 0.9998 0.9999
4 TCP SYN Scan (Test 1) 33 0 9114 0 1 1 1
4 UDP Port Scan (Training) 530 52 8565 0 0.9106 1 0.9532
5 Normal Traffic (Test 3) 2594 0 6443 51 1 0.9807 0.9902
5 Subscription Fuzzing (Test 3) 273 0 8815 0 1 1 1
5 Disconnection Wave (Test 3) 5665 0 3422 1 1 0.9998 0.9999
5 TCP SYN Scan (Test 2)+UDP Port Scan (Test 1) 52 0 9036 0 1 1 1
5 Telnet (Training) 452 52 8584 0 0.8968 1 0.9456
6 Normal Traffic (Test 3) 2594 0 6908 51 1 0.9807 0.9902
6 Subscription Fuzzing (Test 3) 273 0 9280 0 1 1 1
6 Disconnection Wave (Test 3) 5665 0 3887 1 1 0.9998 0.9999
6 TCP SYN Scan (Test 3)+UDP Port Scan (Test 2) 52 0 9501 0 1 1 1
6 Telnet (Test 1) 17 0 9536 0 1 1 1
6 Xmas Scan (Training) 900 52 8601 0 0.9453 1 0.9719
7 Normal Traffic (Test 3) 2594 0 6041 51 1 0.9807 0.9902
7 Subscription Fuzzing (Test 3) 273 0 8413 0 1 1 1
7 Disconnection Wave (Test 3) 5665 0 3020 1 1 0.9998 0.9999
7 TCP SYN Scan (Test 3)+UDP Port Scan (Test 3) 52 0 8634 0 1 1 1
7 Telnet (Test 2) 17 0 8669 0 1 1 1
7 Xmas Scan (Test1) 33 0 8653 0 1 1 1
8 Normal Traffic (Test 3) 2594 0 6041 51 1 0.9807 0.9902
8 Subscription Fuzzing (Test 3) 273 0 8413 0 1 1 1
8 Disconnection Wave (Test 3) 5665 0 3020 1 1 0.9998 0.9999
8 TCP SYN Scan (Test 3)+UDP Port Scan (Test 3) 52 0 8634 0 1 1 1
8 Telnet (Test 3) 17 0 8669 0 1 1 1
8 Xmas Scan (Test2) 33 0 8653 0 1 1 1
9 Normal Traffic (Test 3) 2594 0 6041 51 1 0.9807 0.9902
9 Subscription Fuzzing (Test 3) 273 0 8413 0 1 1 1
9 Disconnection Wave (Test 3) 5665 0 3020 1 1 0.9998 0.9999
9 TCP SYN Scan (Test 3)+UDP Port Scan (Test 3) 52 0 8634 0 1 1 1
9 Telnet (Test 3) 17 0 8669 0 1 1 1
9 Xmas Scan (Test3) 33 0 8653 0 1 1 1

Table 6 Results of the second experiment scenario.

172

Springer Nature 2021 LATEX template

18 Article Title

Listing 1 Siddhi application for real-time IoT attack detection

App : name(”DynamicPCAIncremental ”)

@App: d e s c r i p t i on (”Dynamic PCA Test ”)

@source (type=’mqtt ’ , u r l =’ tcp : / / 1 7 2 . 1 8 . 0 . 4 : 1 8 8 3 ’ , t op i c = ’ReducedEvent ’ ,
@map(type = ’ json ’))
d e f i n e stream ReducedEvent (c1 double , c2 double , c3 double , c4 double) ;

d e f i n e stream MeanDiffEvent (idFam int , d1 double , d2 double , d3 double , d4 double ,
c1 double , c2 double , c3 double , c4 double) ;

d e f i n e stream ComputedMeanDiffEvent (idFam int , d1 double , d2 double , d3 double ,
d4 double , cd1 double , cd2 double , cd3 double , cd4 double , c1 double , c2 double ,
c3 double , c4 double) ;

@source (type=’mqtt ’ , u r l =’ tcp : / / 1 7 2 . 1 8 . 0 . 4 : 1 8 8 3 ’ , t op i c = ’ ClearEvent ’ ,
@map(type = ’ json ’))
d e f i n e stream ClearEvent (iterat ionNumber in t) ;

d e f i n e stream DetectedEvent (i t e r a t i o n int , idFam int , c1 double , c2 double ,
c3 double , c4 double) ;

@sink (type=’ log ’)
d e f i n e stream CountEvent (i t e r a t i o n int , idFam int , number long) ;

@source (type=’mqtt ’ , u r l =’ tcp : / / 1 7 2 . 1 8 . 0 . 4 : 1 8 8 3 ’ , t op i c = ’ ParameterTable ’ ,
@map(type = ’ json ’))
d e f i n e stream ThresholdParameters (idRule int , i t e r a t i o n int , m1 double , m2 double ,
m3 double , m4 double , th re sho ld double , x00 double , x01 double , x02 double ,
x03 double , x10 double , x11 double , x12 double , x13 double , x20 double , x21 double ,
x22 double , x23 double , x30 double , x31 double , x32 double , x33 double) ;

@primaryKey (’ idRule ’)
@index (’ idRule ’)
d e f i n e tab l e ParametersTable (idRule int , i t e r a t i o n int , m1 double , m2 double ,
m3 double , m4 double , th re sho ld double , x00 double , x01 double , x02 double ,
x03 double , x10 double , x11 double , x12 double , x13 double , x20 double ,
x21 double , x22 double , x23 double , x30 double , x31 double , x32 double , x33 double) ;

from ThresholdParameters
s e l e c t ∗
i n s e r t in to ParametersTable ;

from ClearEvent
d e l e t e ParametersTable
on iterat ionNumber==ParametersTable . i t e r a t i o n ;

from DetectedEvent
s e l e c t i t e r a t i o n as i t e r a t i on , idFam as idFam , count () as number
group by idFam , i t e r a t i o n
i n s e r t in to CountEvent

from ReducedEvent as re l e f t outer j o i n ParametersTable as pt
s e l e c t pt . idRule as idFam , re . c1−pt .m1 as d1 , re . c2−pt .m2 as d2 , re . c3−pt .m3 as d3 ,
re . c4−pt .m4 as d4 , re . c1 as c1 , re . c2 as c2 , re . c3 as c3 , re . c4 as c4
i n s e r t in to MeanDiffEvent ;

from MeanDiffEvent as md j o i n ParametersTable as pt
on md. idFam==pt . idRule

s e l e c t md. idFam , md. d1 , md. d2 , md. d3 , md. d4 ,
((md. d1∗pt . x00)+(md. d2∗pt . x10)+(md. d3∗pt . x20)+(md. d4∗pt . x30)) as cd1 ,
((md. d1∗pt . x01)+(md. d2∗pt . x11)+(md. d3∗pt . x21)+(md. d4∗pt . x31)) as cd2 ,
((md. d1∗pt . x02)+(md. d2∗pt . x12)+(md. d3∗pt . x22)+(md. d4∗pt . x32)) as cd3 ,
((md. d1∗pt . x03)+(md. d2∗pt . x13)+(md. d3∗pt . x23)+(md. d4∗pt . x33)) as cd4 ,
md. c1 as c1 , md. c2 as c2 , md. c3 as c3 , md. c4 as c4
i n s e r t in to ComputedMeanDiffEvent ;

from ComputedMeanDiffEvent as cm j o i n ParametersTable as pt
on cm. idFam==pt . idRule
s e l e c t pt . i t e r a t i on , cm. idFam , cm. c1 , cm. c2 , cm. c3 , cm. c4
having math : sq r t ((cm. d1∗cm. cd1)+(cm. d2∗cm. cd2)+(cm. d3∗cm. cd3)+(cm. d4∗cm. cd4))
<pt . th re sho ld
i n s e r t in to DetectedEvent ;

Chapter 7. An Automatic Unsupervised Complex Event Processing Rules
Generation Architecture for Real-Time IoT Attacks Detection

173

Springer Nature 2021 LATEX template

Article Title 19

6 Conclusions and future work

This paper proposed an architecture focused on the IoT paradigm that is
capable of generating and updating CEP rules in an unsupervised manner to
detect and classify network IoT attacks in real time without the need of a
domain expert. The integration of CEP and PCA to reduce packet size makes
the architecture optimal for IoT environments.

The rules generated by the proposed architecture work very well. The
results obtained are very good (F1 score of 0.9890) generated in an unsuper-
vised and incremental way, it can be deployed in all types of environments and
learn constantly.

The architecture allows to detect unseen attacks and anomalies success-
fully, then these detected anomalies may be used to retrain the model, so
the new attacks are progressively better defined, generated new CEP rules
automatically and incrementally.

All these obtained conclusions demonstrate that our proposal can be suc-
cessfully deployed in IoT environments with reduced constraints and generate
dynamic unsupervised CEP rules that are able to detect network attacks in
real time.

As future work, we plan to increase the number of protocols and attacks
in experiments to test performance in other contexts. In addition, it is also
interesting to create an ontology to classify new unknown attacks in predeter-
mined families. Finally, it would be interesting to check if this architecture can
be made robust against model poisoning attacks.

Funding

This work was supported by the Spanish Ministry of Science and Inno-
vation and the European Union FEDER Funds [grant numbers FPU
17/02007 RTI2018-093608-B-C33, RTI2018-098156-B-C52 and PID2021-
122215NB-C33]. This work was also supported by JCCM [grant numbers
SB-PLY/17/180501/000353 SBPLY/21/180501/000195], and the Research
Plan from the University of Cadiz and Grupo Energético de Puerto Real S.A.
under project GANGES [grant number IRTP03 UCA].

References

[1] Langley, D.J., van Doorn, J., Ng, I.C.L., Stieglitz, S., Lazovik, A., Boon-
stra, A.: The Internet of Everything: Smart things and their impact
on business models. Journal of Business Research 122, 853–863 (2021).
https://doi.org/10.1016/j.jbusres.2019.12.035. Accessed 2022-07-07

[2] Shilpa, A., Muneeswaran, V., Rathinam, D.D.K., Santhiya, G.A., Sherin,
J.: Exploring the Benefits of Sensors in Internet of Everything (IoE). In:

174

Springer Nature 2021 LATEX template

20 Article Title

2019 5th International Conference on Advanced Computing & Communi-
cation Systems (ICACCS), pp. 510–514 (2019). https://doi.org/10.1109/
ICACCS.2019.8728530. ISSN: 2575-7288

[3] AlZubi, A.A., Al-Maitah, M., Alarifi, A.: Cyber-attack detection in
healthcare using cyber-physical system and machine learning techniques.
Soft Computing 25(18), 12319–12332 (2021). https://doi.org/10.1007/
s00500-021-05926-8

[4] Asghari, P., Rahmani, A.M., Javadi, H.H.S.: Internet of Things appli-
cations: A systematic review. Computer Networks 148, 241–261 (2019).
https://doi.org/10.1016/j.comnet.2018.12.008

[5] Calvo, I., Merayo, M.G., Núñez, M.: A methodology to analyze heart
data using fuzzy automata. Journal of Intelligent & Fuzzy Systems 37(6),
7389–7399 (2019). https://doi.org/10.3233/JIFS-179348

[6] Sajid, M., Harris, A., Habib, S.: Internet of Everything: Applications,
and Security Challenges. In: 2021 International Conference on Innovative
Computing (ICIC), pp. 1–9 (2021). https://doi.org/10.1109/ICIC53490.
2021.9691507

[7] Sadeeq, M.M., Abdulkareem, N.M., Zeebaree, S.R., Ahmed, D.M., Sami,
A.S., Zebari, R.R.: IoT and cloud computing issues, challenges and
opportunities: A review. Qubahan Academic Journal 1(2), 1–7 (2021)

[8] Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E., Markakis,
E.K.: A Survey on the Internet of Things (IoT) Forensics: Challenges,
Approaches, and Open Issues. IEEE Communications Surveys Tutorials
22(2), 1191–1221 (2020). https://doi.org/10.1109/COMST.2019.2962586

[9] Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., Sikdar, B.: A
Survey on IoT Security: Application Areas, Security Threats, and Solution
Architectures. IEEE Access 7, 82721–82743 (2019). https://doi.org/10.
1109/ACCESS.2019.2924045

[10] Mousavi, S.K., Ghaffari, A., Besharat, S., Afshari, H.: Security of internet
of things based on cryptographic algorithms: a survey. Wireless Networks
27(2), 1515–1555 (2021). https://doi.org/10.1007/s11276-020-02535-5

[11] Ferraz Junior, N., Silva, A., Guelfi, A., Kofuji, S.T.: IoT6Sec: reliability
model for Internet of Things security focused on anomalous measurements
identification with energy analysis. Wireless Networks 25(4), 1533–1556
(2019). https://doi.org/10.1007/s11276-017-1610-2

[12] Corral-Plaza, D., Medina-Bulo, I., Ortiz, G., Boubeta-Puig, J.: A stream
processing architecture for heterogeneous data sources in the Internet of

Chapter 7. An Automatic Unsupervised Complex Event Processing Rules
Generation Architecture for Real-Time IoT Attacks Detection

175

Springer Nature 2021 LATEX template

Article Title 21

Things. Computer Standards & Interfaces 70, 103426 (2020). https://doi.
org/10.1016/j.csi.2020.103426

[13] Ortiz, G., Boubeta-Puig, J., Criado, J., Corral-Plaza, D., Garcia-de-
Prado, A., Medina-Bulo, I., Iribarne, L.: A microservice architecture
for real-time IoT data processing: A reusable Web of things approach
for smart ports. Computer Standards & Interfaces 81, 103604 (2022).
https://doi.org/10.1016/j.csi.2021.103604

[14] Ren, H., Anicic, D., Runkler, T.A.: The synergy of complex event pro-
cessing and tiny machine learning in industrial IoT. In: Proceedings of
the 15th ACM International Conference on Distributed and Event-based
Systems. DEBS ’21, pp. 126–135. Association for Computing Machinery,
New York, NY, USA (2021). https://doi.org/10.1145/3465480.3466928

[15] Roldán-Gómez, J., Boubeta-Puig, J., Pachacama-Castillo, G., Ortiz, G.,
Mart́ınez, J.L.: Detecting security attacks in cyber-physical systems:
a comparison of Mule and WSO2 intelligent IoT architectures. PeerJ
Computer Science 7, 787 (2021). https://doi.org/10.7717/peerj-cs.787

[16] Soni, D., Makwana, A.: A survey on mqtt: A protocol of internet of
things(iot). (2017)

[17] Query Guide - Siddhi. https://siddhi.io/en/v5.1/docs/query-guide/
Accessed 2022-07-05

[18] Sun, Y., Li, G., Ning, B.: Automatic Rule Updating based on Machine
Learning in Complex Event Processing. In: 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS), pp. 1338–1343
(2020). https://doi.org/10.1109/ICDCS47774.2020.00176

[19] Luong, N.N.T., Milosevic, Z., Berry, A., Rabhi, F.: An open architec-
ture for complex event processing with machine learning. In: 2020 IEEE
24th International Enterprise Distributed Object Computing Conference
(EDOC), pp. 51–56 (2020). https://doi.org/10.1109/EDOC49727.2020.
00016

[20] Bruns, R., Dunkel, J.: Bat4CEP: a bat algorithm for mining of complex
event processing rules. Applied Intelligence (2022). https://doi.org/10.
1007/s10489-022-03256-2

[21] Roldán, J., Boubeta-Puig, J., Luis Mart́ınez, J., Ortiz, G.: Integrating
complex event processing and machine learning: An intelligent architec-
ture for detecting IoT security attacks. Expert Systems with Applications
149, 113251 (2020). https://doi.org/10.1016/j.eswa.2020.113251

176

Springer Nature 2021 LATEX template

22 Article Title

[22] Roldán-Gómez, J., Boubeta-Puig, J., Castelo-Gómez, J.M., Carrillo-
Mondéjar, J., Mart́ınez, J.L.: Attack Pattern Recognition in the Internet
of Things using Complex Event Processing and Machine Learning. In:
2021 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pp. 1919–1926 (2021). https://doi.org/10.1109/SMC52423.2021.
9658711

[23] Simsek, M.U., Yildirim Okay, F., Ozdemir, S.: A deep learning-based CEP
rule extraction framework for IoT data. The Journal of Supercomputing
77(8), 8563–8592 (2021). https://doi.org/10.1007/s11227-020-03603-5

[24] Ross, D.A., Lim, J., Lin, R.-S., Yang, M.-H.: Incremental Learning for
Robust Visual Tracking. International Journal of Computer Vision 77(1),
125–141 (2008). https://doi.org/10.1007/s11263-007-0075-7

[25] Patel, E., Kushwaha, D.S.: Clustering Cloud Workloads: K-Means vs
Gaussian Mixture Model. Procedia Computer Science 171, 158–167
(2020). https://doi.org/10.1016/j.procs.2020.04.017

[26] Blei, D.M., Jordan, M.I.: Variational inference for Dirichlet process mix-
tures. Bayesian Analysis 1(1), 121–143 (2006). https://doi.org/10.1214/
06-BA104. Publisher: International Society for Bayesian Analysis

[27] De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The Mahalanobis
distance. Chemometrics and Intelligent Laboratory Systems 50(1), 1–18
(2000). https://doi.org/10.1016/S0169-7439(99)00047-7

[28] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E.,
Cochran, J., Durumeric, Z., Halderman, J.A., Invernizzi, L., Kallitsis,
M., et al.: Understanding the mirai botnet. In: 26th USENIX Security
Symposium (USENIX Security 17), pp. 1093–1110 (2017)

[29] Roldán-Gómez, J.: Dataset for An Automatic Unsupervised Complex
Event Processing Rules Generation Architecture for Real-Time IoT
Attacks Detection. Mendeley data (2022)

Chapter 7. An Automatic Unsupervised Complex Event Processing Rules
Generation Architecture for Real-Time IoT Attacks Detection

177

CHAPTER 8

Conclusions and Future Work

This chapter summarizes the conclusions drawn from this doctoral thesis and the lines for
future research.

8.1 Conclusions

The potential of the IoT paradigm and its rapid growth has caught the attention of cyber-
criminals. This has led to a huge growth in both the number of connected IoT devices and
threats targeting IoT devices. Moreover, this growth is not expected to slow down in the
coming years, which inevitably means that this paradigm will require research and im-
provements in many aspects. For this reason, threat detection is the main focus of this
thesis.

It is not easy to adapt classical solutions for addressing these challenges in this paradigm
due to the limitations of the devices. It is therefore necessary to develop new solutions
that can detect known and unknown threats and that can be deployed taking into account
the limitations of the paradigm. To this end, different architectures have been designed,
implemented and evaluated in this thesis, and different experiments have been carried out
to ensure that they can operate effectively and efficiently in IoT environments.

Different goals have been established, and in order to make the conclusions more
schematic, we will list the main conclusions we can draw from each goal. The first objective
was to carry out a study of the state of the art, this being transversal to the realization of the
Thesis. This is necessary to understand what solutions are adopted by other researchers.
The conclusions drawn from this objective are the following:

• The technology and techniques used by this paradigm are constantly evolving, so it
is necessary to carry out the process of analyzing the state of the art on an ongoing
basis.

179

8.1. Conclusions

• The current trend is to useML andDL techniques because signature-based techniques
are not sufficient in a scenario with such constantly-changing and heterogeneous
threats.

• It is essential to take into account the limitations of IoT devices, such as limited com-
puting and memory capacity or low network bandwidth, when implementing any
solution.

The second objective focuses on the creation of a test scenario for the validation of the
different architectures that are generated. The following conclusions can be drawn:

• Since there are no public repositories that contain the attacks we describe, a dataset
has been generated with a base scenario and different attacks.

• These attacks include attacks common to other paradigms (scanners), attacks that
simulate known malware, and attacks designed specifically for the MQTT protocol.

• The dataset generated allows us to validate the different architectures in an IoT sce-
nario.

Objective 3 consists of designing, deploying and validating an architecture to detect
threats in IoT environments on the basis of one or more key features. This objective is
achieved by applying a predictor based on linear regression to detect the expected value of
these features. If these features do not fall within a threshold, that event does not belong
to the family in question. In this way, with CEP rules we are able to detect anomalies.

The key points to highlight are as follows:

• The architecture works correctly and generates effective rules.

• This architecture requires a domain expert to choose the key features.

• The rules generated are capable of detecting events belonging to a category, but also
anomalies when those events do not fall within a normal behavior or a known cate-
gory.

The goal of Objective 4 is to check that the initial proposed architecture is compatible
with another CEP engine to demonstrate that the generation of CEP rules is not limited to
a specific engine, but also to check that the computational performance of these rules is
adequate and which CEP engine is more efficient. This objective is achieved by comparing
an architecture based on Mule ESB and the Esper CEP engine and another implementation
based onWSO2 and the Siddhi CEP engine. Tests with realistic delays and tests in situations
of stress are performed to check in which situations each CEP engine performs better.

The conclusions that can be drawn are as follows:

• Both engines have good computational performance.

• The Mule and Esper architecture is best when comparing different simple events, as
is the case in the initial proposed architecture.

180

Chapter 8. Conclusions and Future Work

• The WSO2-based implementation is best when there is only a single event type, and
it is much better in stressful situations and under high workloads.

• Avoiding the use of two different simple event types in the design of the following
architecture can improve computational performance significantly.

Objective 5 is to for generate a new architecture that defines complete CEP rules for
detecting attacks in real time. In this way, it is not necessary for a domain expert to make a
selection of important features. In addition, PCA is used to reduce the size of single events
and improve network usage and computational performance while facilitating the creation
of CEP rules.

The main conclusions drawn from this objective are as follows:

• The CEP rules generated work well and a domain expert is not required to choose
key features.

• The use of PCA in the creation of CEP rules greatly improves computational perfor-
mance and decreases network usage.

• These rules also allow the detection of anomalies.

• Despite the automation offered by this architecture, it is still necessary to label the
training datasets, i.e., this is supervised learning.

Objective 6 focuses on overcoming the limitation of the previous architecture, i.e., up-
grading the previous architecture to be able to learnwith unsupervised training. This allows
rule generation without the need for a domain expert to be involved at any time.

The conclusions obtained from this objective are as follows:

• The rules generated work efficiently.

• Using GMM to generate anonymous attack families causes it to generate subfamilies
of this attack that are not obvious to domain experts, and improves detection in most
cases.

• These rules also allow the detection of anomalies.

• The use of PCA ensures that the performance improvements obtained in the previous
implementation are maintained.

Therefore, all the objectives have been achieved in this work.

8.2 Conclusiones

El potencial del paradigma IoT y su rápido crecimiento han captado la atención de los
ciberdelincuentes. Esto ha provocado un enorme crecimiento tanto del número de dis-
positivos IoT conectados como de las amenazas dirigidas a dispositivos IoT. Además, no se

181

8.2. Conclusiones

espera que este crecimiento se ralentice en los próximos años, lo que inevitablemente sig-
nifica que este paradigma requerirá investigación y mejoras en muchos aspectos. Por este
motivo, la detección de amenazas es el tema principal de esta tesis.

No es fácil adaptar las soluciones clásicas para abordar estos retos en este paradigma
debido a las limitaciones de los dispositivos. Por lo tanto, es necesario desarrollar nuevas
soluciones que puedan detectar amenazas conocidas y desconocidas y que puedan desple-
garse teniendo en cuenta las limitaciones del paradigma. Para ello, en esta tesis se han dis-
eñado, implementado y evaluado diferentes arquitecturas, y se han llevado a cabo diferentes
experimentos para asegurar que pueden operar de forma efectiva y eficiente en entornos
IoT.

Se han establecido diferentes objetivos, y para que las conclusiones seanmás esquemáti-
cas, enumeraremos las principales conclusiones que podemos extraer de cada objetivo. El
primer objetivo ha sido realizar un estudio del estado del arte, siendo este transversal a la
realización de la Tesis. Esto es necesario para conocer las soluciones adoptadas por otros
investigadores. Las conclusiones extraídas de este objetivo son las siguientes:

• La tecnología y las técnicas utilizadas por este paradigma están en constante evolu-
ción, por lo que es necesario llevar a cabo el proceso de análisis del estado del arte de
forma continua.

• La tendencia actual es utilizar técnicas de ML y DL porque las técnicas basadas en fir-
mas no son suficientes en un escenario con amenazas tan cambiantes y heterogéneas.

• Es fundamental tener en cuenta las limitaciones de los dispositivos IoT, como la lim-
itada capacidad de computación y memoria o el escaso ancho de banda de la red, a la
hora de implementar cualquier solución.

El segundo objetivo se centra en la creación de un escenario de pruebas para la val-
idación de las diferentes arquitecturas que se generen. Se pueden extraer las siguientes
conclusiones:

• Dado que no existen repositorios públicos que contengan los ataques que describimos,
se ha generado un conjunto de datos con un escenario base y diferentes ataques.

• Estos ataques incluyen ataques comunes a otros paradigmas (scanners), ataques que
simulan malware conocido y ataques diseñados específicamente para el protocolo
MQTT.

• El conjunto de datos generado nos permite validar las diferentes arquitecturas en un
escenario IoT.

El objetivo 3 consiste en diseñar, desplegar y validar una arquitectura de detección de
amenazas en entornos IoT en base a una o varias características clave. Este objetivo se
consigue aplicando un predictor basado en regresión lineal para detectar el valor esperado
de estas características. Si estas características no caen dentro de un umbral, ese evento

182

Chapter 8. Conclusions and Future Work

no pertenece a la familia en cuestión. De este modo, con las reglas CEP podemos detectar
anomalías.

Los puntos clave a destacar son los siguientes:

• La arquitectura funciona correctamente y genera reglas eficaces.

• Esta arquitectura requiere un experto en el dominio para elegir las características
clave.

• Las reglas generadas son capaces de detectar eventos pertenecientes a una categoría,
pero también anomalías cuando dichos eventos no entran dentro de un compor-
tamiento normal o de una categoría conocida.

El objetivo 4 es comprobar que la arquitectura inicial propuesta es compatible con otro
motor CEP para demostrar que la generación de reglas CEP no está limitada a un motor
concreto, pero también comprobar que el rendimiento computacional de estas reglas es
adecuado y qué motor CEP es más eficiente. Este objetivo se consigue comparando una
arquitectura basada en Mule ESB y el motor CEP Esper y otra implementación basada en
WSO2 y el motor CEP Siddhi. Se realizan pruebas con retardos realistas y pruebas en situa-
ciones de estrés para comprobar en qué situaciones rinde mejor cada motor CEP.

Las conclusiones que se pueden extraer son las siguientes:

• Ambos motores tienen un buen rendimiento computacional.

• La arquitectura Mule y Esper es mejor cuando se comparan diferentes eventos sim-
ples, como es el caso de la arquitectura inicial propuesta.

• La implementación basada en WSO2 es mejor cuando sólo hay un único tipo de
evento, y es mucho mejor en situaciones de estrés y bajo altas cargas de trabajo.

• Evitar el uso de dos tipos de eventos simples diferentes en el diseño de la siguiente
arquitectura puede mejorar significativamente el rendimiento computacional.

El objetivo 5 es generar una nueva arquitectura que defina reglas CEP completas para
la detección de ataques en tiempo real. De este modo, no es necesario que un experto en el
dominio haga una selección de las características importantes. Además, se utiliza PCA para
reducir el tamaño de los eventos individuales y mejorar el uso de la red y el rendimiento
computacional, facilitando al mismo tiempo la creación de reglas CEP.

Las principales conclusiones extraídas de este objetivo son las siguientes:

• Las reglas CEP generadas funcionan bien y no se requiere un experto en el dominio
para elegir las características clave.

• El uso de PCA en la creación de reglas CEP mejora en gran medida el rendimiento
computacional y disminuye el uso de la red.

• Estas reglas también permiten detectar anomalías.

183

8.3. Future Work

• A pesar de la automatización que ofrece esta arquitectura, sigue siendo necesario
etiquetar los conjuntos de datos de entrenamiento, es decir, se trata de aprendizaje
supervisado.

El objetivo 6 se centra en superar la limitación de la arquitectura anterior, es decir, mejorar la
arquitectura anterior para que sea capaz de aprender con un entrenamiento no supervisado.
Esto permite la generación de reglas sin necesidad de que intervenga en ningún momento
un experto en el dominio.

Las conclusiones obtenidas de este objetivo son las siguientes:

• Las reglas generadas funcionan eficientemente.

• El uso de GMM para generar familias de ataques anónimos hace que genere subfa-
milias de este ataque que no son obvias para los expertos del dominio, y mejora la
detección en la mayoría de los casos.

• Estas reglas también permiten detectar anomalías.

• El uso de PCA garantiza el mantenimiento de las mejoras de rendimiento obtenidas
en la implementación anterior.

Por tanto, en este trabajo se han alcanzado todos los objetivos.

8.3 Future Work

Although we have addressed many problems during the development of this doctoral dis-
sertation, there are still several factors that can be improved. We did not address these here
as they are beyond the scope of the main work.

Firstly, the number of protocols and attacks could be increased in order to test the per-
formance of the different architectures. This would make it possible to test a larger number
of CEP rules and to have a more heterogeneous scenario.

The creation of heterogeneous scenarios could be a limitation for PCA. This algorithm
tends to perform worse when it fails to find linear combinations between features to gen-
erate components. For this reason it would be interesting to make use of Kernel Principal
Component Analysis (KPCA) [48]. This algorithm allows the generation of projections so
that nonlinear distributions approach linearity. Checking whether this algorithm is able to
work with our architecture would be very interesting. In addition, it would also be inter-
esting to test other dimensionality reduction algorithms with the proposal.

Another interesting project would be the creation of an ontology that allows us to reg-
ister the events detected with rules generated in an unsupervised way within general cate-
gories. In this way we could detect unknown attacks and also know what type of attack is
involved.

184

Chapter 8. Conclusions and Future Work

The retraining process that the final proposed architecture is capable of performing
could be targeted by model poisoning attacks if a malicious IoT device manages to enter the
network. A useful improvement would be to design, implement and evaluate a mechanism
that avoids this type of attacks in our architecture as far as possible.

Finally, another future line of work is to apply our architectures to other domains such
as Industry 4.0. and smart cities.

185

Bibliography

[1] A. A. AlZubi, M. Al-Maitah, and A. Alarifi, “Cyber-attack detection in healthcare us-
ing cyber-physical system and machine learning techniques,” Soft Computing, vol. 25,
no. 18, pp. 12 319–12 332, Sep. 2021.

[2] P. Asghari, A. M. Rahmani, and H. H. S. Javadi, “Internet of Things applications: A
systematic review,” Computer Networks, vol. 148, pp. 241–261, Jan. 2019.

[3] I. Calvo, M. G. Merayo, and M. Núñez, “A methodology to analyze heart data using
fuzzy automata,” Journal of Intelligent & Fuzzy Systems, vol. 37, no. 6, pp. 7389–7399,
Jan. 2019.

[4] M. Sajid, A. Harris, and S. Habib, “Internet of Everything: Applications, and Secu-
rity Challenges,” in 2021 International Conference on Innovative Computing (ICIC), Nov.
2021, pp. 1–9.

[5] “State of the IoT 2020: 12 billion IoT connections, surpassing non-IoT for the first
time,” Nov. 2020. [Online]. Available: https://iot-analytics.com/state-of-the-iot-2020-
12-billion-iot-connections-surpassing-non-iot-for-the-first-time/

[6] “State of IoT 2022: Number of connected IoT devices growing 18% to 14.4
billion globally,” May 2022. [Online]. Available: https://iot-analytics.com/number-
connected-iot-devices/

[7] R. Kollolu, “A Review onWide Variety and Heterogeneity of IoT Platforms,” Rochester,
NY, Jan. 2020. [Online]. Available: https://papers.ssrn.com/abstract=3912454

[8] S. S. Dhanda, B. Singh, and P. Jindal, “Lightweight Cryptography: A Solution to
Secure IoT,” Wireless Personal Communications, vol. 112, no. 3, pp. 1947–1980, Jun.
2020. [Online]. Available: https://doi.org/10.1007/s11277-020-07134-3

[9] S. S. I. Samuel, “A review of connectivity challenges in IoT-smart home,” in 2016 3rd
MEC International Conference on Big Data and Smart City (ICBDSC), Mar. 2016, pp. 1–4.

[10] A. Pop-Vadean, P. P. Pop, T. Latinovic, C. Barz, and C. Lung, “Harvesting
energy an sustainable power source, replace batteries for powering WSN and
devices on the IoT,” IOP Conference Series: Materials Science and Engineering, vol.

187

https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/
https://papers.ssrn.com/abstract=3912454
https://doi.org/10.1007/s11277-020-07134-3

Bibliography

200, no. 1, p. 012043, May 2017, publisher: IOP Publishing. [Online]. Available:
https://dx.doi.org/10.1088/1757-899X/200/1/012043

[11] F. Foresti and G. Varvakis, “Ubiquity and Industry 4.0,” in Knowledge Management
in Digital Change: New Findings and Practical Cases, ser. Progress in IS, K. North,
R. Maier, and O. Haas, Eds. Cham: Springer International Publishing, 2018, pp.
343–358. [Online]. Available: https://doi.org/10.1007/978-3-319-73546-7_21

[12] A.-T.-T. I. I.-S. Institute, “AV-ATLAS.” [Online]. Available: https://portal.av-atlas.org/

[13] B. Mahesh, Machine Learning Algorithms -A Review, Jan. 2019.

[14] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT Security Techniques Based on
Machine Learning: How Do IoT Devices Use AI to Enhance Security?” IEEE Signal
Processing Magazine, vol. 35, no. 5, pp. 41–49, Sep. 2018.

[15] M. A. Al-Garadi, A. Mohamed, A. Al-Ali, X. Du, and M. Guizani, “A Survey of Ma-
chine and Deep LearningMethods for Internet of Things (IoT) Security,” arXiv preprint
arXiv:1807.11023, 2018.

[16] G. Xiaoyan, “Research on Power IoT Intrusion Detection Method Based on Federated
Learning,” Smart Innovation, Systems and Technologies, vol. 299, pp. 183–190, 2023,
iSBN: 9789811922541.

[17] B. Kumar, G. Rampalli, P. Kamakshi, and T. Senthil Murugan, “DDoS Botnet Attack
Detection in IoT Devices,” Lecture Notes in Networks and Systems, vol. 396, pp. 21–27,
2023, iSBN: 9789811699665.

[18] S. Kaura and D. Bhardwaj, “A Comprehensive Review on Intrusion Detection in Edge-
Based IoT Using Machine Learning,” Lecture Notes on Data Engineering and Commu-
nications Technologies, vol. 131, pp. 615–624, 2023.

[19] R. Almarshdi, L. Nassef, E. Fadel, and N. Alowidi, “Hybrid Deep Learning Based At-
tack Detection for Imbalanced Data Classification,” Intelligent Automation and Soft
Computing, vol. 35, no. 1, pp. 297–320, 2023.

[20] C. Catalano, L. Paiano, F. Calabrese, M. Cataldo, L. Mancarella, and F. Tommasi,
“Anomaly detection in smart agriculture systems,” Computers in Industry, vol. 143,
2022.

[21] P. Anand, Y. Singh, H. Singh, M. Alshehri, and S. Tanwar, “SALT: transfer learning-
based threat model for attack detection in smart home,” Scientific Reports, vol. 12, no. 1,
2022.

[22] Y. Kayode Saheed, A. Idris Abiodun, S. Misra, M. Kristiansen Holone, and R. Colomo-
Palacios, “A machine learning-based intrusion detection for detecting internet of
things network attacks,” Alexandria Engineering Journal, vol. 61, no. 12, pp. 9395–9409,
2022.

188

https://dx.doi.org/10.1088/1757-899X/200/1/012043
https://doi.org/10.1007/978-3-319-73546-7_21
https://portal.av-atlas.org/

Bibliography

[23] H. Ren, D. Anicic, and T. A. Runkler, “The synergy of complex event processing and
tiny machine learning in industrial IoT,” in Proceedings of the 15th ACM International
Conference on Distributed and Event-based Systems, ser. DEBS ’21. New York, NY,
USA: Association for Computing Machinery, Jun. 2021, pp. 126–135.

[24] Y. Sun, G. Li, and B. Ning, “Automatic Rule Updating based on Machine Learning in
Complex Event Processing,” in 2020 IEEE 40th International Conference on Distributed
Computing Systems (ICDCS), Nov. 2020, pp. 1338–1343.

[25] N. N. T. Luong, Z. Milosevic, A. Berry, and F. Rabhi, “An open architecture for complex
event processing with machine learning,” in 2020 IEEE 24th International Enterprise
Distributed Object Computing Conference (EDOC), Oct. 2020, pp. 51–56.

[26] R. Bruns and J. Dunkel, “Bat4CEP: a bat algorithm for mining of complex
event processing rules,” Applied Intelligence, Mar. 2022. [Online]. Available:
doi.org/10.1007/s10489-022-03256-2

[27] J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo, “MEdit4CEP: A model-driven solution
for real-time decision making in SOA 2.0,” Knowledge-Based Systems, vol. 89, pp. 97–
112, Nov. 2015.

[28] J. Rosa-Bilbao and J. Boubeta-Puig, “Model-Driven Engineering for Complex Event
Processing: A Survey,” The Journal of Object Technology, vol. 21, no. 4, pp. 1–13, 2022.

[29] EsperTech, “Esper,” http://www.espertech.com/esper/, 2021, avaliable at: http://www.
espertech.com/esper/ (accessed 9 May 2021).

[30] WSO2, “WSO2 | TheOpen Source Technology for Digital Business,” https://wso2.com/,
2021, avaliable at: https://wso2.com/ (accessed 9 May 2021).

[31] “Chapter 5. EPL Reference: Clauses,” avaliable at: http://siddhi.io/(accessed
12 Nov 2022). [Online]. Available: https://esper.espertech.com/release-5.2.0/esper-
reference/html/epl_clauses.html

[32] WSO2, “Siddhi,” http://siddhi.io/, 2021, avaliable at: http://siddhi.io/(accessed 9 May
2021).

[33] A. M. Martinez and A. C. Kak, “PCA versus LDA,” IEEE transactions on pattern analysis
and machine intelligence, vol. 23, no. 2, pp. 228–233, 2001.

[34] E. Patel and D. S. Kushwaha, “Clustering Cloud Workloads: K-Means vs Gaussian
Mixture Model,” Procedia Computer Science, vol. 171, pp. 158–167, Jan. 2020. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1877050920309820

[35] M. Artac, M. Jogan, and A. Leonardis, “Incremental pca for on-line visual learning and
recognition,” in 2002 International Conference on Pattern Recognition, vol. 3. IEEE,
2002, pp. 781–784.

189

doi.org/10.1007/s10489-022-03256-2
http://www.espertech.com/esper/
http://www.espertech.com/esper/
http://www.espertech.com/esper/
https://wso2.com/
https://wso2.com/
http://siddhi.io/
https://esper.espertech.com/release-5.2.0/esper-reference/html/epl_clauses.html
https://esper.espertech.com/release-5.2.0/esper-reference/html/epl_clauses.html
http://siddhi.io/
http://siddhi.io/
https://www.sciencedirect.com/science/article/pii/S1877050920309820

Bibliography

[36] J. Roldán-Gómez, J. Boubeta-Puig, G. Pachacama-Castillo, G. Ortiz, and J. L. Martínez,
“Dataset for detecting security attacks in cyber-physical systems: A comparison
of mule and wso2 intelligent iot architectures,” https://data.mendeley.com/datasets/
fvb9pp5xsh/draft?a=a465700a-55b5-48a7-96fa-c8d27c0c772d, 2021.

[37] J. Roldán, J. Boubeta-Puig, J. Luis Martínez, and G. Ortiz, “Integrating complex
event processing and machine learning: An intelligent architecture for detecting
IoT security attacks,” Expert Systems with Applications, vol. 149, p. 113251,
Jul. 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0957417420300762

[38] J. Roldán-Gómez, J. Boubeta-Puig, G. Pachacama-Castillo, G. Ortiz, and J. L. Martínez,
“Detecting security attacks in cyber-physical systems: a comparison of mule and wso2
intelligent iot architectures,” PeerJ Computer Science, vol. 7, p. e787, 2021.

[39] J. Roldán-Gómez, J. Boubeta-Puig, J. M. Castelo Gómez, J. Carrillo-Mondéjar, and J. L.
Martínez Martínez, “Attack Pattern Recognition in the Internet of Things using Com-
plex Event Processing and Machine Learning,” in 2021 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), Oct. 2021, pp. 1919–1926, iSSN: 2577-1655.

[40] J. Roldán-Gómez, J. M. del Rincon, J. Boubeta-Puig, and J. L. Martınez, “Hacia la crea-
cion de reglas cep no supervisadas para la deteccion en tiempo real de ataques en
entornos iot,” in 2022 Jornadas Nacionales de Investigación en Ciberseguridad (JNIC).
JNIC, Jun. 2022, pp. 147–154, iSSN: 978-84-88734-13-6.

[41] D. M. Blei and M. I. Jordan, “Variational inference for Dirich-
let process mixtures,” Bayesian Analysis, vol. 1, no. 1, pp. 121–143,
Mar. 2006, publisher: International Society for Bayesian Analysis. [On-
line]. Available: https://projecteuclid.org/journals/bayesian-analysis/volume-1/issue-
1/Variational-inference-for-Dirichlet-process-mixtures/10.1214/06-BA104.full

[42] R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, “The Mahalanobis
distance,” Chemometrics and Intelligent Laboratory Systems, vol. 50, no. 1, pp.
1–18, Jan. 2000. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0169743999000477

[43] J. M. Castelo Gómez, J. Roldán Gómez, J. Carrillo Mondéjar, and
J. L. Martínez Martínez, “Non-volatile memory forensic analysis in win-
dows 10 iot core,” Entropy, vol. 21, no. 12, 2019. [Online]. Available:
https://www.mdpi.com/1099-4300/21/12/1141

[44] J. M. Castelo Gómez, J. Carrillo Mondéjar, J. Roldán Gómez, and J. L.
Martínez Martínez, “A context-centered methodology for IoT forensic investi-
gations,” International Journal of Information Security, Nov. 2020. [Online]. Available:
https://doi.org/10.1007/s10207-020-00523-6

190

https://data.mendeley.com/datasets/fvb9pp5xsh/draft?a=a465700a-55b5-48a7-96fa-c8d27c0c772d
https://data.mendeley.com/datasets/fvb9pp5xsh/draft?a=a465700a-55b5-48a7-96fa-c8d27c0c772d
https://www.sciencedirect.com/science/article/pii/S0957417420300762
https://www.sciencedirect.com/science/article/pii/S0957417420300762
https://projecteuclid.org/journals/bayesian-analysis/volume-1/issue-1/Variational-inference-for-Dirichlet-process-mixtures/10.1214/06-BA104.full
https://projecteuclid.org/journals/bayesian-analysis/volume-1/issue-1/Variational-inference-for-Dirichlet-process-mixtures/10.1214/06-BA104.full
https://www.sciencedirect.com/science/article/pii/S0169743999000477
https://www.sciencedirect.com/science/article/pii/S0169743999000477
https://www.mdpi.com/1099-4300/21/12/1141
https://doi.org/10.1007/s10207-020-00523-6

Bibliography

[45] J. M. Castelo Gómez, J. Carrillo Mondéjar, J. Roldán Gómez, and J. Martínez Martínez,
“Developing an iot forensic methodology. a concept proposal,” Forensic Science
International: Digital Investigation, vol. 36, p. 301114, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2666281721000081

[46] J. Carrillo-Mondéjar, J. M. Castelo-Gómez, J. Roldán-Gómez, and J. L. Martínez, “An
instrumentation based algorithm for stack overflow detection,” Journal of Computer
Virology and Hacking Techniques, vol. 16, no. 3, pp. 245–256, Sep 2020. [Online].
Available: https://doi.org/10.1007/s11416-020-00359-7

[47] J. Carrillo-Mondejar, J. M. Castelo Gomez, C. Núñez-Gómez, J. Roldán Gómez, and
J. L. Martínez, “Automatic Analysis Architecture of IoT Malware Samples,” Security
and Communication Networks, vol. 2020, p. 8810708, Oct. 2020, publisher: Hindawi.
[Online]. Available: https://doi.org/10.1155/2020/8810708

[48] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal component analysis,” inAr-
tificial Neural Networks — ICANN’97, ser. Lecture Notes in Computer Science, W. Ger-
stner, A. Germond, M. Hasler, and J.-D. Nicoud, Eds. Berlin, Heidelberg: Springer,
1997, pp. 583–588.

191

https://www.sciencedirect.com/science/article/pii/S2666281721000081
https://doi.org/10.1007/s11416-020-00359-7
https://doi.org/10.1155/2020/8810708

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Motivation and Justification
	1.2 Objectives
	1.3 Methodology and Work Plan
	1.4 General Discussion and Description of the Proposals
	1.4.1 Threats and evaluation metrics
	1.4.2 Architecture to detect threats in IoT environments on the basis of one or more key features
	1.4.3 Ensuring the feasibility of the initial architecture on different CEP engines
	1.4.4 Architecture to detect threats in IoT environments without the need to specify key features
	1.4.5 Improving, implementing and validating an architecture that can detect threats in IoT environments in an unsupervised manner

	1.5 Results

	2 Security analysis of the MQTT-SN protocol for the Internet of Things
	3 Integrating Complex Event Processing and Machine Learning: an intelligent architecture for detecting IoT security attacks
	4 Detecting security attacks in cyber-physical systems: a comparison of Mule and WSO2 intelligent IoT architectures
	5 Attack pattern recognition in the Internet of Things using Complex Event Processing and Machine Learning
	6 An automatic Complex Event Processing rules generation system for the recognition of real-Time IoT attack patterns
	7 An automatic unsupervised Complex Event Processing rules generation architecture for real-time IoT attacks detection
	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Conclusiones
	8.3 Future Work

	Bibliography

