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Summary

The appearance of the Internet of Things (IoT) in the technological world has brought about
a revolution when it comes to integrating technology into the most everyday aspects of our
lives. While traditional technological scenarios require direct interaction with devices, such
as a computer or a mobile phone, the IoT world bases much of its logic on being transparent
to the user while providing functionality. We find immediate examples in smart assistants,
sensors, smart watches and video surveillance cameras. In addition, as if this were not
enough, its application in certain areas has given rise to new technological scenarios such
as smart cities, smart homes, cyber medicine and Industry 5.0.

Although the success of IoT is undoubted and has changed the way users interact with
technology, it brings with it great concerns regarding user security and privacy. The IoT
ecosystem is made up of a large number of networked devices that interact with each other
using a wide range of communication protocols. In general, these devices are designed to
offer innovative services at a low price, but not much attention has been paid to security in
their development. This, together with the inherent characteristics of this type of device,
such as limited computing capacity and storage, as well as lack of updates from manu-
facturers, have led to these devices often presenting major security flaws that range from
the use of default passwords or configurations to outdated software that contains publicly-
known security vulnerabilities. This has caused the IoT to become one of the main targets
for cybercriminals to attack, and the number of samples of malware specially designed for
the IoT has grown significantly in recent years.

In view of all the above, this thesis analyzes the problem of security in the IoT ecosystem
with the aim of modeling, analyzing and detecting the main threats. First, we explore the
SSH, Telnet and VoIP protocols through honeypot systems to analyze and understand how
these protocols are exploited by cybercriminals and what actions they carry out. Second,
we design and develop a framework to address the problem of Linux-based malware that
is specially aimed at IoT environments, allowing the analysis and extraction of malware
features both statically and dynamically, as well as a comparison with other samples that
have already been studied. Then, we propose a methodology for automating the process of
relating malware to known threats and vetting new unknown samples. Finally, we propose
a methodology for adding defensive capabilities to IoT devices that are abandoned and
no longer maintained by the manufacturer, allowing the addition of an additional layer of
security against known threats in order to protect the devices against such attacks.
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Resumen

La aparición del Internet de las Cosas (IoT) en el mundo tecnológico ha supuesto una re-
volución a la hora de integrar la tecnología en los aspectos más cotidianos de nuestra vida.
Mientras que los escenarios tecnológicos tradicionales requieren de una interacción directa
con los dispositivos, como pueden ser un ordenador o un teléfono móvil, el mundo IoT basa
gran parte de su lógica en ser transparente al usuario al mismo tiempo que proporciona fun-
cionalidad. Encontramos ejemplos inmediatos en asistentes inteligentes, sensores, relojes
inteligentes o cámaras de videovigilancia. Además, por si esto no fuera poco, su aplicación
en ciertos ámbitos ha dado lugar a la aparición de nuevos escenarios tecnológicos como las
ciudades inteligentes, hogares inteligentes, cibermedicina o la Industria 5.0.

Aunque el éxito de IoT es indudable y ha cambiado la forma en la que los usuarios inter-
accionan con la tecnología, trae consigo grandes preocupaciones en cuanto a la seguridad
y privacidad de los usuarios. El ecosistema del IoT está compuesto por un gran número de
dispositivos conectados en la red que interactúan entre sí utilizando un amplio abanico de
protocolos de comunicación. En general, estos dispositivos están pensados para ofrecer ser-
vicios innovadores a bajo precio y no desde el punto de vista de la seguridad. Esto junto a
las características inherentes a este tipo de dispositivos como la baja capacidad de cómputo,
almacenamiento y falta de actualizaciones por parte de los fabricantes, han propiciado que
estos dispositivos a menudo presenten grandes problemas de seguridad que van desde el
uso de contraseñas o configuraciones por defecto a software desactualizado que contiene
problemas de seguridad públicamente conocidos en Internet. Esto ha favorecido que IoT se
haya convertido en uno de los principales entornos a atacar por los cibercriminales y que
la cantidad de muestras de malware especialmente diseñado para IoT haya crecido en los
últimos años.

Por todo lo expuesto anteriormente, esta Tesis analiza el problema de la seguridad en el
ecosistema IoT con el objetivo de modelar, analizar y detectar las principales amenazas. En
primer lugar, se exploran los protocolos SSH, Telnet y VoIP a través de sistemas señuelo para
analizar y comprender como estos protocolos son abusados por los cibercriminales y que ac-
ciones llevan a cabo. En segundo lugar, se diseña e implementa un framework para abordar
el problema delmalware basado en Linux especialmente dirigido a entornos IoT, permitien-
do analizar y extraer características del malware tanto de manera estática como dinámica,
así como el grado de similitud con otras muestras ya exploradas. Después, se propone una
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metodología para automatizar el proceso de relacionar malware a amenazas conocidas e
investigación de nuevas muestras desconocidas. Por último, se propone una metodología
para añadir capacidades defensivas a dispositivos IoT que se encuentran abandonados y ya
no son mantenidos por el fabricante, permitiendo añadir una capa adicional de seguridad
ante amenazas conocidas con el fin de proteger los dispositivos ante estos ataques.

vi



Contents

Contents vii

List of Figures ix

List of Acronyms xi

1 Introduction 1
1.1 Motivation and Justification . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Methodology and Work Plan . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 General Discussion and Description of the Proposals . . . . . . . . . . . . 10

1.4.1 Measurement of attack trends . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 Tools and techniques to assist malware analyst . . . . . . . . . . . 14
1.4.3 Defensive measures to protect IoT devices . . . . . . . . . . . . . . 17

1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Hajime’s Return: Stories from a Customized Honeypot for the IoT 25

3 On how VoIP attacks foster the malicious call ecosystem 37

4 A chatbot for selectively engaging with online fraudsters 53

5 Automatic Analysis Architecture of IoT Malware Samples 67

6 Characterizing Linux-based malware: Findings and recent trends 81

7 HALE-IoT: HArdening LEgacy Intenet-of-Things devices via retrofitting de-
fensive firmware modifications and implants 97

8 Conclusions and Future Work 119
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 125

vii





List of Figures

1.1 Number of vulnerabilities in IoT devices that have appeared in recent years. 2
1.2 Growth of IoT/Linux malware in recent years. . . . . . . . . . . . . . . . . 3
1.3 Scheme that describes the main objective of this doctoral dissertation. . . . 7
1.4 Methodology followed to evaluate the actions carried out in the VoIP hon-

eypot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Methodology that has been followed to identify the type of fraud. . . . . . 14
1.6 Scheme of the system architecture. . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Block diagram of the architecture designed. . . . . . . . . . . . . . . . . . . 15
1.8 Block diagram of the malware sample characterization methodology. . . . 18
1.9 IoT firmware system diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.10 IoT firmware system diagram AFTER hardening. . . . . . . . . . . . . . . . 20

ix





List of Acronyms

API Application Programming Interfaces

CoAP Constrained Application Protocol

CPU Central Processing Unit

DDoS Distributed Denial-of-Service

ELF Extensible Linkable Format

EOL End-Of-Life

FTP File Transfer Protocol

GGS GII-GRIN-SCIE

GPT-3 Generative Pre-trained Transformer 3

HALE-IoT HArdening LEgacy Intenet-of-Things

HNAP Home Network Administration Protocol

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IEEE Institute of Electrical and Electronics Engineers

IF Impact Factor

IoT Internet of Things

IP Internet Protocol

ISA Instruction Set Architecture

JCR Journal Citation Reports

MITM Man In The Middle

ML Machine Learning

MQTT Message Queue Telemetry Transport

xi



List of Acronyms

NLU Natural Language Understanding

PBX Private Branch Exchange

QEMU Quick EMUlator

RAM Random Access Memory

REST Representational State Transfer

SIP Session Initiation Protocol

SSH Secure Shell

SSL Secure Socket Layer

Telnet Teletype Network

TLS Transport Layer Security

TOR The Onion Router

TTP Tactics, Techniques and Procedures

TV Television

UPnP Universal Plug and Play

UPX Ultimate Packer for eXecutables

URL Uniform Resource Locator

VoIP Voice over Internet Protocol

VPN Virtual Private Network

WAF Web Application Firewall

XMPP Extensible Messaging and Presence Protocol

xii



CHAPTER 1

Introduction

This chapter introduces the main motivation for this doctoral thesis. In the first place, the
situation in the field of security in the Internet of Things (IoT) is outlined, defining the cur-
rent problems and describing the motivation behind the work carried out. In addition, the
objectives of this work are presented together with the methodology employed to achieve
them. Finally, a brief description of the proposed solutions is given together with the results
obtained in the research process.

1.1 Motivation and Justification

In recent years, there has been a sharp increase in the number of devices that are connected
to the Internet. This has led to users having access to features and services that have shaped
theway they now interact with technology in an unprecedentedmanner. The integration of
technology in environments that differ from the conventional desktop or mobile platforms
is what is known as the IoT. This term refers to technology that is connected to the Internet,
ranging from sensors, smart televisions (TVs), smart watches, Voice over Internet Protocol
(VoIP) phones, and video surveillance cameras, to even refrigerators and vacuum cleaners.
IoT devices make people’s lives easier by allowing them to perform simple tasks via these
devices. For example, nowadays users can perform everyday tasks such as turning the light
in their house on or off by using their own voice or opening the door lock remotely.

The impact that IoT has on people’s lives is evidenced by the number of IoT devices
currently connected to the Internet, which exceeded the number of non-IoT devices for the
first time in 2020, with the IoT accounting for 54% of connected devices [1]. The growth in
the number of IoT devices seemed to plateau between 2021 and 2022 due to the shortage
of chips in the aftermath of the COVID pandemic, but the number of connected devices
is expected to reach 27 billion by 2025 [2]. Currently, there is a huge number of devices
connected worldwide, with figures reaching about 12.3 billion [2].
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1.1. Motivation and Justification

Although the success of the IoT and the attractive features that it provides to users
have changed the way in which technology is interacted with, they bring with them great
concerns regarding the security and privacy of user data. The IoT ecosystem is made
up of a large number of devices that are interconnected in the network and which use a
wide range of protocols to communicate with each other (e.g., Message Queue Telemetry
Transport (MQTT), Constrained Application Protocol (CoAP), and Universal Plug and Play
(UPnP)). None of these systems are designed from a security standpoint, but from one of
cost-effectiveness, offering innovative features to the detriment of security and privacy.
And this is in addition to the intrinsic characteristics of the devices, such as low storage ca-
pacity, low computing capacity, the lack of software/firmware updates from manufacturers
or, even if there are updates, the difficulty of installing them on the devices for even more
advanced users.

These characteristics of the IoT make devices vulnerable to different types of attacks.
Among the most common vulnerabilities in the IoT are the use of weak or hardcoded cre-
dentials, insecure network services exposed directly to the Internet, and the lack of pri-
vacy and encryption with sensitive data that the device can handle [3]. Figure 1.1 shows
the number of vulnerabilities that have appeared in IoT devices in recent years [4], thus
illustrating the magnitude of the problem. This fosters an attractive environment for cy-
bercriminals, causing the number of attacks against this type of device to increase every
day [5]. This leads to the fact that the amount of malicious software targeting this envi-
ronment has grown in recent years, taking advantage of vulnerabilities in the IoT to take
control of devices and infect them.
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Figure 1.1: Number of vulnerabilities in IoT devices that have appeared in recent years.

The evolution of malware designed to attack IoT devices is relatively new compared
with malware targeting desktop systems. The first family of malware specially designed
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Chapter 1. Introduction

to attack IoT devices was the Mirai botnet. This botnet infected around 600,000 devices
and caused one of the most serious Distributed Denial-of-Service (DDoS) attacks on the
Internet [6]. This put the security of IoT devices in the spotlight, since initially Mirai did
not use any vulnerability to gain access to the devices, but rather a set of default usernames
and passwords to gain access to the devices and install the malware. After the release of
the Mirai source code, new malware families have continued to appear. Figure 1.2 shows
the cumulative growth in malware samples that targets Linux/IoT Devices from August
2016 to July 2022 [7]. In this graph it can be seen that the number of samples designed for
these devices in 2016 was around 67,000, and that currently the number reaches 4,000,000
samples, which shows the magnitude of this problem.

August 2016 March 2017 October 2017 May 2018 December 2018 July 2019 February 2020 September 2020 April 2021 November 2021 June 2022
0
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Figure 1.2: Growth of IoT/Linux malware in recent years.

Initially, early Mirai variants used only a set of usernames and passwords from a pre-
configured list of 62 credentials to establish a connection via the Teletype Network (Tel-
net) protocol and gain access to the device. Nowadays, IoT malware is more sophisticated
and incorporates a wide variety of exploits that affect different protocols and services run-
ning on device firmware. These exploits are publicly available on the Internet, and enable
malware to gain access to devices and spread across the Internet. Commonly, IoT devices
provide interfaces for device configuration and maintenance. This is because IoT devices
typically do not have graphical interfaces as desktop systems do (e.g., mouse, video, etc.).
Therefore, these services are exposed on the internet and present major security problems.
Prior work such as [8], in which the firmware of different devices is analyzed on a large
scale, discovered around 225 high-impact vulnerabilities in the web services that the de-
vices exposed together with new ones in which backdoors were discovered in the firmware
of the device for accessing it as an administrator, as is the case of the telephone and Private
Branch Exchange (PBX) devices analyzed in [9].

This highlights the security problem in IoT system networks, in which keeping
firmware/software updated is a major challenge and cybercriminals take advantage of
known vulnerabilities to scan the network and carry out attacks to take control of devices.
Therefore, it is important to analyze and understand threats in order to create tools and
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1.1. Motivation and Justification

methods to assist security analysts as well as defenses to mitigate these types of attacks.
One of the main techniques to observe new threats and attacks is the use of honeypots.
This concept was introduced about two decades ago when the first Internet worms began
to spread across Windows and Linux systems [10]. Basically, honeypots are vulnerable
systems exposed on the Internet that are monitored and whose main purpose is to receive
attacks in order to learn what actions are carried out by attackers and to create defenses
against them in real systems [11]. Other works have focused on capturing attack vectors
through honeypot systems. While [12, 13] analyzed attacks focused on the Telnet protocol,
the authors of [14, 15] focused on protocols and services. On the one hand, the authors of
[14] proposed a honeypot for the MQTT and Extensible Messaging and Presence Protocol
(XMPP), emulating the device via Representational State Transfer (REST) Application Pro-
gramming Interfaces (API). On the other hand, the authors of [15] proposed a system that
scans real IoT devices by logging their responses and, through a reinforcement learning
system, gives the attackers the best possible response. The authors of [16] introduced the
idea of using Virtual Private Network (VPN) tunnels with the aim of having a real device
listening in different geographical locations and simulating the existence of several devices.
One of the main uses given to honeypots is that of capturing new families of malware that
are trying to spread through the network, as well as the discovery of vulnerabilities that
are being exploited in the wild [13, 17].

This highlights the importance of creating automatic tools for the analysis of malicious
files, since manual analysis with both static and dynamic techniques is quite ineffective, re-
quiring substantial effort and time on the part of an analyst. Unlike traditional systems, in
which the x86 architecture predominates, IoT devices have a wide variety of architectures
(e.g., MIPSel, ARMel, PowerPC, etc.). Due to this heterogeneity, the creation of runtime en-
vironments for the execution and analysis of samples is quite challenging since themalware
could be intended for a specific device and not work on another. Currently, there are some
frameworks for malware analysis on Linux/IoT-based systems [13, 18, 19, 20, 21, 22, 23, 24].
However, they only provide an analysis report and do not allow the correlation of the mal-
ware samples analyzed.

In the recent literature, the security of IoT has attracted the attention of the research
community, with proposals based on assessing the current state of IoT (in)security from
different points of view. At the firmware image level, the authors in [8, 25] perform a
large-scale analysis of device firmware images, statically in [25] and dynamically through
emulation in [8]. Firmware image emulation is quite challenging due to the heterogeneity
of devices, and so the authors of [26] released a framework for firmware image emulation, in
order to facilitate the large-scale security testing of firmware. The authors of [27] improved
upon the framework in[26] by analyzing failure cases and creating different heuristics to
improve the emulation rate of newer device firmware images.

In [28, 29, 30, 31] the authors conducted a large-scale analysis of IoT devices. In [28]
the authors presented a systematic review of the state of the art of security in IoT, focusing
on ever-evolving IoT vulnerabilities and performed the first large-scale analysis of IoT vul-
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Chapter 1. Introduction

nerability exploits. In [29] a large-scale study of more than 1.3 million devices exposed on
the Internet was carried out, and more than 25% of the devices analyzed had some known
vulnerability. Unsurprisingly, around 2,600 devices could have been exploited with one of
these vulnerabilities and become part of a botnet. In [30], the authors perform an analy-
sis of the devices that exist in the internal networks of more than 16 million households.
Currently, more than half of all houses have at least one IoT device. These devices have
insecure protocols such as Telnet and File Transfer Protocol (FTP), and known vulnerabili-
ties. Unlike the above works, [31] evaluated the insecurity of embedded devices, verifying
the problem of the use of default passwords on a large scale throughout the world. The
authors found that more than 500,000 devices, ranging from firewalls to VoIP adapters to
printers, use default credentials. The authors of [32, 33, 34] studied the application layer of
IoT platforms, and they discovered that there are design flaws and that most applications
have more privileges than they really need. The authors of [35] focused on searching for
vulnerabilities in the network interfaces of IoT devices using black box fuzzing.

Other studies have focused on malware that targets IoT devices. In [36], the authors
conduct a study of the state of the art of IoT malware, classifying DDoS attacks on the basis
of different characteristics (e.g., botnet architecture, scanning strategy, protocols). Authors
in [18], perform a comprehensive analysis of malware targeting Linux-based IoT systems,
both statically and dynamically, and present the main statistics regarding persistence, pack-
ing, anomalies in the Extensible Linkable Format (ELF) file format and the commands exe-
cuted on the system. On the other hand, the authors of [19] carry out a study of malware
in the IoT and the families that exist, summarizing the estimated size of the botnets as well
as the timeline of the appearance of the family and the vulnerabilities used by them.

Other works in the literature, such as [6, 37, 38, 39, 40, 41], focus on specific malware
families. In [37], the authors present an analysis of the malware known as Chuck Nor-
ris, while [39] performs a technical analysis, both statically and dynamically, of the Dofloo
malware. In [38], the authors focus on two main methods of malware infection, namely
brute force and the N-day vulnerability exploitation, analyzing Mirai as an example of the
former and Bashlite and Darlloz as an example of the latter. In [6], the authors presented an
exhaustive analysis of Mirai and its evolution in the first seven months of its life, demon-
strating thatmalware that does not use sophisticated techniques is capable of compromising
a large number of devices and threatening well-defended targets. In [40, 41], the authors
presented an analysis of the Hajime botnet. The former analyzes aspects ranging from the
initial stages of infection to the format of files used to store the configuration and payloads,
while the latter analyzes the infected devices, the vulnerability that Hajime exploits, and
the size of the botnet.

Other approaches are focused on creating models for malware classification, as in [42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. The works mainly differ in the size of the dataset and the
algorithms they use. In [42, 43, 44, 45, 46, 47, 48] the authors use static features to generate
the classification models, while in [49, 50, 51, 52] they focus on the use of dynamic features.
Most of these works focus on binary classifications, that is to say they detect whether the
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1.2. Objectives

sample is malware or not, although in some cases the models allow the classification of it
into the best-known families of malware in the IoT (e.g., Mirai, Gafgyt, etc.).

In conclusion, security in the IoT ecosystem raises great concerns in the research world.
The use of insecure protocols and default passwords continue to be two of the main prob-
lems, along with the use of outdated device firmware which is no longer maintained by
the device manufacturer, leaving it exposed to known N-day vulnerabilities that are being
exploited in the wild. Although machine learning algorithms for differentiating between
malicious and benign files can be effective, their use on user devices may not be feasible in
practice due to the limitations of capacity and memory that the devices have.

1.2 Objectives

In view of the problems described in Section 1.1, the main objective of this dissertation is
the modeling and analysis of threats in the IoT environment, and the formulation of ways
to combat them. In order to successfully achieve this objetive, the following partial goals
have been defined:

• Goal 1. The review of the proposals of other researchers regarding the classifica-
tion and detection of threats, and security improvements in IoT environments. This
objective is transversal throughout the doctoral thesis and will be considered in the
entire research process. It is important to analyze the work of other researchers to
see how they have solved the problems they are trying to address. This allows the
learning of new methods, techniques and technologies, which enriches the research
process.

• Goal 2. The analysis of attack trends that exist in the IoT ecosystem. This objective
points to the creation of an observatory for the collection and modeling of existing
threats in the IoT, allowing us to learn the behavior of attackers and the type of
actions they perform on compromised systems. This allows us in turn to extract
knowledge concerning themain attack tendencies that exist in the IoT and the Tactics,
Techniques and Procedures (TTP) employed by the attackers.

• Goal 3. The design, implementation and evaluation of an architecture that allows
the analysis of malicious files while addressing the heterogeneity of IoT device ar-
chitectures. For several decades, malware was primarily designed to attack desktop
computers. With the growth of what is known as the IoT, the number of malicious
samples attacking these devices is growing exponentially. Due to the variety of ar-
chitectures, this goal aims to build an analysis platform that supports the execution
of malicious samples on different hardware architectures.

• Goal 4. The development of tools and techniques for assisting malware analysts and
automating the process of relating malware samples to known threats and vetting
unknown malware. To help malware analysts understand how harmful a new mal-
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ware sample can be, this goal focuses on detailing the categorization and behavior of
samples. The similarity between new samples and known threats will be the key to
assessing the damage that new attacks can cause on the target system, and reducing
their impact.

• Goal 5. The design, implementation and evaluation of a methodology for adding ad-
ditional security measures to legacy IoT devices. IoT devices have known firmware
vulnerabilities that are often trivial to exploit. Updating this firmware usually re-
quires manual intervention and updates are not always available as the firmware is
in many cases no longer maintained by the manufacturer. This objective points to
the creation of a methodology for providing these firmwares with additional security
measures in order to protect them against known threats (i.e., N-day vulnerabilities).

Figure 1.3 summarizes the main objective of this dissertation, describing an end-to-end
solution that addresses: at 1) the collection and modeling of existing IoT threats, and a
framework for 2) extracting features from collected samples, and 3) analyzing and charac-
terizing them. Finally, when the collection of threats fails (e.g., unseen malware), this thesis
then designs a framework to harden IoT devices, minimizing their attack surface.

Modeling IoT Threats Feature Extraction &
Analysis Characterization

Defensive Measures

Figure 1.3: Scheme that describes the main objective of this doctoral dissertation.

1.3 Methodology and Work Plan

This section describes the methodology used to achieve each of the goals defined in Section
1.2, in order to fulfill the main objective of this doctoral thesis. The tasks carried out for
each goal are the following:

• Goal 1 — A review of the proposals of other researchers regarding the classification
and detection of threats and security improvements in IoT environments.

The main purpose of this objective is mainly fulfilled in the initial stages of the doc-
toral thesis, allowing the researcher to become familiar with the field of threats, at-
tacks and defenses in the IoT environment. However, once the objective is achieved,
a periodic review of the state of the art will be carried out throughout the entire
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doctoral thesis since new research, approaches and technologies are continuously
being developed by the scientific community. In this way, updating knowledge about
emerging technologies is necessary in order to focus the research efforts on those
aspects that the community still needs to solve.

• Goal 2 — The analysis of attack trends that exist in the IoT ecosystem.

This objective refers to the study of attacks that occur every day in the IoT environ-
ment. First, an experiment is established to detect attacks against, and threats to, IoT
devices through the Telnet and Secure Shell (SSH) protocol. Second, an experiment is
performed to analyze what happens when attackers have access to valid VoIP service
credentials.

The tasks necessary to achieve the first part of this objective are:

1. Establish a controlled environment and harden the server to prevent unautho-
rized access to services that are not the subject of this study.

2. Select a honeypot architecture that satisfies the characteristics of the experi-
ment.

3. Create and configure virtual machines with an IoT architecture (i.e., ARM) to
which attackers will have access.

4. Deploy a honeypot that will act as a proxy, redirecting traffic to the Telnet and
SSH services of the virtual machines, and monitoring the connections and the
actions of the attackers.

5. Analyze the information collected about the attacks received by the honeypot
(i.e., analysis of the metadata of the connections, analysis of the interaction and
analysis of downloaded files).

In order to achieve the second part of this objective, the steps to follow are:

1. Establish a controlled environment and harden those services that are not the
subject of this study to prevent unauthorized access.

2. Define the account creation strategy using both weak and strong credentials.

3. Establish containment measures to avoid disturbing real phone users as well as
request approval from the ethics committee to be able to carry out the experi-
ments.

4. Deploy a PBX system and subscribe the accounts to dialplans that only allow
calls to a set of countries, simulating a real system. Finally, these calls will be
redirected to internal extensions of the system to avoid disturbing other users.

5. Leak accounts with strong credentials on paste sites and underground forums,
in order to encourage fraudulent use of the system.
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6. Analyze the data collected during the experiment (i.e., phone numbers, calls and
fraud, Internet Protocol (IP) addresses).

• Goal 3 — The design, implementation and evaluation of an architecture that allows
the analysis of malicious files while addressing the heterogeneity of IoT device archi-
tectures.

Since the malware that targets IoT devices is compatible with several architectures
due to the heterogeneity of IoT environments, it is necessary to have tools compatible
with these architectures in order to analyze them. Therefore, an architecture for
analyzing these malicious files can be designed by performing the tasks below:

1. Design an architecture for analyzing malware samples for the main architec-
tures targeted by IoT malware, allowing the integration of different modules in
order to cover the main phases in malware analysis.

2. Prepare virtual machines for each architecture, which will be used as the base
system and restored once the execution time of the malware has finished.

3. Design a static analysis module to obtain information about the malicious file
without executing it.

4. Design the dynamic analysis module, which is responsible for executing the
malware sample on its respective virtual machine and obtaining information
about its execution.

5. Design a module for the correlation of malware samples based on their static or
dynamic characteristics.

6. Evaluate the proposed architecture with a set of malicious samples designed to
attack IoT devices.

• Goal 4 — The development of tools and techniques for assisting malware analysts
and automating the process of relatingmalware samples to known threats and vetting
unknown malware.

The rise in the number of IoT devices together with the poor security that many of
these devices present, either due to the use of vulnerable software and lack of updates
or the misconfiguration of the devices by users, has caused the number of malicious
samples that target these devices to grow significantly. This goal aims to design tools
and techniques for assisting analysts in the process of matching malware samples.
The tasks required to accomplish this goal are:

1. Design a methodology for modeling, discovering and vetting malware that is
specially designed for Linux systems and IoT devices.

2. Perform data cleaning and preprocessing as well as an analysis and extraction
of the main features.
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3. Implement a machine learning system for the classification of malware samples
(i.e., Modeling phase).

4. Characterize the samples that do not have labels in the dataset (i.e., Discovery
phase).

5. Cluster the unlabeled samples in the dataset to find the relationships between
unknown and known samples (i.e., Vetting phase).

• Goal 5 — The design, implementation and evaluation of a methodology for adding
additional security measures to legacy IoT devices.

Due to the increase in the number of IoT devices and the absence of regular updates,
this objective aims to create a methodology for providing devices with additional se-
curity measures. For the design, implementation and evaluation of the methodology,
the following tasks should be performed:

1. Design and implement of a generic methodology for introducing additional
measures in the device firmware and for protecting the main exposed services
(i.e., HyperText Transfer Protocol (HTTP), Telnet, and UPnP).

2. Evaluate the effectiveness of themethodology by testing it with a set of firmware
images from different vendors and devices. This task can be broken down into
the following subtasks:

– Collect of a dataset made up of real-world firmware from different devices
and vendors.

– Retrofit the firmware images with a Web Application Firewall (WAF) and a
Secure Socket Layer (SSL) proxy to secure HTTP connections.

– Evaluate the performance in terms of memory, Central Processing Unit
(CPU) and the response time of the web application with respect to the
firmware image without retrofitting through firmware emulation.

– Test the methodology in a set of case studies with real devices.

1.4 GeneralDiscussion andDescription of theProposals

As mentioned above, the objective of this doctoral thesis is to analyze the attack trends
in the IoT ecosystem and propose tools for facilitating the analysis of threats. In this sec-
tion we provide a summary of the work carried out throughout the doctoral thesis. First,
Section 1.4.1 gives a description of the proposals made to measure attacks within the IoT
environment. Section 1.4.2 describes the tools for facilitating the analysis of malicious files
that target IoT architectures. Finally, Section 1.4.3 describes a methodology for adding ad-
ditional security measures to the firmware images of IoT devices.
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1.4.1 Measurement of attack trends

This section describes the proposals related to the measurement of attacks related to the IoT
environment, as well as themethodology implemented for the analysis of the collected data.
Two honeypots were established in order to collect and model attacks in IoT environments
for the Telnet, SSH and VoIP protocols.

On the one hand, we deployed the Cowrie [53] honeypot to monitor the attacks carried
out against the Telnet and SSH services. We configured Cowrie to work in proxy mode, and
its function was to redirect the traffic that these services received towards virtual machines
compatible with Quick EMUlator (QEMU) [54] and that were IoT friendly (i.e., ARM). Thus,
Cowrie becomes a high-interaction honeypot since the attackers deal directly with a com-
plete system rather than an emulation of a file system and certain commands. For user
authentication, we used the top 10 most common passwords used by malware that attacks
IoT services as valid credentials [55]. Once an attacker successfully logs in, the traffic is
redirected to a virtual machine. The honeypot was active for a period of 35 days, during
which time the actions that were carried out in the system were monitored and the data
corresponding to these actions were collected. Then, to evaluate the actions performed by
the attackers, three types of analysis were carried out.

In the first place, we carried out an analysis of the metadata associated with the con-
nections made to the honeypot, that is, the number of attacks received each day, the source
IP addresses of the connection, the connections that are attempted through SSH port for-
warding and the most frequently used users and passwords.

The second analysis consisted of a classification of the attackers’ interaction with the
honeypot. To accomplish this task, we extracted all the command sessions of the attackers,
and then we performed a cleanup and standardization process. Thus, we eliminated dupli-
cate sessions (i.e., those that belong to the same IP and in which the commands entered are
exactly the same), and standardized the commands by removing or replacing specific se-
mantics that may be variable but which correspond to the same command (i.e., IP addresses,
Uniform Resource Locators (URLs), download filenames, payloads, SSH keys and similar in-
formation). Then, we separated each of the commands entered, generating an ordered list
in which each element is a command. Finally, given the sequences𝐴 and 𝐵, we transformed
each of them into a vector, ®𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑛} and ®𝐵 = {𝑏1, 𝑏2, ..., 𝑏𝑛}, where 𝑎𝑖 and 𝑏𝑖 repre-
sent the number of times that the command in position 𝑖 appears in the sequence, and 𝑛 is
the total number of different commands when comparing the two sequences. To measure
the similarity between two vectors, we used the cosine similarity, which is computed as
follows:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐴, 𝐵) =
®𝐴 · ®𝐵

∥ ®𝐴∥ × ∥ ®𝐵∥
=

Σ𝑛𝑖=1𝐴𝑖𝐵𝑖√︃
Σ𝑛
𝑖=1𝐴

2
𝑖

√︃
Σ𝑛
𝑖=1𝐵

2
𝑖

(1.1)
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The result of the cosine similarity belongs to the interval [0,1], with 1 being a perfect
similarity and 0 indicating there is no similarity between the two lists of commands.

Finally, the last analysis corresponded to the study of the correlation between the files
downloaded by attackers in the honeypot. For this purpose, we executed the downloaded
binary files and stored the trace of system calls made by these files. To calculate the simi-
larity between two samples, it is necessary to extract the sequence of calls of size N, known
as an N-gram. Once the N-grams had been extracted, we used the Jaccard index [56], as
given by the following expression, to obtain the similarity between the two sets:

𝐽𝑎𝑐𝑐𝑎𝑟𝑑_𝑖𝑛𝑑𝑒𝑥 (𝑠1, 𝑠2) =
|𝑠1 | ∩ |𝑠2 |
|𝑠1 | ∪ |𝑠2 |

, (1.2)

In this expression, the numerator represents the number of subsets that appear in both
samples, and the denominator represents the total number of unique subsets in the two
both samples. The similarity between sets obtained as a result belongs to the interval [0,1].

On the other hand, we set up a customVoIP honeypot based onAsterisk, an open-source
PBX, to measure what type of actions are preformed when valid credentials are obtained
for VoIP services, which are increasingly used by users and devices. In this regard, this
honeypot monitored the accesses and actions through it to understand how these services
are misused. In order to achieve this, we designed two experiments for this honeypot. The
first one employed user accounts with weak credentials that were easily guessable through
brute force processes, while the second one had user accounts with strong credentials that
were leaked on pastebin sites and underground forums. This allowed us to study whether
the actions taken by attackers differ depending on how they gained access. In order to
make the system more realistic, these user accounts were linked to different contexts, only
allowing calls to destinations in the United States, the United Kingdom and Spain. It should
be noted that when the call was directed to these destinations, it was redirected to internal
extensions to make the attackers believe that the call was being made correctly. Figure 1.4
shows the methodology followed in this proposal.

Brute Force Attack

Fraudulent use of
infrastructure

- Passwords 
- Phone numbers 
- IP metadata 
- Call analysis 
- Phone fraud

Voip Server

Data analysis

Attacker

Credential leaks

Logs

Figure 1.4: Methodology followed to evaluate the actions carried out in the VoIP honeypot.

12



Chapter 1. Introduction

Once the two experiments were completed, we performed a data-driven analysis of the
actions that were carried out by the attackers to understand how these services are used
by attackers. In the first place, we performed an analysis of the source IP addresses in
order to establish the origin of the attacks, whether they belonged to blacklists of known
proxies or bots, and the Autonomous System Name to which they belonged. Secondly, we
analyzed the passwords used by the attackers to try to access the system. Since in current
versions of the Session Initiation Protocol (SIP), the client ends up computing the hash of
the username and password in the authentication process, as described in Algorithm 1.3,
the server never sees the password in plain text. Therefore, we carried out a brute force
attack with a dictionary of the most commonly used passwords to find the most frequently
used passwords in our system.

𝐴 = 𝑀𝐷5(𝑢𝑠𝑒𝑟 : 𝑟𝑒𝑎𝑙𝑚 : 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑)
𝐵 = 𝑀𝐷5(𝑚𝑒𝑡ℎ𝑜𝑑 : 𝑠𝑖𝑝 : 𝑢𝑟𝑖)
ℎ𝑎𝑠ℎ = 𝑀𝐷5(𝐴 : 𝑛𝑜𝑛𝑐𝑒 : 𝐵)

(1.3)

Then, we analyzed the phone numbers that the attackers tried to call, extracting the fol-
lowing information:

• Phone number called, that is, whether it was a valid number or not based on the
patterns that phone numbers have throughout the world.

• Localization of the phone number based on the country and area code.

• Type of telephone number, that is, whether it belonged to a mobile, land-line, special
rate number, etc.

Finally, we evaluated the calls made by the attackers, checking their timestamp to an-
alyze whether they took into account the local time of the destination of the call. We also
analyzed the type of fraud that was attempted. For this purpose, we applied the taxon-
omy described in [57], which systematically explores the different types of fraud existing
in telephone networks. Figure 1.5 describes how we applied the taxonomy in our scenario
to identify the type of fraud being attempted through our system.

As part of this investigation, whose results are briefly summarized in Section 1.5 and
detailed in Chapter 3, through the honeypot we were able to identify and characterize the
different types of calls that were made. Due to the increase in frequency of this type of
attack, together with the low prices that call plans present in some countries, these sys-
tems are exploited in spam and scam campaigns. Countermeasures such as blocking IP or
phone numbers are not enough since criminals can change their IP address (e.g., via The
Onion Router (TOR)) or the phone number used to call (e.g., via Caller-ID Spoofing). In this
regard, we propose a system for automatically answering phone calls which is responsible
for converting the incoming audio to text and feeding a chatbot that is responsible for giv-
ing an appropriate response. Then, this response is converted to audio format in real time
and played in the context of the conversation in order to deplete the scammer’s resources,
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Figure 1.5: Methodology that has been followed to identify the type of fraud.

as the time spent talking to a chatbot is not used to deceive other victims. In total we
built two chatbots: a rules-based one built on top of Rasa Natural Language Understanding
(NLU) [58], and the other using OpenAI’s Generative Pre-trained Transformer 3 (GPT-3)
model [59]. Finally, the call feeds a classifier that categorizes the type of call that has been
received. Figure 1.6 shows the scheme of the system architecture.

Audio model 

Speech to Text

Chatbot

Audio Model 

Text to Speech

Scam
ClassifierScammer

Audio
output

Audio
in/out

Audio
input

Audio
Transcript

Chatbot
Answer

VoIP Server

Figure 1.6: Scheme of the system architecture.

1.4.2 Tools and techniques to assist malware analyst

This section describes the framework for analyzing malware samples targeting IoT devices,
as well as the methodology for modeling, discovering, and examining malware samples
targeting Linux-based IoT devices.

IoT devices often contain very weak or not security measures, and the malware that
targets these devices increases every day. Unlike classical malware that targets desktop
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systems, in the IoT environment there are multiple hardware architectures (e.g., ARM or
MIPS), whichmakes analysis difficult since it is necessary to have these architectures, either
physically or emulated, to dynamically analyzemalware samples. In this regard, we propose
a modular solution to analyze malware samples for different hardware architectures (i.e.,
ARM, MIPSel, MIPSeb, PowerPC, 80386, and x86-64). Figure 1.7 shows a scheme of the
architecture and the modules that make it.

Orchestator

- Opcodes
- Cyclomatic complexity
- Entropy
- Imported function
- Architecture
- Endianness

Static analysis Deployment Connection

Dynamic analysis Clustering Visualization

- VM selection
- VM snapshot
- VM startup
- VM destruction

- Connection to VM
- Upload the sample 
- Execution of the sample
- Download results

 
- Syscall 
- Params
- Results

- Dynamic
- Static
- Hybrid

- Similarity graph 

Figure 1.7: Block diagram of the architecture designed.

As can be seen in the diagram, the architecture is made up of six modules, which are
managed by the orchestrator. Thanks to its modular structure, each module can be used
independently. The description of each module is as follows:

• Static analysis: This module is built on top of radare2 [60] and is responsible for
parsing ELF files and collecting executable information such as entropy, the cyclo-
matic complexity of each function, the sequence of disassembled code opcodes, sec-
tions, imported functions, text strings, the architecture, endianness, etc.

• Deployment: This module is responsible for starting the virtual machine, shutting it
down, or restarting it. It is necessary to indicate the architecture and the endianness
of the architecture in order to manage which virtual machine it is necessary to start.

• Connection: This is responsible for establishing the connection with a remote host
through the SSH service as well as sending commands. It also allows uploading and
downloading files from a remote host. In this case, the orchestrator sends the sam-
ple to be analyzed, and information about its behavior is extracted with strace. The
file with the execution trace is downloaded before shutting down and restoring the
machine to its original state.

• Dynamic analysis: This preprocesses and extracts the system calls as well as the
parameters used and the results of an execution trace.
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• Clustering samples: This is responsible for grouping binary files based on previ-
ously extracted features. To calculate the similarity between two samples, we follow
three approaches, depending on the characteristics used:

1. Dynamic approach: This uses the execution traces obtained dynamically, gen-
erating sequences of size N, known as N-grams. Finally, their similarity is cal-
culated using the Jaccard index, as presented above in Formula 1.2.

2. Static approach: We use two metrics to measure similarity statically. The first
one uses sequences of opcodes of size N extracted from the disassembled code,
and the similarity is calculated in a similar way to that used in the dynamic
approach but with opcodes instead of system calls. The second one uses the
cyclomatic complexity of each of the functions that exist in the binary. Given
two executables, we represent the cyclomatic complexity of each of them as a
vector where each position represents howmany functions have the cyclomatic
complexity represented by that position. We normalize both vectors to contain
the same number of elements, and finally, we use a distance function to calculate
the similarity between them, which is formalized as follows:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠1, 𝑠2) =
|𝐹 |∑︁
𝑖=0

𝑚𝑖𝑛(𝑓 𝑠1
𝑖
, 𝑓

𝑠2
𝑖
)

𝑚𝑎𝑥 (𝑓 𝑠1
𝑖
, 𝑓

𝑠2
𝑖
)
× 1
|𝐹 | (1.4)

3. Hybrid approach: This allows the use of all the similarity indices described
above, or a subset of them, assigning them a weight as a percentage. The final
index is the sum of all the recalculated similarity indices.

• Visualization: This generates a graph in which the nodes represent the malware
samples and the edges indicate similarity if there is a degree of similarity greater
than an established threshold.

The orchestrator is in charge of interconnecting all the modules. First, it uses the static
analysis module to obtain the binary information that will be used for the next phase. Once
the architecture is detected, it is responsible for deploying the virtual machine and upload-
ing the malicious file to the system. Then, by giving it execution permissions, it can run for
a predetermined amount of time. Once the execution time has elapsed, it downloads the ex-
ecution traces and recovers the original state of the virtual machine. Finally, the similarity
with other previously analyzed samples is calculated.

As mentioned above, malware attacks on IoT devices are constantly increasing due to
the lack of proper configuration and outdated software on IoT devices. This causes new
malware variants to appear every day, and it is important to understand their main charac-
teristics and be able to relate new threats to known samples. With this in mind, we propose
a methodology for characterizing malware samples and understanding their main features.
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Figure 1.8 shows the scheme of the proposed methodology, which is composed of the
following three phases:

• Modeling: The first phase deals with feature extraction and serves as an exploration
to guide the feature engineering process. These features feed a supervised machine
learning model for characterizing known threats.

• Discovery: This phase aims to characterize a set of samples that are not labeled using
themodeling phase classifier. Since there is no label, it is not possible to quantitatively
ensure that the classifier’s predictions are correct. Therefore, we compute the level
of similarity between the labeled and unlabeled samples at the sequence level of op-
codes of size N (N-grams) to generate an initial ground-truth. This allows us to check
whether the family predicted by the classifier has a high percentage of similarity at
the opcode level with other labeled samples of that family. It should be noted that the
classifier was formally evaluated in the previous stage using k-fold cross-validation
and that this phase aims to discover new threats.

• Vetting: This phase is responsible for characterizing new threats among the unla-
beled samples. To do this, an unsupervised clustering process is performed, driven
by a custom distance function that falls back on the features extracted in the model-
ing phase and the similarity index of the discovery phase. The distance function is
formalized as follows:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠1, 𝑠2) =

∑|𝐹 |
𝑖=0

𝑚𝑖𝑛(𝑓 𝑠1
𝑖
,𝑓

𝑠2
𝑖
)

𝑚𝑎𝑥 (𝑓 𝑠1
𝑖
,𝑓

𝑠2
𝑖
) ×

1
|𝐹 | + 𝑗𝑎𝑐𝑐 (𝑠1, 𝑠2)

2
(1.5)

In this expression, 𝑓 𝑠1
𝑖

is the feature 𝑖 of sample 𝑠1 (same for 𝑠2) and |𝐹 | is the total
number of features. For the clustering of samples, those sampleswith an index greater
than 0.8 have been considered to be similar, that is, they have a similarity ratio of 80%.
The choice of this similarity percentage is detailed in Chapter 6.

1.4.3 Defensive measures to protect IoT devices

This section describes the proposed methodology for retrofitting additional security mea-
sures into the firmware of legacy IoT devices to make them more secure from known at-
tacks.

Due to the extensive network of obsolete IoT devices, this methodology focuses on
those devices that have legacy or End-Of-Life (EOL) firmware. This is mainly because de-
vices containing legacy firmware tend to be vulnerable, and vulnerable services are likely to
be directly exposed to the Internet. In addition, legacy firmware will not receive any secu-
rity patches from vendors. Therefore, a system for HArdening LEgacy Internet-of-Things
(HALE-IoT) devices with legacy firmware is proposed. Figure 1.9 depicts a high-level view
of a hardened device with additional security measures. In the first place, we can observe
the vulnerable services, which are launched when the device starts (e.g., HTTP web server,
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Figure 1.8: Block diagram of the malware sample characterization methodology.

FTP, Telnet, etc.) and, on the other hand, the file system where the binaries and config-
uration files of these potentially vulnerable services are stored. The entry point to these
services can also be seen, usually through a network interface, representing the address
0.0.0.0 as an interface that would be accessible to an attacker.

For the design of the methodology, we took into account that the hardening process
has to be flexible and capable of accommodating the main services used in IoT devices.
The fail-safe minimization principle was also followed, whereby modifications made to the
firmware should be as unintrusive as possible and should not interfere with the operation of
the device. The methodology was designed to make as few changes to the device as possible
and to harden the system through changes to configuration files. Modifications should only
be made at the binary code level when it is not possible to reconfigure the device by other
means. In this scenario, the process should be guided by a human to produce a proof of
concept before reproducing the patch and retrofitting it to scala automatically.

In order to test the feasibility of the methodology in a practical scenario and address the
challenge of retrofitting and hardening a set of IoT devices, we designed a system to satisfy
the following points:

• Secure front-end: Its objective is to provide insecure services with a secure interface
through the development of wrappers, guaranteeing confidentiality and secure access
control. At this point, an SSL proxy will be retrofitted to provide a cryptographic
update in case the device lacks it (e.g. HyperText Transfer Protocol Secure (HTTPS)
instead of HTTP, SSH instead of Telnet, etc.), protection from SSL/Transport Layer
Security (TLS) attacks, and patches for weak SSL/TLS configurations.
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Figure 1.9: IoT firmware system diagram.

• Proactive detection: Its purpose is to offer protection at the application level
through the retrofitting of a firewall in the specific domain of the application to be
protected (e.g. a WAF for web requests).

• Advanced-level access: Its objective is to harden the device administration interface
since IoT devices generally do not have a graphical user interface and are managed
remotely.

Figure 1.10 shows a high-level diagram of the generic hardening of an IoT device. It can
be seen that, unlike in Figure 1.9, the vulnerable services are not directly exposed to the
internet but rather listen on the localhost interface. Secure interfaces are found through
the retrofitted wrappers in the device firmware and the specific firewall in the application
domain. Finally, the HALE-IoT admin panel can also be viewed to provide access for con-
figuration updates, updates to the xAF rule set, and bug fixes.

1.5 Results

This section presents the results obtained for each of the goals described in Section 1.2.
The results include a brief description of each publication together with the most relevant
conclusions.

Regarding Goal 1, there is no specific publication included, since this objective involves
the review of the state of the art, which has been applied throughout this thesis. The knowl-
edge acquired by accomplishing this objective constitutes the foundation on which the rest
of the goals of this thesis project are based, since it is important to know the state of the art
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Figure 1.10: IoT firmware system diagram AFTER hardening.

and how other proposals in the literature address the different problems that the said goals
try to solve.

In order to fulfill Goal 2, two honeypots were deployed to measure existing attacks
on Telnet, SSH and VoIP protocols. In the first place, as specified in Section 1.4.1, a high
interaction honeypot for Telnet and SSH services was deployed using the Cowrie honeypot
in proxy mode, with the requests being directed to an emulated virtual machine with ARM
architecture. In this work, we have performed a statistical analysis of the connections that
were made to our honeypot. The results show that brute-forcing usernames and passwords
remains one of the preferredmethods for attackers to gain access to devices and spread their
malware. Through the classification of the scripts introduced once they gained access, it
can be seen that they are mainly attacks carried out automatically and that they use similar
TTP to download and install malware on vulnerable devices since most of the command
sessions are grouped into 7 or 8 clusters. The 710 unique files downloaded by the attackers
were also analyzed, most of them being ELF binary files. Through the calculation of the
similarity between each pair of collected samples, it can be observed that 70% of the samples
are grouped in the same cluster and that they belong to the Hajime family, specifically to
the downloader used in the first stage of the chain of infection. This research was submitted
for publication in the Computers & Electrical Engineering Journal [61].

Second, as described in Section 1.4.1, a custom honeypot was deployed to understand
how VoIP services are exploited when attackers obtain valid device credentials. To do this,
two experiments were launched, one with weak credentials that were vulnerable to brute
force attacks and the other with strong credentials, which were leaked in different paste
sites and underground forums. The results show that attackers exploit VoIP systems to
carry out different types of fraud in order to obtain economic benefits. Different types of
fraud were identified, with Toll Evasion and Revenue Share being the most prevalent. Calls
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made to personal phone numbers were also identified, which suggests that these attacks are
also used for spam or scam campaigns. Through the study of the numbers that the attackers
tried to call, calls to numbers with different prefixes were identified, indicating an attempt
to avoid dialplan restrictions. Although some calls seemed random, others were focused
on the destination they were trying to call in order to maximize the success of their attacks
(i.e., calls were made during office hours or when people were at home). A correlation was
made between the valid numbers towhich calls were tried and the origin of the call, creating
different clusters of telephone fraud campaigns. Finally, a series of countermeasures were
proposed to avoid automatic attacks on this type of service. The results of this research
work were published in the journal Computers & Security [62].

To conclude Goal 2, we proposed an architecture capable of functioning as a honeypot
against criminals who use phone calls to carry out their attacks. First, we built a scam/spam
call classifier using different machine learning models. The results show that the SVM
model with the linear kernel is the one that provides the best results. Then, we built two
chatbots using different strategies: the first one based on rules using Rasa NLU and pre-
recorded audio, and the second one based on the GPT-3 model and audio generated in real
time. The chatbots were evaluated with real calls corresponding to a specific type of scam
known as Tech Support Scam. The chatbot built on Rasa NLU managed to maintain the call
for around 4.2 minutes, and the chatbot built with the GPT-3 model did so for 3.8 minutes.
The results of this study were submitted for publication in the journal Institute of Electrical
and Electronics Engineers (IEEE) Access [63].

Regarding Goal 3, which corresponds to the design and implementation of a framework
for the analysis of malicious files targeting IoT devices, the corresponding proposal, which
was discussed in Section 1.4.2, was evaluated using differentmalware samples that were dis-
tributed over five hardware architectures. The samples were tagged using AVClass, which
is a tool that categorizes the samples based on the tags provided by the different antivirus
engines used by VirusTotal. We then extracted the static and dynamic characteristics of
each of the samples in our dataset, and finally, we clustered the samples using different
approaches: 1) opcode sequences, 2) cyclomatic complexity, and 3) system call sequences.
The results show that these types of techniques are effective in clustering malware in the
IoT, providing a way to analyze a set of samples and automatically correlate them based on
their static or dynamic characteristics. Dynamic features allow us to relate samples from
different architectures, while static features based on disassembled code depend on the ar-
chitecture and its Instruction Set Architecture (ISA). Because of this, samples from different
architectures cannot be related. In addition, static features can be affected by code obfusca-
tion, by the compiler used, or by the compiler options used to build the sample. The results
of this proposal were published in the journal Security and Communication Networks [64].

For the fulfillment of Goal 4, a methodology was developed to assist malware analysts in
the classification, discovery and vetting of new threats, as described in Section 1.4.2. In this
regard, we used the proposed methodology to systematize Linux-based malware analysis,
showing that malware targeting architectures such as x86-64 is quite different from mal-
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ware targeting IoT architectures. We also showed that the use of Machine Learning (ML) to
understand large sample datasets is a challenge, due to the noise that appears in the dataset,
a fact that is mainly influenced by the lack of consensus among antivirus engines and the
use of publicly-available code from the Internet. This study also presents an in-depth anal-
ysis of previously unlabeled threats through case studies of the clusters with the largest
population. By using reverse engineering techniques in these studies, some samples from
each cluster were checked to verify whether the similarity was correct and to characterize
its functionality. Among the unlabeled threats, different samples were found that contained
encrypted bash files that would download malware for cryptomining campaigns, malware
written in the Go language for spreading through SSH services, exploits, and shellcodes,
among others. The results of this proposal were published in the journal Future Generation
Computer Systems [65].

Finally, Goal 5 proposed a methodology for adding defensive measures to the firmware
of legacy IoT devices, as described in Section 1.4.3. To evaluate the proposed methodology,
the web services of 395 emulated images were protected. To do this, defensive implants
were added to protect the application layer with aWAF and an SSL proxy to provide HTTPS
support to devices. Through the emulation of the firmware images, performance measure-
ments were made before and after retrofitting the images with the defensive implants, per-
forming a set of common requests and another set, of similar size, of attacks for which there
were rules in the WAF. Finally, the effectiveness was evaluated through proofs of concept
with firmware vulnerable to known exploits, allowing them to be detected through rules
and then seeing whether their exploitation was prevented. As a final part of the evaluation,
HALE-IoT was tested in several case studies with real devices having a storage space that
varied from 8 MB to 4096 MB, and with a Random Access Memory (RAM) memory from
32 MB to 1024 MB and different hardware architectures. The results of this proposal were
submitted for publication in the Internet of Things journal [66].

Summary of Results

All the goals proposed in Section 1.2 have been achieved by following the tasks defined in
Section 1.3. All the results of the work carried out in this doctoral thesis are summarized
in the list of publications below:

• Goal 2 — Analysis of the attack trends that exist in the IoT ecosystem.

– Hajime’s Return: Stories from a Customized Honeypot for the IoT, submitted to
Journal of Internet Technology. Journal paper. JCR2021 Q4 (148/164) in COM-
PUTER SCIENCE, INFORMATION SYSTEMS, IF 1.140 [61].

– On how VoIP attacks foster the malicious call ecosystem, published in Comput-
ers & Security. Journal paper. JCR2021 Q2 (42/164) in COMPUTER SCIENCE,
INFORMATION SYSTEMS, IF 5.105 [62].
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– A chatbot for selectively engagingwith online fraudsters, submitted to IEEEAccess.
Journal paper. JCR2021 Q2 (79/164) in COMPUTER SCIENCE, INFORMATION
SYSTEMS, IF 3.476 [63].

• Goal 3 — Design, implementation and evaluation of an architecture that allows the
analysis of malicious files while addressing the heterogeneity of IoT devices.

– Automatic Analysis Architecture of IoT Malware Samples, published in Security
and Communication Networks. Journal paper. JCR2020 Q4 (125/161) in COM-
PUTER SCIENCE, INFORMATION SYSTEMS, IF 1.791 [64].

• Goal 4—Design of tools and techniques to assist malware analysts and automate the
process of relatingmalware samples to known threats and vetting unknownmalware.

– Characterizing Linux-based malware: Findings and recent trends, published in Fu-
ture Generation Computer Systems. Journal paper. JCR2020 Q1 (7/110) in COM-
PUTER SCIENCE, THEORY & METHODS, IF 7.187 [65].

• Goal 5 — Design, implementation and evaluation of a methodology for adding addi-
tional security measures to legacy IoT devices.

– HALE-IoT: HArdening LEgacy Intenet-of-Things devices via retrofitting defensive
firmware modifications and implants, submitted to Internet of Things Journal.
Journal paper. JCR2021 Q1 (9/164) in COMPUTER SCIENCE, INFORMATION
SYSTEMS, IF 10.238 [66].

Other Results

These include other proposals resulting from collaboration with other researchers
that are published. These proposals aim to solve certain cybersecurity problems but
are not specifically within the scope of this doctoral thesis. These proposals are the
following:

– Forensic analysis in the IoT.

∗ Non-Volatile Memory Forensic Analysis in Windows 10 IoT Core, published
in Entropy. Journal paper. JCR2019 Q2 (33/85) in PHYSICS, MULTIDISCI-
PLINARY, IF 2.494 [67].

∗ A context-centered methodology for IoT forensic investigations, published
in International Journal of Information Security. Journal paper. JCR2021
Q2 (52/110) in COMPUTER SCIENCE, SOFTWARE ENGINEERING, IF
2.427 [68].

∗ Developing an IoT forensic methodology. A concept proposal, published in
Forensic Science International: Digital Investigation (continuation of the jour-
nal Digital Investigation). Journal paper. JCR2021 Q4 (131/164) in COM-
PUTER SCIENCE, INFORMATION SYSTEMS, IF 1.805 [69].
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∗ Forensic Analysis of the Xiaomi Mi Smart Sensor Set, published in Forensic
Science International: Digital Investigation (continuation of the journal Dig-
ital Investigation). Journal paper. JCR2021 Q4 (131/164) in COMPUTER
SCIENCE, INFORMATION SYSTEMS, IF 1.805 [70].

– Vulnerability detection.

∗ An instrumentation based algorithm for stack overflow detection, published
in Journal of Computer Virology and Hacking Techniques. Journal paper. Not
indexed [71].

– IoT pattern attack detection.

∗ Attack pattern recognition in the Internet of Things using complex event pro-
cessing and machine learning, presented at the 2021 IEEE International Con-
ference on Systems, Man, and Cybernetics. Conference paper. GGS Rating
A- [72].
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Abstract 
 

Since the inception of the Internet of Things (IoT), the 

security measures implemented on its devices have been 

too weak to ensure the appropriate protection of the data 

that they handle, thus making this environment the perfect 

one for cybercriminals to carry out their attacks. In order 

to do so, they continuously seek out for vulnerable units 

so that they can control as many as possible, leading to 

attacks spreading through networks and infecting a high 

number of devices. At the same time that the IoT has 

evolved to provide a higher degree of security, the 

techniques used by attackers have done so as well. This 

has led to the need of continuously studying the way in 

which these attacks are performed in order to gather 

significant knowledge for the development of the 

pertinent security measures. 

In view of this, this article analyses the state of IoT 

attacks by developing a high-interaction honeypot for 

Secure SHell (SSH) and Teletype Network (Telnet) 

services that simulates a custom device with the 

Advanced Reduced Instruction Set Computer Machine 

(ARM) architecture, which is the most commonly used in 

this environment. By doing so, we make it possible to 

analyse the attacks on these services, which have been on 

the rise in the recent years both in terms of quantity and 

effectiveness. This study is carried out in two steps. Firstly, 

we analyze and classify the interaction between the 

attacker and the devices by clustering the commands that 

they sent in the compromised Telnet and SSH sessions. 

Secondly, we study the malware samples that are 

downloaded and executed in each session and classify 

them based on the sequence of system calls that they 

execute at runtime. In addition, apart from studying the 

active data generated by the attacker, we extract the 

information that is left behind after a connection with the 

honeypot by inspecting the metadata associated with it. 

 

Keywords: Honeypot, Malware, IoT, Data analytics, 

Expert systems 
 

1  Introduction 
 

Nowadays, there are innumerable devices connected 

to the Internet which interact with each other, providing 

services to users that, until a few years ago, seemed 

unthinkable. The result of integrating technology in new 

environments different from conventional ones, namely 

the cloud, desktop or mobile, is what is we know as the 

Internet of Things (IoT). IoT devices make people's lives 

easier by easing tasks that users perform on a daily basis. 

Using a mobile device for controlling household 

appliances, or utilizing your own voice for turning on the 

light or the television are some examples. 

This means that the IoT is heavily involved in the 

activities that a person carries out in many aspects of their 

life. As a consequence, due to the high number of 

interactions that are made between user and device, both 

actively and passively, the resulting volume of data that is 

managed in this environment is immense. In addition, 

since some of this data can have a high degree of 

sensitivity, cybercriminals find it very appealing to attack 

IoT units. Unfortunately, although these devices provide a 

great number of features that are attractive to users, the 

security measures implemented on them are not strong 

enough to stop these attacks, thus making them vulnerable 

due to such simple aspects such as using default and easily 

guessable user and password combinations, having weak 

default settings or running well-known-to-be outdated and 

vulnerable software. 

The characteristics mentioned above, together with the 

lack of knowledge that many users have regarding the use 

of new technologies, have led cybercriminals to focus 

many of their efforts on attacking IoT devices and 

obtaining financial returns from them. According to a 

recent report [1], the number of attacks on these devices 

reached one hundred million in 2019, exceeding the 

number of attacks in 2018 by seven times. 

Under these circumstances, it is important to 

understand what activities attackers perform in order to 

compromise IoT devices and what actions they carry out 

once they have gained access to a system. To study this, 

the use of honeypots, which are devices which simulate 

systems that present some kind of vulnerability, is a very 

effective approach to attract attackers, and a technique that 

has been successfully used in other experiments such as 

[2]. This allows for different types of attacks to be 

captured and, upon analysis, the extraction of knowledge 

regarding the multiple techniques and tools used by 

attackers for carrying out their criminal schemes. 

In this work, we have deployed a high interaction 

honeypot [3] that simulates a device with the Advanced 

Reduced Instruction Set Computer Machine (ARM) 

architecture. After performing an analysis of the 

interaction between this infrastructure and the attackers, 

the main contributions that can be extracted from this work 

are the following: 

• We present a statistical analysis of the 

connections that took place in our honeypot, 

showing the geographical information about 

the origin of the attacks as well as the most 

commonly usernames and passwords used in 

brute force attacks, and the different remote 
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hosts to which the attackers tried to connect 

once they had obtained valid credentials. 

• We perform an evaluation of the interaction 

of the attackers with our system, classifying 

the sessions established according to the 

sequence of commands introduced by the 

attackers. 

• We present an analysis of the files 

downloaded by the attackers in our 

infrastructure, mainly consisting of binary 

files, but also bash-scripts and compressed 

files. 

• We evaluate the similarity between each pair 

of collected files and classify them using N-

grams together with the Jaccard index. 

The remainder of this paper is organized as follows. 

Section 2 studies the proposals form the scientific 

community. Section 3 describes the methodology 

followed, and Section 4 presents the data analysis for the 

experiment that was carried out. Finally, Section 5 

presents the main conclusions. 

 

2  Related work 
 

The concept of a honeypot was first introduced more 

than two decades ago when the first worms started to 

spread through Windows and Linux systems [2]. 

Honeypots are monitored systems which are exposed to 

the Internet with the aim of obtaining information about 

attacks that are occurring in real time. These systems can 

be classified as low, medium and high interaction 

depending on the functionality that is available for 

attackers [3]. Low and medium interaction systems do not 

present a complete system to the attacker (i.e, lack of 

commands, static file system or fixed command outputs 

[4]), while high interaction systems do provide a complete 

system to attackers and, therefore, it makes it difficult to 

fingerprint the honeypot based on its interaction or the 

tools that are available [5]. 

Nowadays, one of the main attack trends is targeting 

IoT devices, for the most part because a substantially 

number of these devices are more focused on providing 

new features to users rather than providing security or 

privacy measures [6] for protecting themselves and the 

data that they handle. In addition, since they are limited 

devices in terms of resources, it is highly unusual to find 

them using additional security measures such as 

AntiVirus (AV) or Intrusion Detection Systems (IDS) [7]. 

Due to this insecure nature, the research community, as 

well as the industry itself, use honeypots for detecting new 

threats and learning about the tactics, techniques and 

procedures used by attackers against these devices. 

Pa et al. [8] designed a honeypot focused on Teletype 

Network (Telnet) attacks by combining a low-interaction 

honeypot with a sandboxing system. This way, when a 

command is unknown, it is sent to the sandbox in order to 

give a reliable response to the entered command, and it is 

stored for future requests. Another solution proposed by 

Šemić et al. [9] is a low-interaction honeypot for the 

Telnet protocol. The honeypot has two 

frontends,onededicated to manual attacks, simulating 

some of the commands and components of a real system, 

and one specifically designed to respond to Mirai malware. 

Other protocols used by IoT devices have been studied 

by Wang et al. [10], which proposed a high-interaction 

honeypot for Message Queuing Telemetry Transport 

(MQTT) and Extensible Messaging and Presence 

Protocol (XMPP) modules, while device emulation was 

performed via a Representational State Transfer (REST) 

Application Programming Interfaces (API). Luo et al. [11] 

designed a honeypot with intelligent interaction based on 

the responses received from other real IoT devices which 

it actively scans and sends requests logged from previous 

attacks, and combines it with the use of a reinforcement 

learning algorithm to give the best possible response to 

attackers. 

Vetterl et al. [12] proposed a high-interaction 

honeypot for capturing attacks on Customer Premise 

Equipment (CPE) and IoT devices through emulation of 

their firmware. The honeypot is designed to obtain 

information on how the system is compromised and once 

the attack vector is known it is blocked. 

Tambe et al. [13]  introduced the idea of making use 

of a high-interaction honeypot using Virtual Private 

Network (VPN) tunnels so that a physical IoT device can 

be listening in different geographic locations, simulating 

multiple devices. 

Cowrie [14] is an open-source honeypot that was 

created as a continuation and extension of Kippo [15]. It 

supports the Telnet and Secure SHell (SSH) protocols and, 

although it was initially designed as a medium-interaction 

honeypot, it can be used as a high-interaction honeypot 

allowing the Cowrie logging system to be used 

transparently with real or virtual devices. Fraunholz et al. 

[16] uses Cowrie as a medium-interaction honeypot to 

perform statistical and behavioral analysis on incoming 

attacks.  

In summary, there are different studies made by the 

research community that use honeypots to analyze the 

different attacks on protocols or services used in the IoT. 

Unlike most related work, we used a high-interaction 

honeypot to collect attacks on Telnet and SSH services, 

where we classified the attackers' command sessions and 

downloaded malware samples to spread through these 

devices. 

 

3  Methodology 
 

In order to learn how SSH and Telnet services are 

exploited for gaining access to IoT devices and perform 

attacks through them, we deployed a high-interaction 

honeypot and monitored the actions and accesses carried 

out by exploiters. The methodology followed in this 

experiment, which is shown in Figure 1 1, is explained in 

this section. Firstly, we describe the architecture of the 

deployed system and then we detail the configuration of 

the machines which simulated vulnerable devices. Finally, 

we present the analysis carried out in this study.  

Chapter 2. Hajime’s Return: Stories from a Customized Honeypot for the IoT
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3.1 System Architecture 

 

The architecture consisted of a private server that was 

deployed in Germany. We hardened the server in order not 

to allow unauthorized access to the services in this 

machine, and, after that, We deployed the honeypot on this 

machine and redirected the connections directed to the 

SSH and Telnet services to the internal ports used by 

Cowrie. We configured Cowrie to work in proxy mode, 

redirecting the traffic that reached these services to virtual 

machines compatible with QEMU [17]. This allows 

Cowrie to become a high-interaction honeypot because 

attackers are dealing with a complete system rather than 

an emulation of the file system and certain commands, 

thus making it more difficult for them to notice that they 

are not compromising a real system. 

For user authentication, we only considered the root 

user and the top 10 most common passwords used by 

malware targeting IoT devices [18] as valid ones. This 

way, when an attacker entered valid credentials, Cowrie 

performed a successful login in the virtual machine, 

returned the response from the server of the virtual 

machine and started acting as a proxy, redirecting the input 

and output of commands between the attacker and the 

virtual machine. The proxy mode can be configured to 

redirect traffic to virtual machines or devices outside 

Cowrie, or Libvirt compatible virtual machines can be 

included and Cowrie can take care of deploying and 

restarting the machine when needed through this toolkit. 

 

3.2 Virtual machine configuration 
 

For the creation of the virtual machine used to emulate 

a real system, we used Buildroot, which automates the 

process of creating a Linux environment for embedded 

systems. Using this tool, we were able to build a Linux 

system for the ARM architecture by cross-compiling, so 

that, once that an attacker has gained access to the system 

and performs a reconnaissance of the environment, they 

find that the architecture being emulated is the most used 

one for IoT devices.  

For the Linux system compiled, we included 

compatibility for the old application interface (OABI), 

allowing the execution of binaries created for older ARM 

architectures. Finally, we included different tools such as 

BusyBox, Perl, and Python. as well as SSH and Telnet 

servers to allow Cowrie to connect in its proxy mode. 

Once the machine was built with Buildroot, we 

obtained the kernel that would be emulated and a file 

system and utilities that resemble those that an attacker 

would find on a real device. The system generated was 

emulated using QEMU, and, in order for Cowrie to 

manage the virtual machine, it was necessary to generate 

an Extensible Markup Language (XML) file containing 

the configuration options that QEMU needed to emulate 

the machine. 

 

3.3 Data analysis 
 

In order to evaluate the actions carried out by the 

attackers, the metadata that could be extracted from the 

stored logs was thoroughly studied. This analysis was 

divided into three different tasks: the inspection of the data 

associated with the connections, the examination of the 

interaction that the attackers made with the system, and the 

study the files that were downloaded in our honeypot. 

Metadata analysis. In this phase, we analyzed the data 

associated with the connections made to our honeypot 

system. Firstly, we focused on the connection attempts 

made throughout the experiment, and then broke the data 

down into days of the week. Secondly, we evaluated all 

the login attempts that were made, also studying the 

username and password combinations most frequently 

used by the attackers. Thirdly, we studied the attacks that 

were attempted through the SSH feature known as port 

forwarding. This SSH feature allows the redirection of any 

Transmission Control Protocol (TCP) port and the sending 

of data via SSH, allowing, for example, accessing 

Figure 1: Outline of the methodology followed in this work. 
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geolocation-restricted content, bypassing firewalls, etc. 

Therefore, the server would act similarly to a proxy and 

the connection data recorded on the target host would be 

from the SSH server. Finally, we analyzed the origin of the 

attacks by consulting the geolocation of the Internet 

Protocol (IP) addresses that interacted with our honeypot 

using public IP location services [19], [20]. 

Interaction analysis. To analyze and classify the 

interaction, we extracted all the command sessions for 

each of the IP addresses. Then, we cleaned duplicated 

sessions from the same IP, i.e. sessions that are exactly the 

same and therefore have been created by bots that made 

another connection to the system and performed exactly 

the same tasks as in other connection. After this, we 

standardized the commands by eliminating specific 

semantics that can be variable and still be the same 

command. For this purpose, we replaced the following 

variables by constant values using pattern search and 

regular expressions: 

• IP addresses and Uniform Resource Locators 

(URLs) 

• Names of downloaded files or scripts 

• Payload hardcoded in commands 

• SSH keys 

• Inserting users 

• Replacing non-existing BusyBox commands 

Once the commands entered had been standardised, 

we separated each one of them. In addition, those symbols 

that allow different commands to be chained together in 

the same order, such as the semicolon, were removed. 

After this cleaning and standardisation stage, each session 

was composed of an ordered vector where each element 

represented a command. 

For measuring the similarity between sequences and 

performing the classification, we use the cosine similarity 

between two vectors [21]. Given to sequences A and B, the 

first step is to transform each one of them into a vector, 

obtaining 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}  and �⃗⃗� = {𝑏1, 𝑏2, … , 𝑏𝑛} , 

where 𝑎𝑖 and bi, represent the number of times in which 

the command in position i appears in the sequence, and n 

is the total number of different commands in the whole set 

of sequences that are being compared. 

Finally, given two vectors of command sessions, we 

compute the cosine similarity as follows: 

 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) =
�⃗�⋅�⃗⃗�

||�⃗�||×||�⃗⃗�||
=

Σi=1
𝑛 𝐴𝑖𝐵𝑖

   √Σi=1
𝑛 𝐴𝑖

2 √Σi=1
𝑛 𝐵𝑖

2
 

The obtained result is in the interval [0,1], with 1 meaning 

a perfect similarity and 0 a nonexistent one. In other 

contexts, this interval can be [-1,1], but in this experiment 

it is not possible to obtain negative values for the vectors. 

Analysis of downloaded samples. For the analysis and 

clustering of the downloaded files in the honeypot, we 

used the tool proposed in [22], which automatizes the 

analysis and feature extraction process of pieces of 

malware from various architectures. For the clustering and 

classification tasks, we followed a dynamic approach, due 

to the fact these might be samples from different 

architectures, so a static study based on opcodes would not 

be able to perform an interarchitecture comparison. Using 

this tool, we extracted the sequence of system calls 

(syscalls) of size N for each sample, also known as N-

grams. For example, for the following vector of syscalls: 

[execve, time, getpid, getppid], the set of n-grams of size 

2 that will be obtained is: (execve, time), (time, getpid) and 

(getpid, getppid). Once that the N-grams from the different 

samples were extracted, we calculated the similarity using 

the Jaccard index [23], which allowed us to determine the 

similarity between two sets in the following way:  

𝐽𝑎𝑐𝑐𝑎𝑟𝑑_𝑖𝑛𝑑𝑒𝑥(𝑠1, 𝑠2) =
|𝑠1| ∩ |𝑠2|

|𝑠1| ∪ |𝑠2|
, 

where the numerator represents the subsets (N-grams) 

found in both samples and the denominator indicates all 

unique subsets between samples. The result is a value 

between 0 and 1 representing the similarity between two 

sets. 

 

4  Data Analysis 
 

Our honeypot system ran for a period of 35 days. 

During this time, the actions carried out on the system 

were monitored and the corresponding data was collected. 

This section presents the results than can be extracted 

from this experiment.  

 

4.1 Metadata analysis 
 

In this section we analyze the information associated 

with the connections or connection attempts that were 

logged at the honeypot. Firstly, we perform a study based 

on the number of attempts and the time stamp at which 

they occurred. Secondly, we analyze the login attempts. 

Thirdly, we analyze the connection attempts via SSH 

tunnels to other hosts, and finally we analyze the origin of 

the IP addresses that interacted with the honeypot. 

Analysis of connections. We analyze the timestamp of 

the connection attempts recorded by the honeypot using 

Spanish local time (Greenwich Mean Time +1). In the 

thirty-five days of the experiment, the system captured a 

total of 830,053 connection attempts. Figure 2 represents 

the number of attempts per protocol. It can be seen that 

most of the connections were through the SSH protocol, 

reaching a total of 781,339 connection attempts. Which is 

more noticeable from this data is that the number of 

connections captured via the Telnet protocol (48,714) is 

so low, as for years it was the preferred protocol for brute-

force attacks on IoT devices. 

As for the timeline of the connection attempts 

captured, Figure 3 shows the attempts that occurred on 

each of the days of the experiment. Red represents those 

attempts that occurred between 00:00 and 08:00, yellow 

represents those that occurred between 08:00 and 16:00, 

and green represents those that occurred between 16:00 

and 00:00. Looking at the results, it can be seen that, on 

average, there were 20,000 attempts per day, with this 

figure even exceeding 30,000 on some days. In general, in 

terms of time periods, the number of attacks remains 

uniform and does not show any tendency towards a 

specific one. This indicates that most of the attacks were 
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automated and not focused on out-of-office hours such as 

the 00:00 to 08:00 period.  

Figure 4 shows the connection attempts that were 

made on each day of the week. It can be seen that the 

number of attempts is very similar for each day and, 

although the peak is reached on Sunday, it does not seem 

to follow any trend.  

Analysis of login attempts. A total of 769,685 honeypot 

login attempts were captured, of which 539,369 (70.07%) 

succeeded in logging into the system and 230,316 

(29.93%) were unsuccessful. The successful logins 

belonged to 1,534 unique IP addresses, i.e. only 15.45% 

of the unique attackers managed to access the system.  

Of the login attempts that occurred on the system, 

70.91% and 71.19% of the login pairs were generated 

from the list of users and passwords used by Mirai and 

from a specific dictionary of users and passwords of IoT 

devices, respectively. Table 1 shows the top 10 most used 

both users and passwords, as well as the top 10 most used 

combinations for logging into the system. In the table it 

can be seen how the attackers try to use usernames and 

passwords that are clearly commands (e.g., iptables, ping, 

sh, shell, etc.). This is due to scripts that are not able to 

capture the fact that they are facing a system that requires 

authentication and the script continues its execution, 

evidencing the lack of sophistication of some attacks. 

It can be seen that brute-force attacks on SSH and 

Telnet credentials are still one of the main methods of 

finding vulnerable systems and that the trend has 

continued since the release of Mirai, such methods 

allowing attackers to compromise systems quickly 

without investing too much effort or money in searching 

for vulnerabilities or zero-days. 

Direct TCP-IP connection analysis. We analyzed the 

connection attempts that allowed attackers to create TCP 

sessions in an SSH tunnel. In total, there were 1,278,006 

connection attempts using this SSH feature, of which 

33,804 were unique targeted hosts. It is important to note 

that all of these connection attempts were made by only 

96 attackers or bots. Figure 5 graphically shows the top 30 

hosts to which the most connection attempts were made. 

The red nodes represent the IPs of the attackers, while the 

blue nodes represent the hosts to which they tried to 

connect to. The edges represent whether there were any 

connection attempts between the attacker IP and the  

Figure 2: Percentage of connections by protocol. 

Figure 3: Number of connection attempts captured. Red 

represents attempts made between 00:00 and 08:00, yellow 

between 08:00 and 16:00 and green between 16:00 and 

00:00. 

Figure 5: Connection attempts via ssh direct TCP-IP. The 

blue nodes represent the hosts or addresses they attempted to 

connect to and the red nodes represent the attacker's ip 

address. The edge weight indicates the number of connections 

from node A to node B. 
Figure 4: Number of connection attempts per day of the week. 
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targeted node, and the thickness of the edges varies 

according to the number of times the attacker tried to 

connect to the targeted host through our SSH server. It 

should be noted that no connection was made from our 

honeypot to the outside. Also, those targeted hosts to 

which they tried to connect directly through their IP 

address were anonymised. As can be seen in the image, 

some well-known domains appear, such as Google, 

Amazon, Evernote or the Russian search engine 'ya.ru', to 

which 30.5% of the total connection attempts belong to. 

Making requests to known domains could be a way to 

check whether the redirection is working correctly and 

whether they are in a honeypot.  

In addition, we analysed the destination ports to which 

the requests were directed. Table 2 shows the top 10 ports 

and indicates that most of the requests were directed to 

connections via the Hypertext Transfer Protocol (HTTP) 

and the Hypertext Transfer Protocol Secure (HTTPS). 

The rest of the connections in the top 10 are mainly related 

to sending and receiving email and the different protocols 

used for this. Therefore, they were trying to connect to 

Simple Mail Transfer Protocol (SMTP) servers to send 

emails anonymously, something commonly used in spam 

and phishing campaigns. 

Finally, an unusual port can be observed. After 

applying Open Source INTelligence (OSINT) [24]  

techniques, we observed that this port is used by the 

servers of RuneScape [25], an online role-playing game 

that is developed by Jagex. This could be used to perform 

a Distributed Denial of Service (DDoS) attack on the 

game server or to evade bans based on IP addresses in the 

game. 

Origin of the attacks. In total, 9,926 unique IP addresses 

interacted with the system. We obtained the origin of the 

addresses by using location services and plotted them on 

a map. Figure 6 shows a heat map and the representation 

of the existing IP addresses in that geographical area. It 

can be seen that the origin of most attacks is in Asia, 

Europe and the United States, with China being the most 

common location with 28.03% of the IP addresses 

collected, followed by the United States (10.89%), France 

(5.67%), Brazil (4.49%) and South Korea (4.07%). It is 

worth noting that 51.42% of the IP addresses collected 

come from Asia, which is twice the number of IP  

addresses from Europe (24.20%). It is also relevant that 

the origin of the actors behind the attacks is not 

necessarily that location specifically, as they could be 

using some kind of proxy, virtual private networks 

(VPNs), Tor or systems that have been previously 

compromised through malware and are acting as bots 

looking for other vulnerable systems to spread malware. 

 

4.2 Interaction classification 
 

This section presents an analysis of the interaction of 

the different attacker sessions via the SSH and Telnet 

protocols. As discussed in Section 4.1, only 1,534 unique 

IP addresses successfully logged in. Out of that entire pool 

of IP addresses, at least 1,402, or 91.4%, executed at least 

one command. In total, 4,217 sessions were established, 

i.e. some of these IP addresses connected to the honeypot 

several times. 

To analyse the interaction, automated techniques were 

applied to classify the sessions and extract knowledge. 

Firstly, as described in Section 3.3, the commands entered 

were standardised and the most commonly used 

commands were extracted. Table 3 shows the top 10 

commands most used by attackers. In the table, we can see 

some that are quite common, such as system, shell, and 

enable, and which are normally used on some devices 

such as routers to obtain shell or more privileged 

commands. Also, the command “echo CODE >> .file”, 

which dumps binary code to a file, can be observed. 

 

Users Total Passwords Total Pairs Total 

root 640,170 admin 411,542 root/admin 410,365 

admin 16,006 root 126,693 root/root 124,801 

enable 4,295 123456 9,781 enable/system 4,293 

sh 4,200 123 4,401 sh/shell 4,185 

test 2,927 system 4,394 ping ; sh//bin/bu.. 2,002 

user 2,596 shell 4,198 root/54321 1,888 

ping ; sh 2,002 /bin/busy… 3,549 admin/888888 1,882 

ubuntu 1,921 888888 2,771 root/8888 1,825 

postgres 1,836 5555 2,590 root/5555 1,824 

Iptables -F 1,547 password 2,095 root/111111111 1,821 

Port Total Protocol information 

443 526,670 https 

80 508,109 http 

25 176,972 smtp 

993 24,855 imaps 

587 22,627 smtp over tls 

465 5,183 smtp over tls 

43594 4,802 runescape servers 

143 3,409 imap 

26 1,988 smtp 

2525 1,952 smtp 

Table 1:Top 10 users, passwords and combinations of both most used by attackers. 

Table 2: Top 10 ports to which petitions were addressed. 
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The most striking command is the one that was repeated 

most often as it is an invalid command. Attackers use the 

command /bin/busybox followed by non-existent 

“command” names such as CORONA, TSUNAMI, 

FBOT, etc., in order to find out if the previous commands 

have been executed correctly [26].  

Secondly, the similarity between each pair of sessions 

was calculated using the cosine similarity. In order to 

consider two similar sessions, different thresholds were 

tested, and finally we selected one with the value of 0.9, 

i.e. two sessions are similar if the cosine similarity is 

greater than 0.9. Figure 7 shows the results of clustering 

sessions based on the commands entered during the 

session. The nodes represent the sessions and the edges 

connect two sessions if their cosine similarity exceeds the 

set threshold. It can be seen that most of the sessions are 

similar to each other and that they are mostly grouped in 

7-8 clusters, indicating that most of the connections were 

made by bots searching for vulnerable systems to 

download and install malware using similar tactics, 

techniques and procedures (TTP).  

 

Command Total 

/bin/busybox BUSYBOX 6,065 

sh 4,483 

shell 4,197 

system 4,171 

enable 4,171 

linuxshell 3,397 

/bin/busybox cat /bin/busybox 2,629 

>.file 2,099 

>file 1,930 

echo CODE >>.file 1,272 

Figure 6: Origin of the attacks received in the honeypot 

Table 3: Top 10 most used commands. 

Figure 7: Clustering of sessions according to the commands 

entered. Each node represents a session and edges between 

two nodes indicate that the similarity is above the set 

threshold of 0.9. 
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4.3 Downloaded malware analysis 
 

This section presents the results of the analysis of the 

samples collected by the honeypot. In total, 1,578 samples 

were collected, of which 710 were unique. The unique 

samples included 590 Linux executable binary files, 35 

gzipped files, 82 bash script files and 3 perl scripts. 

Binary files. These were executable and Linkable Format 

(ELF) binary files, mainly from the 32-bit ARM 

architecture (87.46%). The rest of the samples 

corresponded to other architectures such as Intel 80386, 

Microprocessor without Interlocked Pipeline Stages 

(MIPS), etc. For the classification of the samples, the 

syscall sequences were extracted as discussed in Section 

3.3, and N-grams were extracted for each syscall sequence 

using four as the N-gram size. Figure 8 shows the results 

of the clustering of the collected samples. The nodes 

represent each of the samples and the edges join nodes 

that have a similarity greater than 80%. It can be seen that 

there is one cluster that stands out from the rest, and then 

there are small clusters or sets of connected samples.  

We applied reverse engineering techniques in 

different samples from each cluster to confirm that the 

samples were clustered correctly. The samples that are 

clustered with any other sample based on the established 

similarity threshold are the following: 

• Hajime: To this category belong 70.5% of 

the samples found, and it is this grouping 

that stands out from the rest in Figure 8. This 

sample is Hajime's downloader, a malware 

that first appeared in 2016 and spreads 

mainly via Telnet and vulnerabilities whose 

exploits it has been incorporating into its 

scanning and propagation module [27]. It is 

a botnet that communicates with its C&C 

through a decentralised network and its real 

purpose is so far unknown as it has not 

launched any denial-of-service (DoS) 

attacks. The binaries found all have the same 

size and are responsible for downloading the 

sample from the next phase [26]. Mainly, it 

is the same binary with only changes in the 

address and download port of the next stage 

of the malware. 

• Mirai: This is the most popular family of 

malware that attacks IoT devices. It became 

famous because it generated the largest 

DDoS attack using IoT devices [28]. Its 

source code was leaked in 2016 and since 

then multiple Mirai variants have appeared. 

It accounts for 9.83% of the total binary 

files. 

• Gafgyt: This accounts for 6.44% of the 

executable files collected. It is malware 

whose source code was leaked in 2015 and, 

like with Mirai, there are many variants of 

this malware family. Among its main 

features is the ability to perform various 

DDoS attacks [29]. 

• Dofloo: This is malware that allows DDoS 

attacks and the loading of cryptocurrency 

miners [30], [31] , and accounts for 1.52% 

of the samples. 

• Xorddos: This is malware that affects 

Linux-type devices and allows different 

types of DDoS attacks [32]. This family 

accounts for 2.54% of the samples. 

• Others: The remaining samples, which 

were not related to any other sample on the 

basis of the similarity index, belong to this 

category. 

Bash-script. These were script files downloaded in the 

sessions and designed to download malware for different 

architectures and execute it. All scripts work in a similar 

way: 1) they move to a directory where the user has 

permissions; 2) they download the malware for different 

architectures via wget, tftp or curl; 3) they give the 

downloaded file execution permissions; and 4) they 

execute the file with or without arguments. All files 

perform the same task and differ only in the IP addresses 

they try to connect to, the filename and the architectures 

supported by the malware. 

Perl-script. The downloaded scripts were Internet Relay 

Chat (IRC) bots written in Perl with command execution 

capabilities. All three scripts were based on source code 

that is publicly available on the Internet, with two of them 

even having the same comments as the versions they were 

based on [33], [34]. 

Compressed files. These were files in “tar.gz” format that 

had a hidden folder with the name rsync. The sum of all 

the unzipped files was 979, 106 of which were unique. 

There were 34 shared libraries, 31 executable files and 40 

script files. In general, they were different versions of 

malware designed to mine cryptocurrencies. Such botnets 

provide cybercriminals with a network for distributed 

Figure 8: Clustering of the samples captured in the honeypot. 

Each node is a sample and an edge connects two nodes if they 

have a similarity greater than 80%. 
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mining and financial gain, either by saving electricity bills 

or by obtaining cryptocurrencies [35]. Each compressed 

file contains several scripts that are responsible for finding 

and stopping the execution of any other mining malware 

and initiating the execution of its own malware. They also 

carry different versions of the executable used to perform 

the mining as well as the necessary libraries for ARM, x86 

and x86_64 architectures. 

 

5 Conclusions 
 

In this study, a high-interaction honeypot has been 

deployed for a period of one month, mimicking the 

behaviour of an IoT device. The data captured have been 

analysed yielding valuable insight of the actions carried 

out by the attackers once the Telnet and SSH services had 

been compromised. Firstly, a statistical analysis was 

performed based on connection attempts, authentication 

attempts, IP addresses and attack attempts using SSH port 

forwarding. Then, we analysed the interaction of the 

attackers with the honeypot and classified the sessions 

established. Finally, we analysed the different files that 

were downloaded on our honeypot system by classifying 

the ELF format binary files. 

The results show that most of the sessions established 

were conducted in an automated manner by bots searching 

for brute-force vulnerable servers on which to install and 

execute their malware. Also, different variants of known 

malware families were found that are still operating and 

actively look for new systems to add to their botnet. In 

addition, different variants of malware were found that 

aim to use these devices for cryptocurrency mining. 

With this work we have been able to gain a better 

understanding of the actions that attackers take when 

targeting vulnerable services, thus providing the research 

community with valuable knowledge on the behaviour of 

cybercriminals in the IoT, which is one of the main issues 

currently under study due to their importance for users and 

their data. 
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a b s t r a c t 

Switched telephone networks are a key and ubiquitous infrastructure. Recent technological advances have 

integrated modern and inexpensive systems into these networks in order to use the Internet to place calls 

via Voice over IP (VoIP). The evolution of this technology has also led to an increase in the number and 

sophistication of the techniques used by criminals to commit fraud. Specifically, with the emergence of 

VoIP, attackers can now adapt tools commonly used by cybercriminals, such as botnets, to make their 

attacks more complex and insidious. For example, through bots they can dial multiple numbers auto- 

matically, enabling them to target a greater number of victims, and do so more quickly. While recent 

studies have shed light on how certain parts of this ecosystem work, it is still unclear how attacks on 

VoIP systems contribute to this type of fraud. This paper presents a novel VoIP honeypot that captures 

voice interactions, in addition to employing low-level telemetry. With the study of how attackers obtain 

access to our honeypot and the actions they perform, we present an overview of the most prevalent types 

of fraud used in this ecosystem, including unique insights into the origin of the attacks and the destina- 

tion of calls made through our architecture. Finally, we analyze in depth the actions taken to study the 

different types of telephony fraud. 

© 2022 The Author(s). Published by Elsevier Ltd. 
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1. Introduction 

The invention of the telephone is one of the most important 

accomplishments of humankind, eliminating the physical barriers 

of time and location and allowing two people from places miles 

apart to establish immediate communication. Although it was not 

designed to be used as an attack vector, unfortunately criminals 

found a way of using it as such in order to make unwanted or ma- 

licious calls to perpetrate extortion, scams and spam campaigns. 

These calls have been a long-standing and challenging problem, 

and are responsible for yearly losses of tens of millions of dollars 

worldwide ( Li et al., 2018 ), besides being very disturbing for tele- 

phone users, who feel their privacy is violated. 

The recent development of Voice over IP (VoIP) has caused 

telephone communications to be transferred to a more modern 

medium, namely the Internet, making it more convenient and 

cheaper for people to contact each other. These benefits have been 

well-received not only by ordinary users, but also by cybercrim- 

inals, who can now reduce the cost and operational complexity 

∗ Corresponding author. 

E-mail addresses: javier.carrillo@uclm.es (J. Carrillo-Mondéjar), 

joseluis.martinez@uclm.es (J.L. Martinez), 

guillermo.suarez-tangil@imdea.org (G. Suarez-Tangil) . 

of their telephony campaigns, and this technology allows them to 

place automated calls with little effort. These calls are typically 

made in the form of bot-calls, which are carried out by simple soft- 

ware using dialer equipment to generate vast numbers of calls to 

a given (or randomly chosen) list of phone numbers. Their aim is 

to make contact with an active recipient and trick them into per- 

forming the desired action, ultimately making them fraud victims. 

Generally, the instructions are transmitted via a pre-recorded mes- 

sage but, in some cases, they can eventually be assigned to a hu- 

man agent for further interaction, although this becomes a limiting 

factor, since human agents may not have time to attend to all the 

connected calls. 

In comparison with other attacks such as email spam, voice 

spam calls are significantly more disturbing because they require 

immediate attention; when the phone rings, the recipient must 

decide whether to accept the call and listen to it just judging by 

the caller ID, which is often “unknown” or even spoofed ( Tu et al., 

2019 ). Even if the user ignores or declines the call, spammers can 

send a prerecorded audio message straight to the user’s voice- 

mail, thus also having the static factor of email spam. In addition, 

these attacks feel more personal, since, typically, people are less 

inclined to give their phone number than their email address, so 

when an attacker is able to contact them, they gain an advantage 

over the recipient, who normally feels confused. Furthermore, most 
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email spam is systematically filtered out by anti-spam algorithms, 

whereas, at the time of drafting this proposal, this type of counter- 

measures do not exist in telephony fraud. 

Related works attempt to address the problem of malicious 

calls in two ways: i) statically prior to the call being established; 

or ii) dynamically during the call. On the one hand, several ap- 

proaches have performed call request header analysis ( Tu et al., 

2016 ). However, this type of measures are easily evaded (e.g., by 

using a spoofed caller ID ( Tu et al., 2019 )). On the other hand, re- 

cent works have leveraged automated approaches to interactively 

deal with unsolicited calls. Works such as Li et al. (2018) propose 

machine learning as a means to prevent malicious calls tailored to 

the users using features that model the normal behavior expected 

(e.g., weekday and time). The authors in Sahin et al. (2017) study 

the effectiveness of an interactive voice response system called 

Lenny. One of the key lessons in this work is that chatbots can 

be used for scambaiting 1 fraudsters. Finally, other authors have car- 

ried out systematic studies to understand technical support scams, 

uncovering the call centers underpinning this fraud using Web 

crawlers to find scammers, domains and phones on the Inter- 

net ( Miramirkhani et al., 2016 ). 

While recent studies have shed light on how certain parts of 

this ecosystem work, it is still unclear how attacks on VoIP sys- 

tems contribute to this type of fraud. In this paper, we show how 

fraudsters leverage VoIP systems to build their infrastructure, and 

we provide an overview of the current status of VoIP systems and 

the risks arising when the system itself, or the credentials of its 

users, is compromised. Some of our findings include: 

• Attackers use our system to carry out different types of tele- 

phony fraud as well as actions that allow them to obtain 

greater benefits. In particular, we identify both Toll Evasion and 

Revenue Share as being two of the most prevalent types of 

fraud. We also report a large number of cases in which at- 

tempts are made to call personal numbers (both landlines and 

mobiles), which suggests that attacks on VoIP systems are fre- 

quently used for fraudulent purposes such as scams or spam 

such as those described in Sahin et al. (2017) . Our work is 

the first to provide a quantitative and qualitative study of how 

fraudsters use compromised VoIP systems for fun and profit . 
• We uncover the tricks fraudsters use to evade restrictions. For 

instance, there are attempts to call numbers using different pre- 

fixes to avoid dial-plan restrictions. By causing an error in the 

parsing of these numbers, calls to restricted destinations are 

permitted. Calls to wrong numbers are also used to check fin- 

gerprint honeypots, e.g., when an invalid number gives them 

a ringtone. Learning from these tricks enables us to propose 

countermeasures against VoIP attacks. 
• We find that while a few attacks are random, many others 

are aware of the context surrounding the target of the attack, 

namely the callee . In particular: (1) fraudsters are aware of the 

mechanisms used by reputation systems to block connections 

from TOR nodes or known VPNs, and consequently 50% of IP 

addresses come from compromised servers that belong to host- 

ing companies; and (2) fraudsters try to maximize the success 

of their attacks by calling during office hours or hours when 

there are usually people at home. 

The rest of the paper is organized as follows. Section 2 provides 

an overview of the system, the experiments carried out and the 

ethical considerations. Section 3 presents the data analysis from 

our experiments. Section 4 describes the limitations and key find- 

ings of our study. Section 5 discusses the proposals from the com- 

1 The act of wasting the time and resources of scammers. 

munity regarding malicious calls. Finally, the conclusions are pre- 

sented in Section 6 . 

2. Methodology 

To understand how VoIP services are misused, we deployed a 

honeypot and monitored the accesses and actions that took place 

through it. Fig. 1 shows the methodology followed in this work. 

First, we describe the architecture of our system and the exper- 

imental setting. Next, we describe the vulnerable user accounts 

that were added to our system so that attackers could gain access 

through them. Finally, we describe the analysis carried out and the 

ethical principles followed in this work. 

2.1. System overview 

Our honeypot runs on top of a custom infrastructure with a 

number of VoIP accounts. The architecture consists of a Virtual Pri- 

vate Server (VPS) hosted in Germany, and we fortified this server 

to prevent unauthorized access to services that were not rele- 

vant to our study. We built an Asterisk-based Private Branch Ex- 

change (PBX) ( Sangoma Technologies, 2021 ), which is a popular 

open-source communications framework. We decided to use a real 

server instead of an existing honeypot because honeypots tend 

to be more limited in terms of interaction and can be detected 

through simple fingerprinting ( Vetterl and Clayton, 2018 ). We con- 

figured our server to allow any type of call from a properly au- 

thenticated user and we redirected the calls to an enabled private 

extension to simulate that the call was being handled correctly. All 

the accounts were subscribed to a specific dialplan that limited 

outgoing calls to a predefined set of countries and we restricted 

calls to premium numbers. The reason to restrict calls to some spe- 

cific places is to simulate the legitimate behavior of a configured 

PBX via which it is only possible to call certain destinations. 

We populated our VoIP system with a number of user names 

and passwords, as described in Section 2.2 . Each of the accounts 

deployed belonged to a specific context on the server and was 

linked to one of the dialplans that were set up. Thus, accounts 

linked to a dialplan in the US, for instance, could only make calls 

to the US. As a result, all the calls that matched the established di- 

alplan were redirected to one of our extensions to make fraudsters 

believe that the calls were successful. Our system then collects logs 

from Asterisk in order to perform a data analysis as described in 

Section 2.3 . 

2.2. Accounts 

We designed two experiments whose aim was to differentiate 

how attackers gained access to our honeypot accounts. 

Weak user credentials. We set up a set of 30 user accounts with 

weak passwords. The user accounts were numerical identifiers de- 

signed to reproduce a setting similar to the one used in large com- 

panies or universities. Thus, each user (phone) was identified as if 

it were a phone extension, and this same extension number was 

used as the password. We only used numerical user IDs and weak 

passwords in order to promptly capture automated bots running 

brute force attacks against VoIP services. 

Strong user passwords. Our second experiment sets user ac- 

counts by using: i) numerical users, similar to how they were 

created in the previous sections but this time using randomly 

generated strong passwords; and ii) common users created with 

the concatenation of a name and surname. For the generation 

of random names and surnames we used Enron’s public email 

dataset ( Klimt and Yang, 2004 ). This dataset was made public 

when the investigation into the Enron company ended. We ex- 

tracted all the names and surnames, and randomly generated 
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Fig. 1. Methodology. 

dummy identities which we used to create users in our VoIP sys- 

tem. For this latter set of users, we generated the passwords by 

concatenating a long list of different dictionary words to simulate 

passwords created by the user that can be remembered. 

Account leak. The next phase of this experiment was to leak 

the credentials in a controlled experiment in which we recorded 

the user name and the source of the leak. We chose a series 

of paste sites and underground forums to leak credentials since 

these sites are often used to publish credentials stolen from dif- 

ferent Internet services. We leaked 70 accounts to different cho- 

sen places, with 30 of them being published on paste sites such as 

pastebin.com , paste.ee and pastebin.xyz . Another 20 accounts were 

published in underground forums such as offensivesecurity.net and 

blackhatworld.com . The remaining 20 accounts were leaked in 

prominent Russian underground forums. We tried to mimic the 

way in which information leaks from other services have occurred. 

As it is not a publicly known service such as gmail, facebook, etc., 

we also included the IP address and port of our VoIP server. 

2.3. Data analysis 

In this phase, we performed a data-driven analysis on the ac- 

tions carried out in our system by the attackers and on the meta- 

data that could be extracted from the attackers that interacted 

with our honeypot. In particular, our analysis first aimed to char- 

acterize the features of the IP addresses we received connections 

from. We then reversed the password used by the attackers when 

attacking the authentication mechanism of the VoIP server. Finally, 

we analyzed both the phone numbers and the metadata inferred 

from the call attempt. We describe all this in greater detail below. 

IP address analysis. We analyzed all the metadata associated 

with the IP addresses that interacted with our system as well 

as the open ports of the systems associated with them. We an- 

alyzed the location of these addresses to discover the origin of 

the attack and we also checked whether these addresses appear 

in lists of known proxies or bots. Finally, we consulted the Au- 

tonomous System Name to which the IP addresses belonged as 

well as the open ports and vulnerabilities presented by the systems 

that were running behind them. It should be noted that no type 

of active scanning was carried out on these IP addresses and that 

Fig. 2. Authentication message flow in the SIP protocol. 

open-source tools available through the Internet were consulted 

(e.g., Shodan (2022) and IP Intelligence ( Getipintel, 2022 )). 

Passwords. Although in the first version of the SIP protocol the 

passwords travel in plain text through the network, in version 2 

the SIP protocol uses a mechanism based on challenge/response 

to carry out user authentication ( Strand and Leister, 2011 ). Fig. 2 

shows the exchange of messages when a user fails to authenticate 

through the INVITE method. Unlike the REGISTER method, which 

registers the device and tells the server where it should direct the 

calls destined for that user, the INVITE method allows calls to be 

made without registering the device on the server. 

Basically, the client sends an INVITE request to the server, 

which returns a message saying that it is not authorized, and in 
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Fig. 3. Methodology followed to identify the type of fraud. 

which it transmits a nonce and the realm to authenticate. The 

client computes the response using Algorithm 1 and sends it back 

to the server. Finally, the server computes the response and, if it 

matches the one sent by the user, it will send a correct authen- 

tication message, or in this case it will send a message that the 

authentication has not been carried out successfully. 

A = MD 5(user : realm : password) 
B = MD 5(method : sip : uri ) 
hash = MD 5(A : nonce : B ) 

(1) 

Therefore, the server never sees the plain text password used 

by the client, which in this case is the password used by the at- 

tackers to try to identify themselves to our server. The authentica- 

tion message flow of the REGISTER method is the same, with only 

the method parameter changing when computing the response. By 

using all the data collected from the authentication messages, we 

obtained all the variables in Algorithm 1 except the password since 

it is not transmitted in plain text over the network. Therefore, we 

used a dictionary of the most common passwords to apply brute 

force and find the most frequently-used passwords on our system. 

Phone numbers. We analyzed all the phone numbers that the at- 

tackers tried to call through our system. We parsed these numbers 

to extract information about whether the number was valid based 

on the patterns that phone numbers follow around the world. We 

also extracted the location of the phone number based on the 

country code and the area code, as well as the type of phone num- 

ber (e.g., land-line or mobile). 

Call analysis and phone fraud. We analyzed the calls that were 

made through our system by looking at the timestamp of the calls 

that were attempted in order to check whether the calls were 

made while taking into account the local time of the destination or 

whether they were automated calls that did not use this informa- 

tion. Therefore, on the basis of the type of call, we classified it ac- 

cording to the type of fraud that was being attempted through our 

system and the benefits that attackers could obtain through this 

type of fraud. For the identification of the types of fraud we rely 

on the taxonomy described in Sahin et al. (2017) , which systemati- 

cally explores the different types of fraud in telephone networks as 

well as the techniques and benefits obtained by fraudsters. Fig. 3 

shows how we apply the taxonomy in our scenario to identify the 

type of fraud that is being carried out in the call attempt. Once 

the fraud scheme that is being attempted is discovered, we iden- 

tify the possible benefits as well as the techniques and weaknesses 

that allow this fraud scheme to be carried out. 

2.4. Ethics 

We followed the ethical principles for Internet-mediated re- 

search in Anabo et al. (2019) , which in turn stem from The Bel- 

mont Report ( Miracle, 2016 ) and the Menlo Report ( Dittrich et al., 

2012 ). We addressed the challenge of obtaining informed consent 

Table 1 

Summary of the actions performed on the VoIP server. 

Calls 

Type Weak credentials Strong credentials 

Call attempts 306,044 713 

Unique phone numbers 211,113 319 

Valid phone numbers 10,731 141 

Possible phone numbers 34,913 98 

from unknown Internet users through the beneficence principle and 

by making a risk-benefit assessment. On the one hand, we imple- 

mented strict mechanisms to minimize risks, reducing the harm to 

mere annoyance . On the other hand, our honeypot effectively re- 

duces the surface of the attack and prevents criminals from ben- 

efiting while depleting the resources of the attackers. We also 

gained an understanding of the underlying ecosystem that can al- 

low the community to further tackle telephony scams. Finally, by 

granting attackers access to our VoIP we deterred them from using 

other compromised VoIP systems. Our risk-benefit assessment was 

evaluated by our Institutional Review Board (IRB), who considered 

our decision-making ethical and have approved this study. We next 

detail the measures we adopted to minimize risks to privacy. 

First, we limited the usage of our VoIP system by redirecting 

calls to a private extension, thus preventing these calls from be- 

ing forwarded to their actual recipient. Second, we restricted the 

scope of our experiment by limiting the number of target coun- 

tries. Although no external calls were made from our system, we 

simulated that these were being made by calling a private exten- 

sion created for this purpose, so attackers might believe that these 

numbers existed and try to call from other systems. Finally, for 

the analysis of the metadata of all the attackers of the system, 

no active scan was performed. Instead, third-party services (e.g., 

Shodan (2022) ) were used to obtain information and geolocations. 

3. Data analysis 

We ran the experiment for a period of around 4 months for ac- 

counts with weak credentials. After those 4 months, we blocked 

access to those weak accounts and created new accounts with 

strong passwords, as described in Section 2.2 . This experiment 

lasted around 2 months. During the course of both experiments, 

we monitored the actions performed on the VoIP server, collecting 

information for further analysis. 

3.1. Overview 

We deployed an Asterisk-based PBX server for our experiment. 

During the first period of the experiment, the server used accounts 

with weak credentials, while in the second part of the experiment 

the server used accounts with strong credentials. After parsing the 

information collected on our system, we detected 2209 unique IP 

addresses on the server. For the first period, all the accounts that 

were created in the VoIP system were accessed. On the other hand, 

out of the 70 accounts we leaked, 20 were accessed, with 12 of 

these having been leaked in underground forums and 8 on paste 

sites. 

We logged the actions performed with all the accounts, which 

can be summarized in Table 1 . We can see that the total number of 

call attempts is around 300 K. Unique phone numbers amount to 

about 200 K and represent the total number of different phones 

to which calls were attempted. We used the phonenumbers li- 

brary Drysdale (2022) to validate the phone numbers. This library 

maps out a taxonomy of phone number patterns of all the coun- 

tries worldwide and indicates whether the phone number is valid. 

We considered phone numbers as possibly valid when we saw 
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Fig. 4. Cumulative number of calls attempts (weak and strong credentials). 

numbers that did not contain the country code but would be valid 

for a local dialplan in at least one country. For example, a number 

that does not contain the country code +44 (UK), but is a correct 

number when calling from a UK dialplan. As these numbers are 

often correct in different regions, we can not determine the exact 

destination of the call. The total number of valid and possibly valid 

phone numbers was around 10 K and 30 K. It is important to note 

that the library indicates whether the number is valid based on the 

dialing plan of that country, but it does not mean that this number 

is currently owned by any user. By observing the results, it can be 

seen that the number of call attempts is much higher during the 

time that the weak credentials experiment lasted. These calls are 

usually generated by bots that are scanning the Internet for active 

VoIP servers and are looking for valid credentials by brute force 

and, once they find them, they start generating calls. On the other 

hand, when using strong credentials, attackers could not success- 

fully access the honeypot using brute force, and therefore we are 

confident that the access was through the password leaks made 

through forums or paste sites. As expected, the number of accesses 

was lower, and there may even have been curious accesses made 

by attackers who were interested in seeing whether they could call 

for free. 

Regarding the call attempts, we analyzed their timestamps for 

each day of the experiment. Fig. 4 shows the results of this analy- 

sis. 

It can easily be seen that, during the experiment with weak 

credentials, the number of calls increased daily while remaining 

constant at the end of the experiment, which is when strong pass- 

words were used. In addition, the first calls with weak credentials 

occurred within a few hours of putting the server online, while 

with strong credentials, the first calls occurred around 20 days af- 

ter leaking the credentials of the user accounts. 

3.2. IP address analysis 

In this section, we analyze the IP addresses that interacted with 

our system. In total, 1280 and 1188 unique IP addresses interacted 

with the server with weak and strong credentials, respectively. Be- 

tween the two sets of IP addresses, 259 match on the two servers. 

Out of all those IP addresses, only 244 and 19 successfully logged 

in. The number of IP addresses that interacted with both servers 

is very similar in terms of the number of different addresses de- 

tected. However, it is important to note that the strong credentials 

experiment started immediately after the weak credentials one fin- 

ished, and only 259 IP addresses coincide between the two exper- 

iments, which seems to indicate that, either the actors that were 

Table 2 

Top 20 sources and destinations of calls with weak and strong credentials. The 

table represents only those calls for which it was possible to extract the phone 

number’s geographical location. 

Weak credentials Strong credentials 

Src Dst Calls Src Dst Calls

DE UK 822 PS US 78 

US UK 742 PH CU 33 

NL UK 488 PH PH 25 

NL FR 407 PH UK 11 

NL RU 387 PS ES 8 

NL US 355 PS IL 6 

NL BO 313 PH BJ 5 

NL BQ 294 PS UK 9 

US SG 273 US US 3 

NL AW 273 US UK 3 

NL LK 270 US EG 3 

NL IQ 255 PH US 3 

NL CW 213 PH TN 3 

NL AM 207 PH SI 3 

NL GT 191 PS JE 3 

DE ZM 176 PS CH 3 

DE RS 172 PS FR 3 

US JP 171 PS AT 3 

NL PE 171 DE FR 3 

NL JP 171 CH RU 2 

actively searching for online servers changed their IP address to 

avoid blacklist bans, or those that might have been compromised 

servers detected the intrusion and closed their access. 

Location. We depict the source of the IP address in Fig. 5 . Blue 

points represent the origin of the IP addresses that interacted in 

the experiment with weak credentials, green represents the origin 

of the IP addresses that interacted in the experiment with strong 

credentials and red represents those IP addresses that matched in 

the two experiments. 

Germany is the most common location with 21.9% of the IP ad- 

dresses collected, followed by the Netherlands (20.8%), the United 

States (14.9%), France (12.1%) and the Palestinian Territory (10.2%). 

It can be seen that there is a large group of IP addresses in the 

same zone that tried to interact in the strong credentials experi- 

ment. This may be due to a side effect of the lack of success of the 

brute force attack. 

We also investigated the origin and destination of the calls that 

were attempted through our system. We only considered those 

calls made to valid numbers and from which the geographical lo- 

cation of the telephone number could be extracted. Table 2 shows 

the top 20 sources and destinations of calls that were attempted 
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Fig. 5. Geographical map of the location of the IPs that interacted with our system. 

with both weak and strong credentials. It can be seen that in 

the experiment with weak credentials most of the calls were at- 

tempted from the Netherlands, while with strong credentials they 

came from Palestine and the Philippines. It should be noted that 

this source may not be the actual location of the different actors, 

but may be hidden behind some proxy, Virtual Private Network 

(VPN), hostings or similar system with the IP address of those 

countries. 

Hostings. We also analyzed the IP addresses through public ser- 

vices (e.g., VirusTotal or shodan) to search for information and see 

whether there were relationships between them. Although some IP 

addresses were previously associated with certain malware sam- 

ples and domains, there does not seem to be a clear relationship 

between them. However, on the basis of information about the 

organization or ISP to which they belong, they do indicate that 

certain IP addresses were related to each other. By consulting the 

public databases of IP address information services, we found that 

around 45% of the IP addresses that appeared in our system belong 

to hosting services. We plot a graph with the different IP addresses 

that belong to hosting services together with their autonomous 

system (AS). Fig. 6 shows the connections between the different 

IP addresses collected. It can be seen that large groups of IP ad- 

dresses belong to the same organization (e.g., Online S.A.S or OVH), 

which seems to indicate that these sites may have been compro- 

mised and used by fraudsters to hide their identity or that these 

hostings are less restrictive when it comes to banning clients that 

generate fraudulent traffic. We also consulted the IP addresses via 

an intelligence service ( Getipintel, 2022 ), which uses probabilistic 

techniques and machine learning models to determine whether an 

IP address is a proxy, a VPN, a hosting service, tor node, etc. Given 

an IP, the system returns a value of 1 if the address is explicitly 

banned from their lists. Otherwise it returns a value between 0 

and one, indicating the probability that it is a bad IP. According to 

the results obtained, 477 are explicitly on their blacklists and 41 

have a value greater than 0.98, indicating that these IP addresses 

have a high probability of being proxies, vpn’s, etc. 

Table 3 

Top 30 most common open ports. 

Num. IP Port Num. IP Port Num. IP Port 

404 80 65 445 46 995 

301 443 60 8089 45 465 

289 22 58 5985 44 500 

163 5060 56 143 44 137 

116 3389 55 993 32 8000 

92 53 49 1723 32 2000 

89 21 49 110 29 5222 

85 123 48 111 27 8443 

75 25 47 8080 27 2087 

73 3306 47 587 27 2082 

Open ports. We analyzed the open ports of the IPs that appeared 

in the logs of the VoIP system. Table 3 shows the most common 

open ports among the IP addresses collected. 

We observe that there are open ports of common services, such 

as HTTP, SSH, SSL, SMB, FTP or RDP. Also, one of the methods used 

by attackers to compromise systems is through any of these ser- 

vices, either because of some vulnerability or through the use of 

weak passwords to access through SSH. In fact, most botnets in 

the IoT ecosystem infect different devices through the use of weak 

passwords in services such as SSH or Telnet ( Antonakakis et al., 

2017; Kambourakis et al., 2017 ). Another curious circumstance that 

we found regarding open ports is the appearance of ports 5060 

and 3389. The former is a port belonging to UDP and which is 

the default port used by VoIP systems. This seems to indicate that 

they are tracking other VoIP systems and searching for (or using) 

passwords from other VoIP systems to use them on their system 

and make calls through other users. The latter is the port used by 

the RDP protocol, which is used for the remote Windows desktop. 

The RDP protocol contains a recent vulnerability known as Blue- 

Keep ( Microsoft, 2019 ), whose exploit was made public in the 

summer of 2019 ( Proffitt and Wolf, 2019 ). This vulnerability allows 

the execution of remote code and could be used by attackers to 
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Fig. 6. Relations between the different IPs collected that belong to hosting services. 

compromise systems and use them for their interests, such as at- 

tacking the user credentials of a VoIP system or as a proxy to carry 

out their attacks and not reveal their real IP address. 

Vulnerabilities. We consulted the IP addresses through open 

source intelligence services (e.g. Shodan) in order to obtain the 

vulnerabilities detected in the services that are exposed to the In- 

ternet. Of all the information collected, we found 495 different 

Common Vulnerabilities and Exposures (CVEs). Fig. 7 (a) shows the 

distribution by year of the vulnerabilities that were collected. It 

can be seen that there are vulnerabilities that were discovered 

more than 10 years ago, so it seems to indicate that not enough 

attention has been paid to these servers by their administrators. 

Also, it can be seen that they are mostly recent vulnerabilities, 

and that the maximum peak is reached in the vulnerabilities of 

2016. It is important to note that these open source intelligence 

services, shows the current vulnerabilities based on the software 

version that is running, but do not check whether the vulnerabil- 

ity actually exists. We obtained information on each of the CVEs 

in the public database of Cvedetails (2022) . Each CVE has an as- 

sociated score that indicates the criticality of the vulnerability and 

its impact. Fig. 7 (b) shows the distribution of CVEs based on the 

score collected for each one in cvedetails. It can be seen that most 

of the CVEs have a score between 4 and 8, which corresponds to 

medium (4–6.9) and high (7–8.99) vulnerabilities. We can also ob- 

serve that there are several CVEs with a high criticality index (9 

and 10). Among the critical vulnerabilities that exist, most of them 

are related to the Hypertext Pre-Processor (PHP) interpreter. In ad- 

dition, vulnerabilities appear in Windows systems with the Remote 

Desktop Protocol (RDP) and the Server Message Block (SMB), which 

are widely known for the impact they have had throughout the 

world ( s.r.o, 2017; Mitre corporation, 2019 ). 

3.3. Passwords 

In the Asterisk security event log, you can find the hash com- 

puted to carry out the authentication, as well as the nonce sent by 

the server and the other parameters necessary to calculate the re- 

sponse, except for the password used by the user to authenticate. 

We parsed the security logs to find each of the fields necessary 

to compute the response for each of the server’s failed attempts. 

Since we have all the data, except the password and the response 

hash, brute force can be applied by generating a response for a 

given password and checking whether the resulting hash is equal 

to the hash that the user sent in the authentication process. We 

applied brute force to each of the failed authentication attempts 

by using a dictionary of the 10 0 0 most common passwords from 
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Table 4 

Top 30 most common passwords used in our system. 

Rank Passwords Hits Rank Passwords Hits Rank Passwords Hits 

1 1234 7944 11 abcd1234 5330 21 asdfg 2330 

2 123,456 7006 12 123abc 4911 22 1111 2050 

3 1000 6481 13 12,345 3501 23 8888 2023 

4 password 6103 14 test123 2921 24 9999 2022 

5 pass123 6032 15 qwe123 2540 25 1q2w3e 2018 

6 12,345,678 5563 16 asd123 2531 26 1,234,567 2016 

7 123,123 5545 17 test 2491 27 111,111 2000 

8 abc123 5541 18 password123 2466 28 123,321 1995 

9 0000 5442 19 admin123 2423 29 123qwe 1972 

10 4321 5431 20 secret 2369 30 123,456,789 1971 

Fig. 7. CVEs collected from the different IPs that interacted with our honeypot. 

Miessler and Haddix (2022) . In total, we managed to find 411,497 

passwords for all the failed login attempts that occurred on our 

system (less than 1%). Table 4 shows the top 30 most commonly 

used passwords of all those found by brute force. The low percent- 

age of cracked passwords could indicate that attackers are using 

larger dictionaries or even algorithms to generate passwords based 

on username. In the experiment with weak credentials we used 

as username and password the SIP extension and all the accounts 

were compromised, so it is likely that they use an algorithm to 

create passwords based on the extension they are trying to find. 

3.4. Calls and fraud classification 

In this section, we present the different destinations of the calls 

made as well as the types of fraud identified. 

Table 5 

Types of phone numbers that attackers tried to call. 

Type of phone numbers Valid phones Possible phones 

Mobile 7517 26,649 

Landline 1901 1616 

Premium rate 514 225 

Landline or mobile 357 1393 

Universal Access Number 180 138 

Personal number 131 21 

VoIP 125 317 

Shared cost 62 158 

Pager 55 55 

Toll free 30 1418 

Voicemail 0 21 

Origin of phone numbers. We analyzed the numbers to which 

calls were attempted in our system. As we discussed in Section 3 , 

we found a total of 10,872 valid numbers (for both strong and 

weak credentials) and 35,011 possible ones. We plot the geograph- 

ical information of the valid phone numbers on a map to depict 

where the calls that were attempted were directed. Fig. 8 shows 

a heat map of the different phone numbers found regardless of 

whether they were called with strong or weak credentials. The 

numbers can be mapped to the region to which they belong, and 

not the exact location of the call. We can see from the heat map 

that most of the unique phone numbers belong mainly to Europe, 

Africa, Russia and the Havana and Cuba area. However, the most 

frequently called countries were the United Kingdom, the United 

States, Russia and France with 3028, 1063, 435 and 428 calls, re- 

spectively. 

Types of phones. The type of phone numbers which the attackers 

tried to call was extracted. We used the phonenumbers library to 

obtain the type of phone number based on the patterns that each 

country uses for its phone numbers. In some regions, there is no 

distinction between landline and mobile phone numbers (e.g, the 

USA), and these cases are included in the landline or mobile num- 

bers category. Table 5 shows the different phone numbers found 

that were either valid or possible. It can be seen that most of 

them belong to mobiles or landlines. It is important to note that 

the possible numbers are local ones that could be valid in some 

region and, therefore, are not completely accurate since some re- 

gions have similar dialing plans and it might be the case, that this 

number is of another type depending on the region to which it 

belongs. 

The rest of the phone numbers are as follows: 

• Premium rate. Telephone numbers through which different ser- 

vices are offered and whose call prices are higher than a con- 

ventional call. 
• UAN. This is a phone number that allows a company to have 

several lines associated with it. In this way, when the UAN 

number is called, one of these lines will be reached depend- 
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Fig. 8. Geographical map of the location of the phones. 

ing on, for example, the geographical location or the time of 

the call. 
• Personal number. This corresponds to virtual phone numbers 

belonging to the United Kingdom. These phone numbers allow 

the routing of phone call to another number and have been re- 

ported as being used for fraudulent purposes such as fraud or 

spam Ofcom (2016) . 
• VoIP. Phone numbers that are assigned to a user instead of a 

specific phone line. These are contracted through VoIP service 

providers. 
• Shared cost. Telephone numbers for which the cost of the call 

is divided between the owner of the number and the caller. 
• Pager. Phone numbers assigned to devices that are capable 

of receiving and displaying messages, also known as “beep- 

ers” ( Wikipedia, 2022 ). 
• Toll free. These are free phone numbers for the person making 

the call, as the cost is billed to the owner of the phone number. 

The rest of the telephone numbers that attackers attempted 

to call are invalid, that is, the size or dialplan does not match 

any region. However, most of these numbers do consist of 

valid numbers that have been concatenated with numbers or 

symbols at the beginning. For example, the telephone number 

“∗0 0 0 0 0 0 0 0 0 0 ∗∗4412XXXXXXXX” is not valid, but it can be seen 

that, if the initial part is omitted, the number that remains is a 

valid number 2 with country code 44, which is the code for the 

United Kingdom. This pattern is repeated for all the invalid num- 

bers with different digits, symbols and size. We believe it may be 

a way to try to evade the established dialplan or to know whether 

they are in a honeypot. For example, if calls to numbers that are 

not valid give a ringtone, it may indicate that the system is a hon- 

eypot. 

2 We have replaced part of the original number with the letter X so that it cannot 

be recognized. 

Types of fraud. As we mentioned in Section 2.3 , we rely on the 

taxonomy described in Sahin et al. (2017) to identify the different 

fraud schemes that were attempted through our system. This tax- 

onomy identifies the different weaknesses and techniques that lead 

to the different types of fraud and the benefits that they can gen- 

erate. First, we look at the different fraud schemes identified and 

the possible benefits attackers can obtain through them. Then, we 

examine the weaknesses and techniques that allow fraudsters to 

carry out such actions. The fraud schemes detected are the follow- 

ing: 

• Toll Evasion Fraud. This type of fraud is the best known and 

most widely used over recent years in telephone networks. It 

is based on making calls without having to pay the charges 

of the call, which are billed to another party. In this specific 

case, when accessing the user accounts of a PBX to call, it is 

the owner of the PBX or the user of the compromised account 

that is charged for the calls. The benefits can range from simply 

not paying for anonymous calls involving criminal activities to 

committing other types of fraud. All the calls that were made 

were with compromised accounts, so the attackers did not pay 

for the calls. 
• Revenue Share Fraud. This type of fraud occurs when an agree- 

ment is made between an operator (or a third-party service 

provider) and a fraudster in which the latter is responsible for 

making telephone calls to certain numbers owned by the for- 

mer (e.g., international premium rate service numbers), gener- 

ating a revenue which is then shared between them. The ben- 

efit of this type of fraud is purely economic, and the more 

call traffic that is generated, the greater the benefit will be 

for the fraudsters. As can be seen in Table 5 , calls were made 

to premium numbers, which allow attackers to obtain bene- 

fits through these special rate numbers. Also, it can be seen in 

Fig. 8 that a large part of the telephone numbers belong to the 

area of Havana and Cuba. These numbers maintain a dialplan 

9 

46



J. Carrillo-Mondéjar, J.L. Martinez and G. Suarez-Tangil Computers & Security 119 (2022) 102758 

similar to that of the United States, although many correspond 

to special tariffs. 
• Voice Spam and Scams. This scheme includes any type of un- 

wanted or abusive calls, such as spam calls or scams. These 

calls can be made in many ways, from a phishing call posing as 

a company to telemarketing and robocalling with prerecorded 

messages. The possible benefits that can be obtained through 

this type of fraud include collecting information about the users 

(e.g., whether the phone belongs to a real user), and convincing 

or deceiving the recipients of the call to carry out some action 

that could also have some economic benefit for the fraudster. 

Most calls could be classified as this type of fraud, in which 

attackers could use compromised VoIP systems to launch scam 

campaigns or to find new potential victims. 
• Wangiri fraud. Also known as callback scam or ping call, this 

is a specific type of voice spam or scam fraud that consists in 

making a missed call with the aim of making curious users re- 

turn the call. A key feature of this type of fraud is the use of 

caller ID spoofing. We can identify this type of scam by observ- 

ing whether there was any attempt to modify the caller ID and 

by checking whether the time from the beginning to the end 

of the call is just a few seconds. The possible benefit that the 

attackers obtain from this type of fraud is economic, since the 

telephone number is owned by the scammers and they obtain a 

benefit from the calls received. About 200 calls tried to change 

the caller ID (we discarded those that tried to change it to the 

anonymous caller ID). 

The techniques and weaknesses on which these types of attacks 

are based within the VoIP system are similar. Basically, part of the 

problem of fraud over mobile phone lines comes from the inter- 

connection of multiple technologies and the existence of a large 

number of operators and services. There is a lot of variaton in the 

regulation and laws concerning telephony between different coun- 

tries, which has contributed to an increase over recent years in the 

amount of telephone fraud. In our experiment, attackers gained ac- 

cess through accounts with weak passwords and account leaks on 

different paste and forum sites. Although this was done on purpose 

in order to know what happens when fraudsters have access to a 

system, it often happens that users with little security awareness 

use weak passwords and unwittingly allow third parties to access 

their systems. The techniques available for VoIP aim to compro- 

mise a PBX server or user accounts to make calls, even simultane- 

ous ones, in order to increase a fraudster’s benefits. Fraud schemes 

can be related to each other since, in this case, all schemes start 

with avoiding the cost of the calls that are made. It is important to 

note that no type of fraud was committed through our honeypot 

since the calls were directed to an internal extension and were not 

routed to the telephone network. 

3.5. Clustering campaigns 

In this section, we compute the relationships between the 

source IP addresses of the calls and the valid telephone numbers 

receiving the call. We depict the relationships in graph form in 

Fig. 9 . Larger nodes represent source IP addresses, while smaller 

nodes represent valid phone numbers. The edges connect the IP 

addresses and phone numbers to which calls were attempted and 

their thickness represents the number of calls. Black telephone 

numbers represent those numbers that have a special rate (i.e., in- 

ternational numbers with a premium rate, Montserrat, Barbados, 

etc.), while black nodes representing the origin of the call indicate 

that they tried to change the caller id to another phone number 

(we discard anonymous caller IDs from the representation). The 

gray clusters represent those IPs that only made one valid call and 

whose phone number is not related to any other IP addresses. 

Now we have grouped the relationships between the source 

and the destination of the calls, together with the type of fraud, 

we can analyze the the different clusters. This enables us to draw 

the following conclusions: 

• There are different IPs that are related by the phone numbers 

they call, as some of them match for most of the phone num- 

bers. This indicates that they belong to similar campaigns. For 

example, the pink and the green clusters are campaigns that 

target different objectives. The former cluster focuses mainly on 

the UK, while the latter cluster has a more international objec- 

tive, including various countries, such as the US, India or Ger- 

many. The former campaign mainly leverages IP addresses be- 

longing to known VPNs or proxies, while the latter uses IP ad- 

dresses that are more scattered and that include residential IP 

addresses (i.e., bots connecting directly from the home network 

of the victims). 
• We can see campaigns with a particularly characteristic topol- 

ogy. For instance, there are campaigns with IP addresses that 

only made calls to a single valid telephone number. This hap- 

pens when there are campaigns that are targeted. We can also 

see cases where the phone number was used to check whether 

the credentials work (i.e., leaked credentials in a forum) or at- 

tackers checking whether they could make valid calls (i.e., as a 

previous step before making a brute-force attack). 
• Most of the campaigns were motivated by an economic bene- 

fit as their main incentive, mostly through the use of special 

rate or premium numbers. We can also see campaigns launch- 

ing unwanted calls to phone numbers of common users, namely 

SPAM calls. 
• Only a few campaigns tried to change the caller ID to another 

phone number, presumably controlled by the attacker, and if so, 

it would be the Wangiri fraud. Among these campaigns, only 

two of them share a destination phone number, implying that 

the other campaigns can be attributed to different actors. 

3.6. Timestamp analysis 

In this section, we provide a timestamp analysis focused on 

calls to the United Kingdom and the United States, which are the 

two countries that were called the most (based on the numbers 

obtained as valid and for which it was possible to obtain data on 

their geographical location). We use local time for both countries 

on the basis of the time zone to which the phone number belongs. 

Fig. 10 shows the graph of calls to each country, distributed both 

by the times at which the call occurred and the day of the week, 

regardless of whether they were made in the experiment for weak 

or strong credentials. By looking at the graphs, we can observe that 

the time of the calls is targeted at the local customs, that is, they 

are mainly made during office hours and between 8:00 and mid- 

night, when it is common for people to be at home. Also, it can 

be seen that, for the UK, a percentage of calls were made between 

0 0.0 0 and 03.59, which could indicate that certain types of bots 

make calls once they access the system regardless of the time or 

day. 

Regarding the day of the week, we observe that calls were 

made on any day and that in the UK the number of calls spikes 

on Thursday, Friday and Saturday. By contrast, in the United States, 

the number of calls per day is similar, reaching its peak midweek. 

4. Discussion 

In this section we discuss the limitations of our work, as well 

as the findings of the study. 
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Fig. 9. Clustering of IP addresses and valid phone numbers. The larger nodes represent the IP addresses from which the calls originated and the smaller nodes represent 

valid phone numbers. The edges connect IPs and phones if there was a call attempt from the former to the latter. 

4.1. Limitations 

We encountered a number of limitations in the course of the 

experiments. On the one hand, due to the ethical requirements 

that this type of experiments have, calls were not routed to the 

telephone network; instead, those calls that coincided with the di- 

alplan were directed to a private extension to simulate that calls 

were routed correctly. Some attackers may have been trying to call 

a phone number they had control over to check whether the calls 

were being made correctly. This can cause some of the attackers to 

realize that they are in a system with certain limitations and thus 

not to carry out any of the actions that they would perform in a 

real system. On the other hand, when we carried out credential 

leaks, these were made on public paste sites and in underground 

public forums that allow the free registration of any user. For ex- 

ample, in private forums, users rely more on the information pro- 

vided by other users since an invitation is needed to be part of 

that community. 

Configuration. We used the Long Term Support (LTS) 16.3.0 ver- 

sion of asterisk as PBX server, enabling the option “alwaysauthre- 

ject = no” so that the server response is different when the iden- 

tification is wrong in the experiment with weak credentials. That 

is, it shows a different message when the password is incorrect 

or when the user does not exist. This makes it easier for attack- 

ers to identify users through brute force, making it easier for at- 

tackers to find usernames and passwords. User accounts are set to 

a specific dialplan that allows calls to only certain countries (see 

Sections 2.1 and 2.2 ), trying to simulate a real system where calls 

to other countries are not allowed. Using other configurations or 

dialplans and it may reveal other types of attacks by attackers. 

4.2. Key findings 

In this work we have shown that VoIP attacks are a threat that 

underpins part of the malicious call ecosystem. We next summa- 

rize the key findings of our work. 

Type of attacks. We provided for the first time, a study based 

on a live measurement of the incoming utterances in the calls that 

shows how fraudsters use a compromised VoIP system. Among a 

comprehensive list of different frauds we observed, we found that 

two types stand out in the wild: Toll Evasion and Revenue Share. 

First, Toll Evasion enables the commoditization of botnets perform- 

ing telephony fraud in a similar fashion to pay-per-install services 

sold in underground markets ( Thomas et al., 2015 ). Second, we saw 

how Revenue Share also adopts successful fraudulent schemes such 

as “affiliate” marketing ( McCoy et al., 2012 ) or “click fraud” ( Stone- 

Gross et al., 2011 ) in the realm of telephony. 

Depleting. We can see that scammers try to call certain phone 

numbers several times. This seems to indicate that they obtain 

phone numbers through leaked or purchased databases ( Tu et al., 

2016 ) and attempt to call them once they have access to a system. 

Related works have shown that depleting is effective against spam 

( Stringhini et al., 2012 ). Using a honeypot may help organizations 

to keep a list of the phone numbers that scammers call and thus 
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Fig. 10. Number of calls that were made to the United States and the United King- 

dom. The time zone used is the local time of the geographic location of the phone 

numbers. 

minimize the number of spam calls, which can be very annoying 

(e.g., when there are call attempts to a number whose caller is try- 

ing to make other calls at the same time). 

Source attacks. Although we know that attackers may use other 

services to hide their identity, most of the logged IP addresses be- 

longed to Europe. As we saw in Section 3.2 , many of them are re- 

lated and belong to the same organization. Most of these organi- 

zations provide hosting services or private and virtual servers for 

users to set up their own services. Everything seems to indicate 

that the attackers exploit known vulnerabilities in services hosted 

on these machines as the software has often not been properly 

patched. Although nowadays many resources and effort s are in- 

vested in raising awareness among users regarding security issues 

and keeping their systems up to date, there are still many vulnera- 

ble devices accessible from the Internet that have not received the 

necessary patches. 

Calls. We observed that most of the calls that were directed 

to the United States and the United Kingdom were made within 

the time zone corresponding to each country, thus increasing the 

chances of their success. However, some calls fell outside the usual 

time slot, indicating that some bots make calls without assessing 

the context of the target. In addition, call patterns were found to 

generate numbers that are invalid. As we saw in Section 3.4 , these 

numbers are made up of valid numbers to which prefixes of differ- 

ent sizes have been added with numbers or symbols. This indicates 

that the bots are trying to actively bypass the restrictions of the di- 

alplan used by the VoIP server. Introducing prefixes can cause er- 

rors in the mechanism used to enforce restrictions, which in turn 

can let attackers evade these mechanisms and make calls. This be- 

havior, however, is very noisy and can be leveraged to design a 

system to systematically detect these bots. We can also see that 

mobile and landline calls are the most targeted type of services as 

opposed to premium rate services, as was initially expected. This 

makes it challenging to deploy mitigating actions that rely on the 

dialplan being used. 

Accounts. Fraudsters actively search for user accounts, scanning 

the Internet for known VoIP server ports to which they try to 

connect and apply brute-force login credentials. In addition, they 

also make use of leaked accounts on different sites, and it is more 

than likely that sales of stolen accounts take place. Although with 

strong credentials far fewer calls were made compared with ac- 

counts with weak credentials, attackers did access the former and 

similar behaviors were observed. 

4.3. Countermeasures 

In this section we describe a series of countermeasures to for- 

tify VoIP servers and thus prevent a fraudulent use being made of 

them. 

Accounts. As we have seen, attackers scan VoIP servers and 

make connection attempts by sweeping users and passwords in 

order to find weak credentials that allow them to gain access. 

Depending on the server configuration, it is possible to enumer- 

ate valid users based on the response from the server. In the 

authentication process, the server can respond with the message 

“Not Found” or “Unauthorized” ( Jansky et al., 2017 ) depending on 

whether the user is correct or not. A good practice is to con- 

figure the server so that the response is the same regardless of 

whether the user exists but the password is incorrect or the user 

does not exist. Although the default configuration of Asterisk in 

the latest versions avoids giving different messages in the authen- 

tication process, it can be modified or configured erroneously by 

the server administrator in the config files. Also, on the basis of 

the brute force attacks received, we can see that most of them at- 

tack numeric users, so using named users would make the task of 

finding users more difficult for the attackers. Finally, in the event 

of an attacker obtaining valid credentials, either by brute force 

or by theft, for example by using malware on mobile devices, a 

good measure is to continuously monitor the calls made and limit 

the number of simultaneous calls that can be made through the 

server. Usually, once they access the server, the attackers try to 

make numerous simultaneous calls, which can cause great eco- 

nomic losses ( Osenbaugh, 2019 ). 

Dialplan. Fraudsters try to make calls to phone numbers in dif- 

ferent parts of the world, including attempts to call strange phone 

numbers in order to avoid the restrictions of the dialplan config- 

ured for the user. It is important to implement a correct dialplan 

configuration and only allow calls to places where you operate or 

where you usually make calls, including implicit rules for the types 

of number you want to allow and disable calls to international and 

premium numbers. 

Architecture. To deal with attacks against SIP servers, a good 

measure is to implement an SIP proxy server (e.g., ( Kamailio and 

Kamailio, 2022 )). This allows you to load balance and redirect valid 

packets to the corresponding SIP server and release the load from 

the SIP server. Through a proxy, security is increased since it makes 

it possible to discard and ban brute-force attacks, ban the default 

user agent of known tools (e.g., Sipvicious ( Gauci, 2022 ) or Sip- 

scan ( Endler and Collier, 2022 )), provide the same error message 

in the authentication process 3 regardless of whether the username 

or password is incorrect and implement other security measures. 

It is also possible to ban brute-force attempts on the server itself 

via iptables with solutions such as Fail2ban ( Jaquier, (2022) ). An- 

other good measure is to change the default port of the SIP server 

to avoid being found by automatic scanners looking for the default 

VoIP ports. 

3 See limitation of dictionary attacks with the HTable module in Kamailio at: 

https://kamailio.org/docs/modules/stable/modules/htable.html##idm49 . 
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5. Related work 

In this section we compare this paper with previous related 

works. 

Honeypot systems. Nawrocki et al. (2016) review the state of the 

art of the different honeypot software systems and the data they 

collect by making a classification based on the type of interaction 

that the attackers have as well as the services and applications 

they emulate. Luo et al. (2017) propose a honeypot system for dif- 

ferent Internet of Things (IoT) architectures with the aim of detect- 

ing attacks or even zero days at their earliest stage. Similar work 

is carried out in Pa et al. (2015) , in which support is provided for 

eight IoT architectures and connections based on the Telnet proto- 

col. Unlike previous works, Dowling et al. (2017) propose a method 

for Wireless Personal Area Networks (WPANs) which enables the 

detection of different types of attack in the Zigbee protocol, which 

is part of WPAN. These types of honeypot mainly are mainly fo- 

cused on detecting attacks that occur on their systems in order 

to detect new threats or types of attack aimed at compromising 

a system or violating the privacy of users. Our approach is a real 

VoIP system, configured to limit attackers and focused on obtain- 

ing knowledge through the attacks and actions carried out through 

it. 

Honeypot accounts. Kaur et al. (2018) carry out a review of all 

the related works on the different approaches designed to com- 

bat spam and compromised accounts in social networks by ana- 

lyzing each of the previous studies and discussing their pros and 

cons. Bursztein et al. (2014) study the manual hijacking of ac- 

counts with a focus on emails and phishing websites intended for 

Google users. The study focuses on how user credentials are cap- 

tured by attackers and used once they access the user’s account. 

Onaolapo et al. (2016) carry out a similar investigation with the 

difference that, instead of focusing on phishing attacks, they use a 

broader threat model by looking at user credentials in Gmail that 

have been automatically stolen by malware. They also analyze the 

behavior of cybercriminals when they gain access through leaked 

credentials on paste sites and forums. Other studies have focused 

on the study of user accounts that were under the control of spam- 

mers in different social networks. Thomas et al. (2011) investigate 

the abuse by spammers of the social network Twitter. To do this, 

they collect a dataset of all tweets from the accounts that were 

suspended by the tweeter to characterize the behavior of spam- 

mers in the social network. Stringhini et al. (2010) analyze the be- 

havior of spammers in social networks using 300 honey accounts 

in three of the main social networks in order to develop techniques 

that allow detecting spammers. Unlike our work, they focus on 

identifying the behavior of user accounts belonging to social net- 

works and email instead of the behavior of attackers in compro- 

mised VoIP accounts. In our study, we use “real” accounts that are 

obtained by attackers either through brute force attacks or from 

different forums or paste sites, aiming to give the impression that 

the accounts have been stolen. 

Telephone spam and scams. Tu et al. (2016) reviewed the state 

of the art of the techniques used against telephone scams. They 

describe the ecosystem of spam calls focusing on the differences 

with spam in emails. Finally, they analyze the different existing so- 

lutions against telephone spam. Miramirkhani et al. (2016) propose 

the first study of the technical support of the scams and the call 

centers that are behind them. They build an automatic system to 

detect phone numbers and domains that are used by scammers. 

Finally, they make calls to the numbers of the scammers to in- 

teract with them and collect statistical details of the techniques 

and the process used by them. Li et al. (2018) design a set of fea- 

tures to feed machine learning algorithms in order to detect spam 

calls and scams. As they have no access to mobile telephony in- 

frastructures, they develop a mobile application for users to la- 

bel calls as malicious and thus enable them to build a dataset to 

analyze and extract features. Sahin et al. (2017) use a chatbot to 

connect unwanted calls to the bot, which mimics a person’s be- 

havior. Although the chatbot used is not based on any advanced 

artificial intelligence, it proves very effective, managing to keep 

calls for 10 min, causing spammers to waste time and resources 

interacting with a bot. Tu et al. (2019) conduct a study to un- 

derstand why users fall into traps and end up being victims of 

scams. To do this, they conduct 10 telephone phishing experiments 

on 30 0 0 university students. Among all the possible factors that 

could exist to carry out the deception successfully, they observe 

that the impersonation of the caller’s ID prevailed in most cases. 

Bullée et al. (2016) conduct a study on the awareness of workers 

regarding the social engineering attacks they may receive, in this 

case over the telephone. According to the results obtained, they 

verify that scam awareness campaigns reduce user exposure only 

for a short period of time. Prasad et al. (2020) propose a method 

to classify calls based on the analysis of the audio and metadata of 

the calls, which allows them to cluster different types of audios 

and fraud campaigns. In general, previous work has focused on 

detecting scam calls when they are received and interacting with 

scammers either by directly calling the phone numbers recorded 

via the Internet or with a chatbot when receiving calls. On the con- 

trary, our work is focused on how scammers obtain infrastructure 

or resources to make calls at no cost and what type of actions they 

perform by monitoring a real VoIP system, thus providing insights 

into what types of fraud are currently being carried out through 

compromised VoIP systems. 

6. Conclusions 

Telephony fraud has been a long-standing and challenging 

problem since the invention of the telephone. Unfortunately, with 

the emergence of VoIP, fraudsters now have access to a more pow- 

erful technology which allows them to carry out more sophisti- 

cated and complex attacks and to target an immense number of 

victims. 

In this paper, we have presented a study of the behavior of 

criminals when they acquire VoIP user accounts, either through the 

use of brute force or by using accounts leaked via paste sites or 

through underground markets. In order to do so, we built a VoIP 

honeypot and established two experiments: one using accounts 

with weak credentials, and the other with strong credentials that 

were previously leaked. Then, we studied how scammers used 

these compromised accounts and provided a holistic overview of 

their activity, including provenance and intent. The different types 

of fraud that were attempted through our systems were identified, 

as well as the techniques used to increase the possible benefit that 

the fraudsters can obtain through these attacks. 

We identify both Toll Evasion and Revenue Share as being two 

of the most prevalent types of fraud. This finding can be used to 

inform law enforcement as well as the public to deploy educational 

countermeasures. Furthermore, we contextualized fraudulent calls 

and studied key patterns such as: the time, the location and the 

hosting used by the fraudsters when connecting to our system. 

We can see that this context is valuable when deploying techni- 

cal countermeasures (e.g., depleting fraudsters’ resources). The re- 

sults show that more than 50% of the fraudsters that interacted 

with the system did so through IP addresses in Europe, with the 

Netherlands making the highest number of outgoing calls. The UK 

was the most called country on the basis of the valid phone num- 

bers that were dialed, followed by the USA. Furthermore, it was 

noted that a large number of the IP addresses detected belonged 

to hosting services, which seems to indicate that these sites were 

compromised by fraudsters and used to hide their identity. This as- 

sumption is also supported by the fact that, after analyzing these 
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IP addresses, we found that they had multiple commonly opened 

ports, as well as others that are less ordinary, such as the one used 

for the RDP protocol, which is known to have a high criticality vul- 

nerability. In fact, the addresses were scanned for vulnerabilities, 

obtaining results indicating that most of them were of medium 

and high criticality. 

With this work, we have gained a better understanding of the 

actions performed by attackers when they have access to a VoIP 

server. We have also presented a number of countermeasures to 

tackle this threat. We believe that our findings are key to deploying 

effective mitigating actions. 
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ABSTRACT Telephone scams are a longstanding problem that has proliferated significantly with the
advent of Voice over IP (VoIP) technology. VoIP allows scammers to establish low-cost call centers in
remote countries with lax anti-fraud regulations, reaching victims worldwide through local virtual numbers.
This type of scam causes significant financial damage to both individuals and companies. Approaches that
deal with this threat rely primarily in call headers (e.g., Caller-ID), which are easily evaded (e.g., through
spoofing). In this paper, we instead leverage the actual content of the calls to mitigate telephony fraud.
Our work presents the first end-to-end system for automatically detecting and engaging with telephony
scammers online. Our system first builds a machine learning-based model to identify and classify incoming
calls. We then develop two chatbots able to analyze conversations and offer meaningful responses in real-
time. The first chatbot uses pre-recorded utterances of a wide-range of responses in a closed-set read out
by a native speaker. The chatbot is inherently limited by a pre-determined set of rules for maintaining
a conversation, for which we use the Rasa Natural Language Understanding (NLU). The second chatbot
generates responses in an open set using a Generative Pre-trained Transformer 3 (GPT-3) network and
speech synthesis. This let us deliver responses to the attacker tailored to the context of the conversation,
but the utterances are inherently more artificial. We evaluate both solutions by setting an IRB-approved
experiment in which the chatbots are tested with real conversations with scammers, and we measure their
ability to engage in conversation and maintain appropriate-length calls.

INDEX TERMS Chatbot, Honeypots, Machine Learning, Robocalls, Telephony fraud, Underground
economy, VoIP

I. INTRODUCTION

UNWANTED or malicious phone calls, known as tele-
phone spam and scams, have been a longstanding and

challenging problem. In 2021 alone, this type of fraud has
generated losses of billions of dollars worldwide [1], [2]
— not to mention the annoyance they produce on victims.
Unlike traditional spam or scam email, phone calls are more
intrusive and they are difficult to avoid or to block a priori.
Different types of offenses can be carried out through tele-
phone lines, ranging from abusive advertising calls to tele-
phone scams or extortion. One example is the tech support
scam, in which the scammer uses deceptive web pop-ups to
convince users that their machine is infected and encourages
them to call to a given tech support center to fix the problem.
Other more invasive examples are calls to telephone users
in which the fraudster impersonates the identity of a well-

known technological company (e.g., Microsoft), indicating
that they have detected that their computer is infected, luring
the victims to give the scammers the control of the machine.

The proliferation of VoIP has fostered the telephone fraud
ecosystem, as it allows cybercriminals to reach a larger
number of victims while reducing the operational costs and
complexity in their campaigns. It also lets the scammers run
their operations in countries with less restrictive regulations.
Malicious calls are typically carried out in the form of robo-
calls, which are dispatched automatically via software that
uses dialing equipment to generate calls to sets of numbers,
either given on a list or chosen randomly. When a victim
answers the call, the robocall plays a pre-recorded message.
In other cases, once the call has been answered, it is trans-
ferred to a live agent that handles the scam. This is however
a limiting factor for fraudsters as live agents are not always
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available to answer the call. In either case, robocalls make it
possible to reach a large number of victims in a short period
of time.

Despite the magnitude of this type of cybercrime and its
proliferation, there is an absence of academic literature on
practical methods for detecting telephone fraud. Counter-
measures commonly used to filter email spam can not be eas-
ily adapted to prevent telephone systems [3]. This is mainly
because telephone scams are not generally run in large-scale
campaigns, and except for robocalls they are not generated
automatically. As a result, they cannot be identified by the
similarity-detection methods used for spam filtering similar
to other hand-crafted scams [4]. Prior work addresses the
problem through analyzing the call headers [5] (e.g., Caller-
ID blacklist, Caller-ID Anomaly, or using Reputation Sys-
tem). However, these types of measurements can be bypassed
by spoofing the Caller-ID [3]. Other related work focus on
dynamic approaches, which are based on the analysis of
the audio of the call. Authors in [6] detect whether the call
contains interactive voice responses, while the authors of [7]
analyze the audio footprints to detect whether it is similar to
previous campaigns. The work in [8] studies the feasibility
and effectiveness of an interactive response system called
Lenny as a measure to combat scams. One of the most note-
worthy aspects of their work is the use of chatbots to waste
fraudsters’ time and thus reduce the resources and time they
can spend on other potential victims (namely scambaiting).

In this paper, we build a chatbot architecture for interacting
with scammers in real time. Our system address the challenge
of telephone fraud through a multi-pronged analysis of the
types of telephone fraud. Using this analysis, we build a
machine-learning classifier that can distinguish across the
most common types of scams. We then build an system than
can automatically engage into an autonomous conversation
with the scammer using chatbots. While the objective of the
classifier is to detect telephone scams, the chatbots aim at
depleting the resources of the scammer. Below we formulate
five research questions in order to assist our analysis and the
evaluation of our system:

• (RQ1) Are engagement and mitigating strategies more
effective when they are tailored to the type of telephony
scam? Is our system capable of systematically classify-
ing the type of unwanted call?

• (RQ2) What are the main terms that should alarm users
in a telephone conversation?

• (RQ3) What strategies work best when interacting with
scammers and what challenges arise from the type of
scam?

• (RQ4) Is our system capable of interacting with fraud-
sters and wasting their time by generating appropriate
responses in real time?

• (RQ5) What are the key features that contribute to the
engagement of the scammer? Do more realistic (in terms
of speech) but less smart (in terms of richness in the
response) chatbots outperform less realistic but smarter
chatbots?

Our main contributions can be summarized as follow:
• We develop a system architecture to mitigate unwanted

calls that works autonomously and in real-time to cope
with the problem of telephone fraud at scale.

• We build a spam and scam classifier, following a Knowl-
edge Discovery from Data (KDD) approach [9]. We
evaluate its performance using different metrics and
classification algorithms.

• We design two different chatbot strategies and compare
their performance. The first one is based on Rasa NLU,
which responds with pre-recorded answers. The second
one is based on the Generative Pre-trained Transformer
3 (GPT-3). The model has been trained using deep
learning models designed for generating answers within
the context of a conversation. These models allow us to
generate conversations with scammers in real time.

• We evaluate the effectiveness and viability of our system
with real calls to scammers.

The rest of the paper is organized as follows. First, in Sec-
tion II we discuss the threat posed by scam phone calls,
then we detail the architecture of our system in Section III.
Section IV describes the ethical principles followed in the ex-
periments. Section V shows the results of the spam and scam
call classifier. Section VI presents a system evaluation with
real-time conversations. Section VII discusses the proposals
from the community related to our work. Finally, the main
conclusions of this work are presented in Section VIII.

II. THREAT MODEL AND OVERVIEW
The use of VoIP networks is nowadays increasing and,
in many cases, replacing public telephone interconnection
infrastructures (e.g., companies, organizations or houses).
Attacks leveraging this type of network have recently become
more and more common [10]. Due to the interconnection of
VoIP systems with traditional telephone network infrastruc-
tures, attackers have the ability to target a greater number of
victims around the world.

A. THREAT MODEL
We identify two scenarios through the analysis of the thread
model that drives the illicit usage of VoIP.
Infrastructure: We see attacks to VoIP systems aiming at
stealing access credentials. Once attackers take control a
set of accounts, they use them place calls without paying
for their cost. In some cases, attackers target VoIP servers
themselves, effectively obtaining root access and full control
of the infrastructure. This way they can issue a large volume
of calls and maximize the profit obtained in the different
types of phone fraud they carry (e.g., premium rate services)
[11]. Controlling the entire VoIP server also give the attackers
access to the list of active numbers, which enables them to
launch other types of attacks (e.g., Wangiri scam) [12]. This
causes considerable economic losses for the owners of the
VoIP infrastructure or the credentials used [1], [2].
Call centers: On the other hand, the availability of local
inexpensive dial-up plans has turn VoIP networks into a
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FIGURE 1. Heat map of the destinations to which calls were attempted.

commodity for call centers. This makes it technical viable for
cybercriminals to launch phone scam campaigns. The aim of
these campaigns is to trick legitimate users into carrying out
certain actions that carry a financial loss in their end.

B. CHARACTERIZING THREATS

To better understand telephone scams, we configure a hon-
eypot for a VoIP system. The honeypot runs a VoIP server
with weak credentials over an IP address publicly accessible
from the Internet. Our aim is to measure the attacks that
these networks receive, but without actually redirecting the
phone calls out of our honeypot. Figure 1 shows a heat map
with the calls that were attempted through the honeypot. In
total, 92,605 calls were attempted, 2,955 of which were to
valid numbers or ones that contain information on the country
or area to which they belong. It can be seen that most of
the attempted calls were to places in Europe and the United
States. We can also see that attempts were made to make calls
to phones with premium rates and whose call plan is similar
to that of the United States (e.g., Dominican Republic, Cuba).
In addition, Figure 2 shows a graph of the set of IP addresses
that interacted with our system, grouping the IP addresses
based on the Autonomous System Number (ASN) to which
they belong. It can be seen that many of the IP addresses
belong to hosting companies in different parts of the world
(e.g., SQUITTER, OVH, WINDTRE). We also see a wide-
range sources from where the communication is established,
some belonging to residential IP addresses.

Through our honeypot, we are able to characterize the
different types of calls being made. We see that many of
the call attempts are directed to phone numbers that may
belong to real users, either launch spam or scam campaigns.
Countermeasures such as IP address or phone number black-
listing are not enough to prevent this type of abuse because
cybercriminals can easily change the IP address (e.g., using
TOR, VPNs, Proxy) or phone numbers used to carry out
fraud campaigns (e.g., by using Caller-ID Spoofing or hacked
Private Branch Exchange (PBX)) [3].
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AS3243 MEO - SERVICOS DE COMUNICACOES E MULTIMEDIA S.A.

AS42863 MEO - SERVICOS DE COMUNICACOES E MULTIMEDIA S.A.

AS35478 Bunea TELECOM SRL

AS12389 PJSC Rostelecom

AS204490 Kontel LLC

AS28840 OJSC OAO TATTELECOM

AS28860 PJSC Rostelecom

AS51659 LLC Baxet

AS8359 MTS PJSC

AS197640 OverPlay.Net LP

AS23969 TOT Public Company Limited

AS37705 TOPNET

AS27665 Columbus Communications Trinidad Limited.

AS24157 Taiwan Star Telecom Corporation Limited.(Former Vibo Telecom Inc.)

AS9924 Taiwan Fixed Network, Telco and Network Service Provider.

AS42331 PE Freehost

AS11042 NETWORK TRANSIT HOLDINGS LLC

AS11427 Charter Communications Inc

AS14061 DigitalOcean, LLC

AS17139 Corporate Colocation Inc.

AS19108 Suddenlink Communications

AS21554 Wisconsin CyberLynk Network, Inc.

AS22394 Cellco Partnership DBA Verizon Wireless

AS27257 Webair Internet Development Company Inc.

AS29802 HIVELOCITY, Inc.

AS30083 GoDaddy.com, LLC

AS30633 Leaseweb USA, Inc.

AS33132 Fibernet Direct

AS35913 DediPath

AS36351 SoftLayer Technologies Inc.

AS36352 ColoCrossing

AS393365 Alteva Solutions, Inc

AS395279 Mitel Cloud Services

AS39572 DataWeb Global Group B.V.

AS396356 Maxihost LLC

AS396362 Leaseweb USA, Inc.

AS397373 H4Y Technologies LLC

AS397423 Tier.Net Technologies LLC

AS46475 Limestone Networks, Inc.

AS46562 Performive LLC

AS46664 VolumeDrive

AS62874 Web2Objects LLC

AS6461 Zayo Bandwidth

AS701 MCI Communications Services, Inc. d/b/a Verizon Business

AS7203 Leaseweb USA, Inc.

AS7270 IDT Corporation

AS7922 Comcast Cable Communications, LLC

AS21826 Corporación Telemic C.A.

AS327808 TESUCO TELECOMMUNICATIONS (PTY) LTD

AS37049 South African Digital Villages (Pty) Ltd

AS37168 Cell C (Pty) Ltd

FIGURE 2. Grouping by ASN of all the IP addresses that interacted with the
system.

In view of this, in the following section, we introduce a
system geared towards automatically answering calls. The
goal of system is twofold. First, we aim at learning whether
the call is a scam by analyzing its content. This learning task
can be placed in line with existing VoIP servers to tackle our
first threat model (Infrastructure). We then aim at designing
depleting the resources of the scammers by engaging them
in a conversation with a chatbot for as long as possible. This
reduces the time scammers can invest in the actual victims
and addresses our second threat model (Call Centers).

III. SYSTEM ARCHITECTURE
In this section we present the methodology followed in this
research and the architecture of our system. We given an
overview of our system, describe each component in detail,
and we finally outline the ethical principles followed in this
work.

A. OVERVIEW
Our system runs on a customized infrastructure built upon a
Private Branch Exchange (PBX) based on Asterisk, which
is a popular open-source communications framework. We
embed custom processes into Asterisk to manage calls and
inspect the conversation with the caller in real time. The
pipeline works as follows: when a call is processed, we
convert the incoming audio to text and then we generate an
appropriate response in the same format. We then convert
it to audio and play it back to the caller. At any given
stage in during the phone call, we feed the conversation to
a classifier to categorize the type of call received. Figure 3
shows the experimental architecture of our system, together
with the workflow of a conversation and the different inputs
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and outputs of each of the system components.

B. OUR SYSTEM
In this section we describe the main components of our
architecture.
Speech to Text. This component has the function of convert-
ing the audio of the speaker to text. It reads the audio channel
of the conversation via the Asterisk Gateway Interface (AGI),
and sends the raw audio to the speech recognition model.
Different audio models (e.g., Vosk [13] or Google Speech-
to-Text [14]) can be used. These work in a similar way, that
is, by computing the audio in parallel and issuing a final
response once the end of a sentence is detected. When the
final sentence has been received in text format, it is sent to
the chatbot component.
Chatbot. This module is the brain of our system and is
responsible for maintaining the flow of the conversation with
the fraudsters. Its architecture is made up of two types of
chatbots. The first one is composed of a Natural Language
Understanding (NLU) module built on top of Rasa NLU [15],
which is an open-source framework for intent classification
and entity extraction. It relies on Machine Learning (ML),
but has a conversation-driven approach. Specifically, it allows
to different intentions and entities and predefined responses
with which the chatbot has been trained (i.e., greetings, call
reason, listening issues, turning the computer on).

The second one is a chatbot built using OpenAI’s Gen-
erative Pre-trained Transformer 3 (GPT-3) model [16]. This
model was trained with 175 billion parameters and allows
the performance of tasks with zero or very few examples.
We use Rasa NLU to start the conversation and generate a
context for the chatbot built on GPT-3. The start of telephone
conversations is often very similar in different parts of the
world, as if it were a rule or script that indicates how a call
should begin [17]. For Rasa NLU’s initial context training,
we use intentions and entities that occur in any common
telephone conversation (i.e., greetings or identification). Thus
we use this model by giving it as context the start of the con-
versation produced by the model created in Rasa NLU, and
use the generated response to feed back into the conversation.
The answers generated are consistent with the conversation,
allowing us to give valid replies regardless of the type of
scam the fraudsters are trying to carry out. Therefore, this
chatbot component receives the transcription of the audio
generated by the caller as input, and that text is initially
sent to one of the chatbots, either Rasa NLU or GPT-3. In
the case of the Rasa NLU chatbot, it detects the type of
call and we send back the response to the conversation in
the form of pre-recorded audio that matches the intent of
the response. On the other hand, when we use GPT-3, the
responses generated by GPT-3 are open-ended and thus it is
unfeasible to have it pre-recorded. We send this response to
the text-to-speech component, convert it to audio, and play it
back in the conversation, as described in the next.
Text to Speech. This module is responsible for converting
the responses generated by the chatbot, from text to audio

TABLE 1. Number of audios distributed by category.

Class # of Audios Class # of Audios
Tech support 58 Air duct 28
Electricity 57 Telecom services 25
Vacation 46 Loan 23
Alarm system 41 Windows&Doors 22
Home 40 Medical services 21
Fundraising 32 SEO 12
Credit card 29

format, so that they can be played back in the conversation.
The voice synthesis model works in a similar way than the
transcriber (c.f. Speech to text). It obtains the text to be
converted to audio as input, and a series of parameters such
as the pitch, speed or gender of the voice of the audio that will
be generated. This parameters are randomly chose to obtain
a different voice in each of the conversations. To generate
the audio in real time, we use the Text-to-Speech (TTS)
library [18], which has different pre-trained models. In our
case, we use the Tacocron2 [19] model together with the
ParallelWaveGAN (PWGAN) vocoder [20] to perform the
real-time speech synthesis.
Scam and spam classifier. This component is a machine
learning model trained on a dataset of audio conversations
with scammers we collect from a dedicated YouTube chan-
nel [21]. The dataset used for the model is composed of a
set of conversations between spammers or scammers with
an unsophisticated chatbot known as Lenny. Lenny plays the
same set of audios in sequence one after the other one every
time there is a silence in the conversation. First, we convert
the audio to text using an offline speech recognition toolkit
known as Vosk [13]. We use one of the pre-trained models of
this toolkit for the English language, and a model for speaker
recognition, which encodes the information of the speech
expression in an embedding vector called x-vector [22], [23].
This makes it possible to calculate the cosine distance to
determine whether the two vectors are similar and therefore
come from the same speaker. Firstly, we obtain the x-vectors
of all Lenny’s audios through the model. Once all the vectors
have been obtained, we use the model for transcribing the
text by comparing the x-vector calculated for each generated
text with those from Lenny’s audio. If the cosine distance
is close to 1, it means that the two vectors are similar and
therefore correspond to the same speaker. In this way, we
can accurately identify which parts of the audio are from
the Lenny chatbot and which ones are from the scammer.
In our case, we discard those from the Lenny chatbot. Once
we have the transcripts of the utterances of the different
scammers, we manually label the conversations according
to the type of scam. In total, we have around 450 tagged
audio conversations divided into 13 categories. Table 1 shows
the categories and the number of audios that belong to each
category. We divide the dataset into 80% for training and 20%
for testing. This 20% of test data remains unseen and will be
used to evaluate the model.

In a second stage, we pre-process the text by stemming
the words of each of the audio transcripts in the training set.
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FIGURE 3. System architecture.

This stage also extracts the ngrams of size 1, 2 and 3 from
each document to keep the context between various words
in the documents. Then, we use Term Frequency-Inverse
Document Frequency (TF-IDF) for feature extraction, which
is used for measuring which words are most important in
defining a document. TF measures the frequency of a term
t in document d, as can be seen in Equation 1. IDF is used
for calculating the weight of terms across all documents,
that is, it indicates whether the term is common or not.
Mathematically, IDF is the logarithm of the quotient between
the total number of documents and the number of documents
containing term t, as shown in Equation 2. This way, it
is possible to give more importance to keywords for each
category and less importance to generic words. Once TF
and IDF are calculated, TF-IDF is computed as described in
Equation 3.

tft,d = ft,d (1)

idft,D = log
|D|

|{d ∈ D : t ∈ D}|
(2)

tfidft,d,D = tft,d · idft,D (3)

The value obtained for each term will be between 0 and 1,
where close to 0 indicates that the term is not relevant and
appears in many documents, and close to 1 indicates that the
term is important. Finally, we train a machine learning model
to classify conversations using the extracted features and its
previously calculated TF-IDF weight.

IV. ETHICS
This research uses [24] as a reference for the ethical prin-
ciples that must be followed for Internet-mediated research,
a work that extends the Belmont Report [25] and the Menlo
Report [26]. Due to the type of research we carry in this work,
we are unable to ask for informed consent to the scammers
while carrying out the experiments. This is because the

output of our measurement would be biased if scammers
were aware that they are talking with a chatbot. We address
this challenge through a carefully dissing experiment and
a risk-benefit assessment. First and foremost, we develop
mechanisms to reduce the risk of the study and to avoid
harming users. We then assess the benefits of our work
and we note that our system would raise the bar in the
mitigation of telephone scams through the Internet, reducing
the scammers resources and with the intention that the time
that they spend on a call with our chatnbot is time that they
do not invest on trying to scamming victims who may be
vulnerable to this type of calls. Our experiments have been
evaluated by our Institutional Review Board (IRB), who has
considered the benefits and risks of the experiments and has
approved our study. Below we detail the measures adopted
for minimizing the risks of the study carried out.

First, we exhaustively tested our chatbot through a number
of simulations to determine if outputs could be observed as
offensive. This is particularly relevant for the chatbot that
uses a generative transformer. We then limit the number of
calls we connect through to our chatbot to the bare minimum
necessary for evaluating the proposed system. Second, the
phone numbers we use on our evaluation belong to the Toll-
Free category, thus preventing scammers from obtaining any
economic benefit from our calls. Thirdly, all the calls have
been monitored in real time in order to verify that numbers
are belong to scammers so that, if this was not the case, our
experiment is interrupted as soon as possible. Finally, our
experiments do not attempt to identify any of the scammers
and we do not store any sensitive information about them.
That is, the numbers we use to reach out scammers are
extracted from open sources on the Internet. In addition, we
do not record the conversations, we only store anonymously
the transcripts of the audio obtained in real time.
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TABLE 2. Results for the different types of machine learning algorithms.

Algorithm Precision Recall FScore
K Neighbors 86.19 83.46 82.97
SVM kernel=’rbf’ 70.65 64.90 64.70
SVM kernel=’Linear’ 94.46 90.39 91.04
Decision tree 74.96 71.35 70.57
Random forest 91.72 85.29 86.16

V. SPAM AND SCAM CLASSIFICATION
This section evaluates the effectiveness of the classification
module presented in Section III.

A. CLASSIFIER TRAINING
As mentioned in the previous section, we use as features the
N-grams extracted from the conversations and their TF-IDF
weight. We test different algorithms such as SVM [27], using
the Linear and Radial Basis Function (RBF), Kernels [28],
Decision Tree [29], Random Forest [30] and K-nearest [31].
We use the implementation of these algorithms provided by
the Sklearn [32] library written in Python.

In the training phase, we use 80% of the initial dataset.
We use K-fold [33] as a cross-validation strategy with the
different machine learning algorithms discussed above. This
training set has been divided into 3 stratified folds, that is,
each of the folds has the same percentage of each class.
For the evaluation of the algorithms, we use precision, recall
and Fscore as metrics. We apply these metrics to each class
separately, with the final result being the average of all
classes. We choose this strategy so that each class contributes
with equal weight to the results regardless of the total number
of conversations they have. Table 2 shows the results obtained
for each of the machine learning algorithms. It can be seen
that the SVM algorithm with the linear kernel is the one that
gives the best results in terms of precision, recall and FScore.

B. CLASSIFIER EVALUATION (RQ1&2)
We train our classifier with the SVM linear kernel algo-
rithm, using 80% of the data, and we validate it with the
remaining 20%, whose data remains unseen. Figure 4 shows
the confusion matrix for the SVM algorithm with the linear
kernel. The confusion matrix details the correct and incorrect
prediction percentage for each of the scam types and provides
a picture of classification performance. We can see that for

TABLE 3. Most-correlated terms.

Type Unigrams Bigrams
Alarm system secur, alarm secur alarm, home secur
Air duct air, duct duct clean, air duct
Credit card credit, card lower rate, credit card
Energy energi, electr ga electr, direct energi
Fundraising conserv, donat parti canada, conserv parti
Home project, paint kitchen bathroom, home imrpov
Loan busi, loan cash advanc, busi loan
Medical services knee, medicar medic alert, insur polici
SEO page, googl busi owner, page googl
Tech support technic, comput turn comput, comput im
Telecom services cabl, tv phone internet, home phone
Vacation resort, vacat free cruis, vacat packag
Windows&Doors door, replac estim window, window door

most types of scam or spam, the model manages to classify
the type correctly. However, for some typical types there are
misclassifications (e.g., Loan as Fundraising, Alarm system
as Medical services), although they do not exceed 20% for
that class. In order to understand the reason for these mis-
classifications, we obtain the most correlated unigrams and
bigrams for each type of scam or spam call. Table 3 shows
the terms that have the highest correlation and, therefore, the
greatest weight when classifying one type of call or another.
It can be observed that the most relevant terms contain good
information about the type of call they represent. However,
in some cases they lead to misclassifications. For example,
when observing the confusion matrix, we can see that some
calls of the type Medical services are classified in the cate-
gory of Credit cards. This is because the term card (one of
the most related unigrams in Credit card) appears in some
medical calls. Something similar occurs in the Alarm system
type, where the caller says “I’m sure you’re familiar with
medical alarm systems”, causing the classifier to classify that
conversation as Medical services instead of Alarm systems.
In the other cases, misclassifications occur due to reasons
similar to those indicated above.

VI. ONLINE EVALUATION
In this section, we evaluate our chatbot by means of real
calls to scammers. Firstly, we describe the acquisition of the
dataset, and then how we address the challenge of avoid-
ing the interactive menus that some infrastructures have for
avoiding automated calls. Finally, we present the results of
the experiments.

A. EXPERIMENTAL SETUP

To evaluate our system, we focus on the Technical support
scam. We develop a specific chatbot for this type of scam,
both for RASA and for the GPT-3 context, as discussed
in Section III. There are different methods for obtaining
successful calls, such as seeding phone numbers [34], so
that these appear on telephone lists used by scammers, or
obtaining dirty numbers (through some telephone company)
that have been returned by customers because they received
numerous unwanted calls [10]. Our system is designed to
receive scam or spam calls once deployed in production.
However, obtaining calls from scammers in a lab environ-
ment is challenging. Thus, we initially evaluate our system by
making calls to numbers that are known by the community to
belong to scammers. This presents an additional challenge
as the turns of the conversation vary slightly with respect
to those conversations in which the scammer calls the user.
When the user receives the call from the scammer, the chatbot
is in the ideal scenario: it is not necessary for the chatbot
to take the initiative because it is the scammer who tries to
convince the “user” to obtain a benefit. However, when the
conversation is initiated by the “user”, the chatbot is expected
to provide the reason for the call. This is still a common
scenario in practice, as some of these scammers use adware
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FIGURE 4. Confusion matrix for the SVM algorithm with linear kernel.

to advertise their phone numbers and wait for victims to dial
in.

B. PHONE NUMBER DATASET
Our dataset consists of a collection of telephone numbers
reported as technical support scam collected from publicly
available sources [35]–[37]. Since scammers change phone
numbers and become unavailable quite regularly, we collect
the numbers that were posted in 24-hour periods. We parse
these phone numbers with the phonenumbers library [38],
saving and calling those that belonged to the Toll Free num-
bers category, thus preventing the scammers from obtaining
any economic return for the calls made. In total, we collected
a total of 1,960 phone numbers for scammers.

C. INTERACTIVE VOICE RESPONSE MENU
During the course of our experiments, we noticed that many
calls were not reaching a live agent due to the use of an
Interactive Voice Response (IVR) menu. These phone menus
interact with users by offering a series of options before
routing the call to a live agent. Therefore, in these cases the
chatbot was not able to speak with a live agent. In order to
increase the chances of success and reach a live agent, we

tried to bypass these interactive menus. Based on the calls
we had made, we identified that most IVRs simply asked
the caller to press a number on the phone to continue the
conversation or be redirected to a technician. Therefore, we
created a new intention on Rasa NLU, with the different
messages that we had obtained from the interactive menus,
so that it could be detected that we were dealing with an
IVR. In this way, we can identify the numbers of the IVR
menu and the possible options, and send a Dual Tone Multi-
Frequency (DTMF) signal that simulates pressing a number
on the phone. Fragment 1 shows an example of an IVR menu
that is identified and where a DTMF signal is sent that allows
the call to reach a live agent. In total, after including the
bypass method, 46 menus were detected, and the number was
correct in 38 of them, representing around 82.6%, allowing
us to bypass simple IVR menus.

Fragment 1.

Support_service: thank you for calling us press 1
for customer support press 2 for technical support
Michael: [IVR_MENU=2]
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Support_service: thank you for calling technical
some hold for the next available agent
Michael: hello How are you doing?

D. RESULTS OVERVIEW (RQ3)
In order to evaluate our system, we make calls to the numbers
that we collect every day and which belong to the Technical
support type of scam. Table 4 shows a summary of the calls
made and the status of the call with each of the chatbots. In
total, 1,960 calls were made and 535 calls were answered,
representing about 27% of the calls made. Of all the calls that

TABLE 4. Number of calls made.

Status of the call Rasa chatbot GPT-3 chatbot Total
Busy 316 446 762
Answered 285 250 535
No Answer 321 264 585
Failed 57 21 78
Total 979 981 1,960

were answered, we discard those conversations that lasted
less than two minutes since the vast majority of the calls that
did not exceed that time did not succeed in being connected
with a live agent, either because there was none available
and they were kept on hold and hung up, or the system
answered and hung up automatically. Figure 5 shows the
number of calls considered valid and the duration of these
calls distributed according to the type of chatbot used. The
average duration using the chatbot created using Rasa NLU
is around 4.2 minutes, while the average time for the chatbot
using GPT-3 is around 3.8 minutes. In general, the chatbot

 

       

 

 

 

 

 

 

 

 

 

 

FIGURE 5. Duration of calls maintained by the chatbots.

built on Rasa NLU is able to hold conversations longer than
the chatbot built on GPT-3. This is mainly because the Rasa
chatbot is built with pre-recorded audio responses that are
played back in the conversation, and, although it is not able to
give coherent responses to statements it has not been trained

on, the audio is more reliable than that synthesized in real
time in the GPT-3 chatbot, which sounds more robotic when
the generated sentences are longer. In addition, the chatbot
built with GPT-3 is more unpredictable within the context
of the call, since it depends heavily on the transcript of the
call. That is, if the transcript of the call is not accurate, the
response can be very different from what is expected.

E. ANALYSIS OF THE CONVERSATIONS (RQ4&5)
We next study the performance of both chatbots used. For
this, we perform a qualitative study of the conversations they
both generate in the look for scenarios where advantages or
disadvantages appear in the use of the chatbot. In Fragment 2,
the conversation maintained with the scammer through the
Rasa NLU bot is shown. The main advantage of this bot
lies in the use of categorical answers based on the analysis
of the phrase received from the attacker, for example, those
for greeting and explaining the initial problem, turning on
the computer or explaining different errors that motivate
the call. These categories address more than 15 different
situations related to the context of the call, which leads the
scammer to think that the call is not from a bot; firstly,
because the answers are pre-recorded by a human (instead
of being a synthetic audio from a bot), and, secondly, as the
bot is capable of redirecting the conversation to its predefined
categories when the transcription of the scammer’s message
is wrong. Thus, by resorting to phrases such as “Can you
repeat the previous step?” or “I can’t hear you well”, the
context of the call remains within the scope of the scam and
does not lead to a totally different topic, thus maintaining the
conversation with the scammer.

Fragment 2. Rasa NLU

Michael: I have some errors on my computer. I
think I have a virus and it is terribly slow.
Support_service: alright sir can you just tell me
what exactly do you see on your screen right now
Michael: what do i have to do now?
Support_service: yeah can you just tell me first
of all let exactly what we were doing on your
computer when this came up on your screen
Michael: I have some warnings telling me my
computer has viruses
Support_service: okay can you just tell me what
exactly do you see on your screen right now
Michael: Yes, thanks
Support_service: sorry I beg your pardon
Michael: Are you there?
Support_service: yes I’m very sorry can you hear
me
Michael: Absolutely sir, I want to fix it
Support_service: okay just do one thing I will be
connecting you with a secure server so just do one
thing first of all just hit the Windows key on your
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keyboard and the letter r with it alright

This does not happen in the case of GPT-3, since the an-
swers are consistent with the transcription of the scammer’s
message, that is, they are not predefined. This is an advantage
when answering with more fluid phrases, but a transcription
error can mean a total change of context in the call, causing
the fraudster to hang up. An example of GPT-3 is shown in
Fragment 3, in which the responses given to the attacker are
more realistic in terms of speech, but a transcription error of
the word “water” leads to an unwanted context switch, which
causes the scammer to end up terminating the conversation.

In summary, we can conclude that the Rasa NLU bot is
more effective for the purpose of our paper. Designing a
chatbot using Rasa NLU requires considerable larger efforts
than GPT-3. In particular, it requires domain knowledge to
build all possible conversational flows, requiring the study
the different categories and their possible answers. It also
requires to pre-record a range of answers for the category.
Conversely, the results compared with GPT-3 are better with
regards to the quality of the conversation and follow the flow
of the conversation with the scammer for a longer time, de-
pleting their resources and thus preventing the scammer from
reaching other victims during that time interval. However,
there are other reasons besides the quality of the response that
can lead to ending the call with the scammer. These reasons
are detailed in the next subsection.

Fragment 3. GPT-3

Support_service: you for calling to speak to a
representative please press zero
John: [IVR_MENU=0]
Support_service: under for calling my name is
Mark Courthouse
John: Yes, I see
Support_service: hello
John: Hello, Mark Courthouse
Support_service: tell me how may help you sir
John: I’m here because of last night’s problem
Support_service: what kind of problems
John: I accessed your homepage and my computer
got infected with a virus
Support_service: I understand sir tell me how may
help you
John: By the way, I was calling from a phone-
booth. When I use my computer I’m constantly
stared at by strangers...
Support_service: call really
John: Yes, I really like to
Support_service: tell me how may help you
John: I’d like to be connected with the technician
who is responsible for viruses.
Support_service: we will be helping you in the

removing the wireless what kind of waters do you
have
John: hello?
Support_service: what kind of water do you have
John: I have hot
Support_service: sorry
John: How may a hot
Support_service: what did he said
John: I have water that’s hot

1) Main reasons for hanging up

Once the experiments were over, we analyzed the end of the
calls to see the main reasons that lead scammers to hang up.
These can be summarized as follows:

• The voice transcription is not quite correct, and the
response generated is more unpredictable. Although it
might actually make sense within the transcript, for
the scammer it does not make sense, so they end up
terminating the conversation. This occurs in the case of
the GPT-3 bot, since in the case of the Rasa NLU bot the
responses are pre-recorded, as discussed in the previous
section.

• Our phone number does not appear on the lists for which
they have launched the scam campaign. This reason is
inherent in the type of chatbot used in the call since it
only depends on the phone number used.

• Some responses generated seem technically more ad-
vanced and the audience that the scammers are trying to
target is more vulnerable, that is to say, non-tech savvy
users. Therefore, they understand that they will not ob-
tain any benefit from the conversation and hang up. This
occurs in the case of the GPT-3 bot, where sometimes
the chatbot gives responses that are too ‘’advanced” like
“my hard drive keeps randomly freezing and frequently
the blue screen of death pops up”.

• They detect that it is a prank call to waste their time,
mainly motivated by the audio generated in real time
that sounds more robotic in long sentences. This is the
case of the GPT-3 chatbot since the Rasa NLU chatbot
uses audios that were pre-recorded by a human.

• Sentences from the scammer for which the bot has not
been trained, giving rise to responses that it has not
understood what the scammer has said, or that it did
not hear the scammer well, etc, so when several occur
in a row, it causes the scammer to end up terminating
the call in most cases. This occurs for the Rasa NLU
chatbot, where the model is trained to recognize a finite
set of actions.

VII. RELATED WORK
In this section we review the proposals from the community
that address the same issue as this article, highlighting the
state of the art in the different categories covered by our
proposal.
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Honeypots. Nawrocki et al. [39] carry out a systematic
review of the pieces of research related to honeypot systems,
describing the data that can be collected by them, and pro-
viding a classification based on the type of interaction they
provide for attackers. Basically, there are three types of hon-
eypot, offering low, medium and high degrees of interaction.
The first of these presents a basic level of functionality of the
service , while the last provides all the possible capabilities,
making it more difficult for attackers to differentiate it from a
real system. Medium interaction honeypots simulate certain
capabilities of the service but do not offer full functionality.
In the security community, honeypots are used to obtain
information about the attacks carried out on these services
in real time. There are numerous works focused on different
protocols such as Secure SHell (SSH) [40], Telecommunica-
tion Network (Telnet) [41], [42] and Simple Mail Transfer
Protocol (SMTP) [43] that collect data on attacks, malware,
and Tactics, Techniques and Procedures (TTPs) that attackers
use through these protocols.

With regards to the world of telephone communications,
honeypots allow us to identify fraudulent behavior in tele-
phone calls made either through conventional telephone lines
or through VoIP communications. Gupta et al. [10] set up
a low interaction honeypot system to obtain information on
the types of attacks and abuses that are performed through
the telephone line. In order to do so, they use a cloud-
based infrastructure and around 39,000 telephone numbers
(provided by a telephone provider) that had been returned
by the provider’s customers due to receiving unwanted calls.
The system received a volume of 1.3 million calls from 250k
unique phones in the 7 months that the honeypot was running,
demonstrating the abuse that exists through mobile phone
lines. A similar work is that of Marzuoli et al. [44] , in
which the authors collected around 40,000 unwanted calls,
most of them made by just a few actors. They also found that
most scam and spam calls could be identified on the basis
of the audio features collected by the honeypot. Balduzzi
et al. [45] developed the first honeypot intended for mobile
devices. They seed the phone numbers to analyze attacks
that occur on numbers that have not been used before. In
total they received more than 2000 calls and text messages,
most of them unwanted. Other works [46], [47] present
honeypot architectures for the study and analysis of different
attacks through the Session Initiation Protocol (SIP) used
in VoIP communications. Both use the honeypot to detect
specific attacks that occur in VoIP systems (i.e., DoS attacks,
password brute force, and flooding).
Scam and spam analysis. Other studies focus on under-
standing the scam ecosystem by analyzing different types
of scams. Miramirkhani et al. [48] analyze technical sup-
port scams through an automatic system that is capable of
collecting information such as phone numbers and domains
related to this type of scam. They make calls to these types of
scammers to learn about the different tactics and procedures
they use to deceive the victim. Mubarak et al. [49] carry out
a review of the different activities of telephone scams that

have been carried out in Malaysia. They describe some of the
scenarios that have occurred in Malaysia and the techniques
used by scammers to achieve their goals. Finally, they pro-
pose two prevention mechanisms for protecting users against
scams. Bidgoli et al. [50] analyze data from scam cases that
have been reported on campus for three years. They provide
qualitative information based on the type of scam, gender,
the way it was reported, how they had been contacted, etc.
Finally, they conducted surveys to understand the ecosystem
of scams that affect international students and that led them to
report these actions. Sahin et al. [8] analyze the effectiveness
of a chatbot for combatting spam and scam calls. Their study
is based on a bot known as Lenny, which is an Interactive
Voice Response (IVR) system with a set of pre-recorded
audios designed to waste the time of spammers in unwanted
calls. In this work they analyze the calls received by Lenny
as well as the transcribed conversations to understand how he
is able to maintain interaction with spammers.
Detection and classification. Prasad et al. [7] categorize
different types of audio and fraud campaigns by using a
method of classifying the data and metadata of the calls.
Unlike other pieces of reseach based on audio transcription,
the method proposed in this work is language-independent,
as it deals directly with the audios. Azad et al. [51] propose
a method to classify users based on the interaction they
have. To do this, they generate a social graph based on
the Call Detail Record (CDR) and the relationship that the
telephone numbers have. The edges have a weight based on
the frequency of calls and the duration of these between
the caller and the callee, representing the strength of that
relationship. Finally, it generates a machine learning model
with these characteristics extracted from the graphs for clas-
sifying whether a user is a legitimate user, spammer or a
call center. Liu et al. [52] introduce a method to discover
numbers involved in spam campaigns through detailed call
logs. It does this by combining supervised and unsupervised
learning methods to discover new numbers and add them to
blacklists of phone numbers. Bordjiba et al. [53] develop
a framework for detecting spam campaigns based on user
complaints and the correlation between them in order to
group spam campaigns and obtain information on this type
of abuse. Li et al. [54] present a proposal based on machine
learning to detect malicious calls. The proposed model uses
a total of 29 features and is capable of blocking 90% of
malicious calls. To generate the dataset, they developed a
mobile app for users to tag malicious calls.

VIII. CONCLUSION
In this proposal, an architecture capable of functioning as a
honeypot against criminals who use phone calls to commit
their offenses has been successfully deployed. Firstly, we
built a spam/scam call classifier using different machine
learning models. Among the different models for classifying
calls, SVM with the linear kernel provided the best perfor-
mance. Then, we built two chatbot models implement our
study: on the one hand, Rasa with pre-recorded audio and, on
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the other hand, GPT-3 with audio generated in real time. We
also analyze the differences between them.

The results show that the chatbot built with Rasa NLU
performs better in terms of engagement time with the scam-
mers. As it is a rule-based chatbot, the answers are prede-
fined and therefore can be pre-recorded. This inspires greater
confidence in the scammer than an automatically-generated
audio that can be recognized by the scammer as being a more
robotic voice.
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*e weakness of the security measures implemented on IoT devices, added to the sensitivity of the data that they handle, has
created an attractive environment for cybercriminals to carry out attacks. To do so, they develop malware to compromise devices
and control them.*e study of malware samples is a crucial task in order to gain information on how to protect these devices, but
it is impossible to manually do this due to the immense number of existing samples. Moreover, in the IoT, coexist multiple
hardware architectures, such as ARM, PowerPC, MIPS, Intel 8086, or x64-86, which enlarges even more the quantity of malicious
software. In this article, a modular solution to automatically analyze IoTmalware samples from these architectures is proposed. In
addition, the proposal is subjected to evaluation, analyzing a testbed of 1500 malware samples, proving that it is an effective
approach to rapidly examining malicious software compiled for any architecture.

1. Introduction

*e appearance of the Internet of *ings (IoT) has greatly
improved the application of technology in the everyday lives
of people. Years ago, digital interaction between an indi-
vidual and technology was in general only through a
computer. With the development of smartphones, that
communication became a more mobile, personal, and
continuous task. And then, the IoT appeared to change all
the previous concepts and insert technology into almost
every imaginable object. Smart houses, eHealth, or smart
cities are just a few examples of contexts that have their
origin in the application of the IoT. *us, not only has it
helped to complement existing scenarios but it has also given
rise to the ones in which technology is applied.

As a consequence, the volume of data that is now dig-
itally handled has vastly increased as well. However, al-
though the emergence of the IoT has clearly benefited
people, the same positive verdict cannot be passed when
speaking of the security measures implemented on the
devices. Unfortunately, developers opted to prioritize

usability over security, especially during the IoT’s concep-
tion, when the thought of someone compromising an entire
network by simply attacking a switch was unthinkable.

*erefore, there was a huge underestimation of the
requirements that these devices and the information that
they handle demand. Nowadays, this issue is being ac-
knowledged, and companies are working on improving
the protection, but they are still quite vulnerable, added to
the fact that a great number of old devices is still being
used. *is makes the IoT the perfect environment for
cybercriminals to operate in. *ey can gain access to very
sensitive and valuable information with little effort. Re-
cent studies [1] show the magnitude of the problem. Only
in the first quarter of 2019, a hundred million attacks were
detected on smart devices, a figure seven times greater
than the number found in 2018. Unsurprisingly, theMirai
malware family was behind 39% of them, taking advantage
of old devices with unpatched vulnerabilities. Another
sample which exploits a trivial attack, namely, the brute-
force, Nyadrop, closely followed Mirai and reached a
percentage of 38.57%.
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*ese attacks were the result of poorly designed security
measures on the devices and could have been easily miti-
gated by just changing the default user and password of the
device for a more secure one. Instead, they ended up af-
fecting companies such as Twitter, Amazon, Spotify, and
Netflix, costing them millions of dollars and affecting their
customer’s trust [2].

As mentioned above, most IoT attacks do not have their
origin in new malware samples, but are based on previous
ones that were successful. New versions of old attacks appear
every day with minor modifications, but the way they work
remains almost identical. Having information about how a
sample interacts with the compromised device, and what
actions it carries out, allows investigators to protect the
device or, at least, limit its expansion over the network. For
this reason, the ability to identify which malware samples are
alike, that is, those that belong to the same family, can have a
huge impact when determining what actions to be taken in
order to reduce the impact of a cyberincident.

In addition, besides the existence of multiple operating
systems, there are also several architectures used by IoTdevices,
such as ARM, PowerPC, MIPS, and x86. With the aim of
expanding the range over which cybercriminals can carry out
their attacks, they develop samples for more than one. *is
means that numerous pieces of malware have their origin in a
sample, and then it is adapted to work on other architectures.
Consequently, its behaviour remains similar, with only its
structure varying in order to be compatible with them. *is
allows the malware analyst to analyze malware families inde-
pendently of the architecture for which the sample was designed.

*is analysis is neither a trivial task nor a speedy one.*e
number of existing samples, added to the appearance of new
ones almost every minute, makes it impossible for an in-
vestigator to study all of them. *erefore, it is necessary to
develop automatic solutions, such as architectures or
frameworks, which can speed up the process and be able to
examine multiple samples at once. In order to achieve that, a
change of approach is needed: instead of focusing on the
features that differentiate a sample, now it is mandatory to
determine which characteristics allow a piece of malware to
be grouped with another, as well as selecting the ones that
can be collected and interpreted automatically.

*erefore, the contributions of this study are as follows:

We study the current state of malware analysis, fo-
cusing on the development of automatic solutions to
perform examinations
We present a series of static and dynamic character-
istics that are useful to automatically categorize mal-
ware samples
We propose a modular framework for the automatic
analysis and clustering of malware samples from the
most widely used architectures, based on the evaluation
of their static and dynamic features
We evaluate the proposal with a testbed of nearly 1,500
pieces of malware, confirming its usefulness when
analyzing and clustering samples from different IoT
architectures

*e rest of the paper is organized as follows. Section 2
describes the IoT’s architecture, its malware threats, and how
to obtain useful characteristics from them. An architecture
to automatically cluster malware samples from different IoT
architectures is presented in Section 3. An evaluation of the
proposal through the analysis of 1500 malware samples is
carried out in Section 4. Finally, our conclusions are pre-
sented in Section 5.

2. Background

As discussed in the previous section, the IoTenvironment is
the perfect target for cybercriminals to attack. *is section
presents the problem related to the large number of devices
with different architectures connected to the Internet, lists
the reasons for the rise of IoTsecurity threats, and defines the
concepts of malware analysis and characterization.*en, the
Service-Oriented Architecture (SOA) software paradigm
used in the design of the framework is introduced. In ad-
dition, we present a review of the proposals from the re-
search community in regard to this paper.

2.1. 'e IoT Environment. *e IoT allows developers to
model use cases that in the past were not feasible due to the
specific limitations of traditional client-server architectures:
resource centralization, expensive devices, and high laten-
cies, among others. *e IoT environment creates room for
new contexts such as Industry 4.0 [3] and smart homes [4].
Its structure can be divided into three fundamental building
blocks: the Cloud Layer, the Network Layer, and the Devices
Layer. Figure 1 shows the hierarchy formed by these layers.
Frequently, end devices interact with other IoT devices as
well as with large data centers in the cloud layer to carry out
the tasks (sometimes computationally intensive ones)
assigned to these end devices. Accordingly, more and more
end devices are exposed to the Internet every day, so it is
important to adopt appropriate security measures if we do
not want to expose our end devices to external attackers.

Another main problem of the IoT environment is the
considerable heterogeneity of the devices that comprise it.
Although it is important to define security, analysis, and
clustering mechanisms against malware layer by layer, our
work focuses on the constrained-resource devices of the
device layer. *ese devices are built with different hardware
specifications and run different operating systems. One of
the most significant specifications is the processor archi-
tecture used by such devices. Each processor and its in-
struction set are designed in a specific way. For example,
ARM is a more energy-usage-concerned architecture than
x86-64. In our case, the proposed framework focuses spe-
cifically on modelling Intel 80386, x86-64, MIPS, ARM, and
PowerPC architectures.

2.2. 'reats. By scrutinizing the aforementioned recent
studies focused on evaluating new trends in IoTmalware,
a drop in the number of attacks via Telnet can be observed
for the second quarter of 2019. Now, the value almost
reaches 60%, 20% less than in the previous one. *is
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statistic can be seen as an encouraging one if we deduce
that the decrease was due to developers no longer using
that service, which is well-known to be deprecated and
unsafe. *e most worrisome data are that there are few
changes in the most common malware families with
respect to previous years, meaning that old attacks are
still being successful. In addition, the number of malware
samples is still growing and expanding into more areas
[1]. Some of the main causes of the rapid growth in
cybercrime in the IoT are the following:

Number of connected devices: during the year 2020,
this figure is forecasted to reach 20.4 billion [5], with 5.8
billion of them being used in the enterprise and au-
tomotive market [6]. *is means that there are more
IoT devices than conventional ones, e.g., smartphones
or computers. *erefore, it is preferable for cybercri-
minals to perform large-scale attacks in this environ-
ment rather than in the traditional one, as they can
target more victims.
Implemented security measures: as briefly mentioned
above, IoT devices can be easily compromised by
carrying out simple brute-force or dictionary attacks.
*is is mainly due to the usage of weak default login
credentials. Although it may seem ludicrous, the
combination of user and password such as “admin-
admin” or “admin-1234” is not that uncommon.
Data handled: the application of the IoT has led to the
generation of data that previously did not exist or only
did so in a smaller quantity. eHealth is a good example
of this circumstance: metrics such as heart rate, blood
pressure, or oxygen levels were only stored in special
facilities such as hospitals or medical centers and were
only available to restricted personnel. Nowadays, these

data are also measured and stored by smart watches or
smart bracelets that are connected to the cloud and
create personal profiles for each user.
Limited computational capacity of the devices: this
makes them easy to crash, which is quite convenient
when a cybercriminal wants to perform a DoS (Denial
of Service) attack. *e number of petitions that can be
handled by these devices is far more limited than in
conventional ones. In addition, it hinders the task of
using antiviruses or cryptography algorithms, since the
current versions are only supported by more powerful
devices.

2.3. Malware Characterization. Characterization can be
explained as a process in which a set of features are
extracted from someone or something. *is makes it
possible to describe each item in an unambiguous way.
*us, malware characterization is the process of identi-
fying and extracting these features from each malicious
sample. In this field, the characteristics are divided into
the following categories:

Static features: here, the focus is on the analysis of the
intrinsic characteristics of a binary file without exe-
cuting its code in the system. Information such as the
strings that appear in it, its sections, architecture,
opcodes, cyclomatic complexity, or entropy belongs to
this category. *e main advantage is that static char-
acteristics are quick to extract automatically. On the
other hand, the usefulness of the features may be af-
fected if the sample is packed or obfuscated (i.e., dis-
assembly code and strings).
Dynamic features: here, the target is the analysis of the
behavior of the sample at runtime by monitoring the
different actions that it carries out in the system. *e
data are extracted from the communication that the
malware performs through the network and its inter-
action with the system, such as system calls or open
files, among others. One of its disadvantages is that only
characteristics of the executed portions of code are
captured, so the criminals include monitoring detec-
tion techniques that prevent the sample from executing
entirely. In addition, the extraction of dynamic features
is more time consuming than the retrieval of static
features due to the fact that the sample must be exe-
cuted for a short period of time.

2.4. SOA. SOA is a software design paradigm in which
modules work as independent services providing a specific
interface to be called upon. *ey communicate through an
Enterprise Service Bus (ESB) which is formed of one or
several protocols, allowing the addition of services with little
effort. In order to call each service when it is needed, an
orchestration process is used [7]. Under this scheme, it is
possible to add new components or new protocols. In ad-
dition, this architecture allows the easy integration of
multiple SOA-based applications.

Devices layer

Network layer

Cloud layer

Figure 1: IoT environment architecture.
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2.5.RelatedWork. As far as the authors are aware, there are no
approaches available in the literature that jointly tackle the task
of analyzing large numbers of malware samples specifically
designed for the IoTand that of classifying or clustering them.
On the contrary, most of the approaches try to describe specific
malware samples or families, as mentioned in Section 2.5.1. In
terms of automatically analyzing a great number of malware
samples, there are some articles, but they focus only on Linux-
based operating systems for x86 architectures, as is shown in
Section 2.5.2. Finally, Section 2.5.3 covers approaches focused
on classifying IoTmalware, but these do not take into account
all IoTarchitectures or families and neither do they study both
static and dynamic features.

2.5.1. Malware Survey. Pa et al [8] presented a Telnet
honeypot for different IoT architectures. *ey conducted a
study of the malware that was aimed at this service, showing
the problem that it suffers fromwhen it is accessible from the
Internet. *e authors also presented the first sandbox that
supported different architectures and executed the binaries
and commands received through their honeypot.

Cozzi et al. [9] presented a complete malware study
aimed at Linux-based operating systems. *ey statically and
dynamically analyzed more than 10,000 samples distributed
among the main architectures, namely, ARM, PowerPC, and
MIPS, among others. *ey presented the main techniques
used by malware and numerically expressed their use in the
samples that made up their dataset. To carry out their
analysis, they introduced the first malware analysis frame-
work aimed at analyzing Linux-based malware.

Costin et al. [10] introduced a study of 60 families of IoT
malware. *e authors studied the timeline of events related
to each family as well as the most relevant vulnerabilities
used by them. For the dynamic analysis, the authors pre-
sented a sandbox compatible with the main IoTarchitectures
based on the open source project Cuckoo Box [11].

2.5.2. Linux-Based Sandbox. Limon [12] is a sandbox for
analyzing Linux-based malware. It collects calls to the op-
erating system as well as capturing network traffic. Its main
problem is that it only supports binary analysis in x86 ar-
chitectures, and the operating system used to perform dy-
namic analysis is based on Ubuntu, which is not a very
common operating system in the IoT. Similar problems are
present in Detux [13], which, although it supports five ar-
chitectures, is based on the Debian operating system. Detux
only performs basic static analysis and network analysis,
ignoring malware behavior within the operating system.

Chang et al. [14] proposed a sandbox for analyzing
malware samples in the IoT. It is able to collect network
packages and malware behavior in the system. To test the
functionality of their sandbox, they experimented with the
Zollard botnet.

2.5.3. Classification. Nghi Phu et al. [15] presented a
framework for analyzing and classifying malware in the IoT.
*eir framework supports the MIPS architecture and

extracts features related to malware interaction with the
system in order to train a machine learning model.

Alhanahnah et al. [16] suggested a new approach to
classifying IoTmalware compiled for different architectures.
Its method is based on generating signatures at a high level
since these are more robust and vary less between
architectures.

Su et al. [17] introduced a method for malware classi-
fication in IoT environments. It is based on converting
malware into an image and a convolutional neural network
for classification. It is able to classify a sample into malware
or goodware and recognizes twomalware families: Mirai and
Gafgyt.

Kumar et al. [18] proposed a new approach to differ-
entiate between malicious and benign applications based on
a ranking of permissions used in Android IoTdevices. *eir
methodology included an improvement on the random
forest algorithm, achieving an increase in the accuracy of
malware detection.

Lei et al. [19] presented a system for malware detection
on Android-based IoT devices. *ey proposed the use of
event groups instead of API calls to capture malware be-
haviour at a higher level than in API level. *ey trained and
evaluated their system with a dataset of around 15,000 and
29,000 benign and malicious Android apps, respectively.

3. Proposed Architecture

*is section describes the proposed SOA-based modular
framework for analyzing and classifying malware samples
from different IoT architectures. It consists of six modules
which are invoked as services by the orchestrator of the
system, which is responsible for using each module and
processing the information extracted in each of the stages.
Due to its modular structure, each of the modules that make
up the system can be used independently (i.e., deploying a
virtual machine to execute commands from a honeypot or
even for adding new components). *ese services use our
Enterprise Service Bus (ESB), which allows us to integrate
any new component easily. Figure 2 shows a global view of
our architecture.

3.1. System Overview. *e system uses an executable file
from any of the architectures supported as input, analyzes it,
and produces a cluster based on the similarity that it has with
other previously examined files as output. Although the
proposal is designed formalware analysis purposes, it is valid
for clustering other types of executables. *e following
sections describe in detail the modules of which our system
is composed.

3.2.'eOrchestrator. *is is the main module of the system
and the one in charge of making the pipeline that inter-
connects the rest of the modules. Once it obtains a sample, it
uses the static analysis module to obtain the information
necessary to continue with the next phase. *en, it uses the
deployment module to check whether the architecture of the
analyzed file is supported, that is, whether there is a virtual
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machine that supports that architecture, and if it is, it starts
the virtual machine instance.

Once the virtual machine is on, it connects to it through
the connectivity module and then proceeds with dynamic
analysis, executing the file with the monitoring tool indi-
cated in the configuration files.*en, the file is executed for a
certain time which is indicated through the configuration
commands of the framework. Once that timeout has elapsed,
it obtains the result in the form of execution traces, destroys
the virtual machine, and recovers the previous snapshot of
the machine.

Finally, it calculates the similarity with other analyzed
samples and adds it to the corresponding cluster if the
similarity index is greater than the established threshold.*e
sample will be added to the cluster in which the most similar
sample is located. If the threshold is not reached, a new
cluster will be created to include the analyzed file.

Additionally, if the display parameter is active, it will
calculate the similarity between all the samples and generate
a graph connecting all of them.

3.3. StaticAnalysis. *is module is responsible for obtaining
and parsing the Executable Linkable Format (ELF) files. It is
built upon radare2 [20], a reverse engineering suite, and
automates the process of obtaining information contained in
the headers of the ELF files, as well as data regarding their
sections. *e static analysis module collects the following
information.

Information file: characteristics of the headers of the
executable file, such as architecture, whether the binary has

been stripped of the symbols or not, and whether it was
compiled with static or dynamic libraries.

Entropy: this measures the lack of predictability of a
data set. In binary analysis, a high entropy value in-
dicates that the sample is obfuscated or packed.
Cyclomatic complexity: this is a metric used in software
engineering to calculate, in a quantitative way, the
complexity at a logical level of a program or function
[21]. Cyclomatic complexity is calculated for each of the
functions found in the disassembled code.
Opcodes: the sequence of operation codes (opcodes) of
all the functions present in the disassembly of the
program are extracted and stored.
Libraries: the name of the shared libraries used by the
program.
Sections: the sections into which the executable is di-
vided are extracted, also determining their permissions
and entropy.
Functions: the name of the functions imported from
the libraries and used by the program.
Strings: all text strings present in the sample.
Hash: the hash to uniquely identify the executable.

3.4. Deployment Module. *is module is responsible for
starting the virtual machine, shutting it down, or restarting
it. Its input is the architecture for which the malware was
developed, which is searched for in the library in order to
determine whether it can be emulated or not. It uses libvirt
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Figure 2: *e proposed architecture for the analysis and clustering of IoT malware.
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[22] to manage the virtualization platforms and the QEMU
[23] emulator as hardware virtualizer. To emulate an ar-
chitecture, it has to be supported by QEMU, and a guest
domain in an eXtensible Markup Language (XML) must be
defined. *is file contains the configuration of the machine
in libvirt, that is, its storage, CPU architecture, kernel image,
and network properties. Once the machine has been started,
the module returns a handler, which allows you to shut
down or restart the machine as well as to see whichmachines
are currently active. Finally, when a machine is stopped, a
previous snapshot of the machine is recovered in order to
have a malware-free image for the next analysis. In this way,
this module provides the flexibility to add user-defined
virtual machines and uses them in our framework.

3.5. Connectivity and Dynamic Analysis. *is is the module
responsible for establishing connection with the virtual
machine. It allows the upload and download of files through
the Secure Copy Protocol (SCP) and the execution of
commands through the Secure SHell (SSH). It provides the
flexibility to upload any file type and execute commands in
the virtual machine. For example, it can upload an exe-
cutable file or script and use any type of monitoring tool
available in the virtual machine for extracting information
about its behavior, such as strace [24] or systemtap [25].
Finally, download the monitored traces and parses the
collected data. *e parsing function is responsible for
extracting the executed syscalls from the execution traces as
well as their parameters and results. Table 1 shows an ex-
ample of a run sequence and the syscall data.

3.6. Clustering of Samples. *is is in charge of clustering the
binary files based on some of the previously extracted fea-
tures. Given two executable files, it calculates the index of
similarity between them and, if this is greater than a set
threshold (set through the configuration parameters), these
samples are considered to be related and, therefore, will be
part of the same cluster. To calculate the similarity, the
module uses the following approaches:

Dynamic approach. We use the execution traces ob-
tained in the dynamic analysis to generate sequences of
syscall names of size n (set through the configuration
parameters), which are known as n-grams. An example
for a sequence of size n� 4 is shown in Table 1, resulting
in the following set of n-grams: (brk, socket, fcntl64, and
fcntl64), (socket, fcntl64, fcntl64, and setsockopt), and
(fcntl64, fcntl64, setsockopt, and brk). In order to de-
termine the similarity, we use the Jaccard index [26] as
a metric, which, for two sets of n-grams, is calculated as

jaccard s1, s2(  �
s1


∩ s2




s1


∪ s2



, (1)

where the numerator indicates the number of unique
subsets that are present in both sets, and the denom-
inator indicates the total number of unique subsets
between s_1 and s_2.*e result is a value between 0 and
1 which indicates the degree of similarity between two
sets of n-grams.
Static approach. We use two metrics to measure the
similarity between two executable files. *e first is
based on sequences of opcodes of size n extracted from
the disassembled code. *is is calculated in the same
way as in the dynamic approach but using opcodes
instead of syscalls. *e second is based on the cyclo-
matic complexity of each of the functions present in the
disassembled binary. A distance function is used for the
calculation of the similarity between two executable
files. *is function is formalized as follows:

distance s1, s2(  � 

|F|

i�0

min f
s1
i , f

s2
i( 

max f
s1
i , f

s2
i( 

x
1
F

. (2)

For example, let us consider two executables with five
and seven functions, the first with cyclomatic complexities 3,
5, 3, 7, and 4 and the second with complexities, 3, 3, 6, 6, 4, 5,
and 2. *e first sample has two functions with cyclomatic
complexity 3, one with 5, one with 7, and another with 4. In
the second sample, we have two functions with cyclomatic
complexity 3, two with 6, one with 4, one with 5, and another
with 2. We normalize the vectors so that they have the same
number of elements, and the vectors (0, 2, 1, 1, 0, 1) and (1, 2,
1, 1, 2, 0) are obtained. *erefore, the similarity index be-
tween the two vectors is 0.5 and is calculated as follows: ((0/
1 + 2/2 + 1/1 + 1/1 + 0/2 + 0/1)/6).

Hybrid approach. *e hybrid approach allows clus-
tering using the indexes described above. To do this, it
assigns a weight to each of the indexes to calculate the
final similarity index. *e weight of each index can be
configured in the framework configuration files.

3.7. Visualization. Its function is to visually represent the
groupings generated based on the approaches described
above. We denote f as a function that defines whether two
malware samples are similar or not using the following
expression:

Table 1: Format execution trace.

Syscalls Parameters Results
Brk 0x32000 0x32000
Socket AF_INET, SOCK_RAW, IPPROTO_TCP 0
fcntl64 0, F_GETFL 0x2
fcntl64 0, F_SETFL, O_RDWR|O_NONBLOCK 0
Setsockopt 0, SOL_IP, IP_HDRINCL, [1], 4 0
Brk 0x33000 0x33000
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f x � metric s1, s2( s1, s2(  �
1, x≥ z

0, x< z
 ; z x ∈ [0, 1]; s1, s2 ∈ D, (3)

where z being the selected threshold for determining the
similarity between two samples, namely, s1 and s2, both
belonging to the dataset of samples, which is defined as D. It
generates a graph file in dot format [27] in which the nodes
represent the executable files, and an edge between two
nodes represents the fact that between them there is a
similarity greater than the established threshold. *e gen-
eration of the graphs is computationally expensive since it
calculates the similarity for each different pair of samples.

4. Experiments and Results

In this section, the experiments and results obtained using
our malware analysis and clustering framework are
presented.

4.1. Overview. In order to test the platform described in
Section 3, we built different custom virtual machines using
buildroot [28], which automates the process of building an
embedded Linux system. In total, we built machines for the
five most widely used architectures in the current IoT
market, namely, Intel 80386, x86-64, MIPS, ARM, and
PowerPC, generating a file system and a compilation of a
kernel image for each one. We used strace as a monitoring
tool to obtain the execution traces.

To perform the analysis, we used different samples of
Linux-basedmalware which targets IoTdevices.*e samples
are distributed among the five architectures mentioned. *e
malware samples are labeled using AVClass [29], which
categorizes them using a ranking of the labels provided by
different antivirus engines. Table 2 summarizes the number
of pieces of malware used for each architecture and how
many of them are packed and labeled.

Finally, we used our framework to analyze all the samples
and visualize the relationships between them according to the
metrics described in Section 3.4. *e following sections show
the results obtained after analyzing the entire set of samples
described above in terms of static and dynamic points of view.

4.2. Static. In this section we present the results of the analysis
and clustering processes using the static features described in
Section 3. We use a threshold, which can be adjusted by the
user, of 0.8 to determine whether two samples are related for
both metrics. *is value selection is based on an empirical
study which is out of the scope of this paper.

4.2.1. n-grams. We use the n-grams of the operation codes
extracted in the static analysis process.*e size was empirically
determined to be four by using cross validation. Since the
operation codes are architecture dependent, we generated
clusters for each of the architectures independently. Figure 3
shows the graphic for all architectures in the study, namely,
MIPS, PowerPC, x64, x86, and ARM. *e nodes represent
malware samples and the edges indicate whether there is a

similarity greater than 0.8 at the n-gram level. Gray is used to
represent malware samples that do not have a label and the rest
of the colours represent each of the families that have been
labeled (AVClass) in the dataset. As can be seen, there are
different clusters formed mainly of samples from the same
family. In some cases, there are related samples from several
families. *is may be because some of the samples are packed
and, if they use the same packer, they may share the same code
routines to unpack the executable at run time. One of the
disadvantages of using static features is that they can be affected
by code obfuscation.*ismetric can also be affected depending
on whether the executable is compiled with static linking or
with dynamic linking, since those binaries compiled with static
linking could have more unique n-gram sequences because the
functions imported from the libraries are included in the binary
itself. In general terms, the proposed architecture detects well
the families of malware samples for all the architectures.

4.2.2. Cyclomatic Complexity. We use cyclomatic complexity
to cluster the samples. Since the metric is extracted from
disassembled programs and depends on the assumptions of the
compiler and the assembly code that it generates, we cluster the
samples for each of the architectures independently. *is is
because, after looking at several executable files available for
different architectures (e.g., busybox), we observe that the
cyclomatic complexity for the same functions varies according
to the architecture. Although it is not very different between
one and the other, it does change even if they have been
compiled with the same compilation options. Figure 4 shows
the graph for all the architectures used in this paper. As we can
see, the clusters generated belong to the same family, and there
are several small clusters for the same family, such as Gafgyt,
Tsunami, or Mirai for the ARM architecture. *is is due to the
fact that this metric measure similarity at a structural level
between two samples. *erefore, it can also be affected by
obfuscated code. In addition, if a sample is compiled in a static
way and another in a dynamic way, there will not be a
structural similarity between them (those compiled with static
linking have imported library functions within the executable
instead of being resolved at runtime as in binaries compiled
with dynamic linking).

Observing the graphs generated for both metrics (Fig-
ures 3 and 4), it can be seen that, in general, the clusters
created using n-grams are made up of more samples than
those produced using cyclomatic complexity. In either case,
most of the connected samples are related to others from
their own family without producing many false positives.

4.2.3. Dynamic. In this section, we present the results ob-
tained in the clustering process using the dynamic char-
acteristics extracted in Section 3.5 and the metric described
in the same section. As was done in Section 4.2.2, we use a
threshold of 0.8 to match two malware samples. We use
sequences of n-grams of size four for the syscalls executed for
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Figure 3: Continued.

Table 2: *e number of malware samples distributed for each of the architecture.

Arch Samples Packed Labeled
Intel 80386 279 58 211
X86-64 344 168 134
MIPS 318 63 288
ARM 246 24 200
PowerPC 275 12 258

1462 325 1091
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Figure 3: Clusters generated for theMIPS (a), PowerPC (b), x64 (c), x86 (d), and ARM (e) architectures using n-grams and the Jaccard index
to calculate the similarity.
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Figure 4: Continued.
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each of the samples. Since the syscalls are petitions to the
operating system to request a service (e.g., create a socket
and kill a process), and these have the same name in any
Linux-based operating system, using them for clustering
allows us to find similarities between the execution traces of
samples from different architectures.

Figure 5 shows the clusters generated using the syscalls
traces as features. On the left, each sample is colored
depending on the architecture to which it belongs. On the
right, each sample is colored depending on the family to

which they belong, with gray indicating the unlabelled
ones. It can be observed that there are clusters that are
formed of samples from different architectures, such as
MIPS, PowerPC, and Intel 80386. If we observe these same
clusters in the family-categorized image, it can be seen
that the samples belong to a particular malware family. In
addition, it can be noticed that the clusters are made up of
samples from the same family, and that, based on their
behavior, pieces of malware from different architectures
have been categorized into the same cluster.
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Figure 4: Clusters generated for the MIPS (a), PowerPC (b), x64 (c), x86 (d), and ARM (e) architectures using cyclomatic complexity and
the custom function described in Section 3.
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Finally, we observe that there are different clusters for the
same family. Unlike the previous case, in which the samples
may appear different depending on the architecture for which
they were compiled or the different compilation options, now it
may indicate that they belong to different campaigns of the
same family. Malware is constantly evolving, and its creators
add new functionalities or use existing ones from other pieces
of malware that have proven effective and beneficial. Also, it
should be noted that the original source code of some of the
most widely used malware families is available on the Internet,
such as Gafgyt orMirai [18], and there may be variants created
by different authors.

5. Conclusions

In this proposal, we have addressed IoT malware analysis,
focusing on the automatization of the examining process.
Our motivation for this is the huge increase in cyberattacks
that have been carried out in this environment over recent
years, which has led to the impossibility of manually
studying the samples as the number is too immense. After
evaluating the proposals from the community, it has been
observed that there were none that focused on both ana-
lyzing (statically and dynamically) a large number of IoT
malware samples at once and providing compatibility with
several architectures.

Consequently, a multiarchitecture framework for au-
tomatic malware analysis and clustering has been presented.
*e proposal, which is based on a modular approach and
supports samples from five different IoT architectures,
namely, ARM, PowerPC, MIPS, Intel 8086, and x64-86, is
able to extract static and dynamic features from a sample and
compare it with previous analyzed ones, categorizing it into

families depending on the similarity. In addition, besides
saving a considerable amount of time when examining
pieces of malware, it offers flexibility to the user, allowing
them to define their own emulated architectures and to
adapt the threshold used to determine whether a sample is
categorized into a family or not.

*e proposal has been evaluated through the exami-
nation of nearly 1,500 malware samples from the five ar-
chitectures that are supported by the framework, offering
promising results and proving its effectiveness when clus-
tering malware samples. Especially relevant is the outcome
of the dynamic analysis, in which the proposal has been able
to cluster samples frommultiple malware campaigns, even if
they were designed for different architectures. In addition, it
has been detected that, when clustering using the static
features, samples may appear different depending on the
architecture for which they were compiled or the different
compilation options. Other factors, such as code obfusca-
tion, also hinder the task, although the results generated by
the static analysis are also satisfactory.

Given the good results offered by the framework when
tested and knowing the importance of improving the
analysis of malware samples, there are several lines of re-
search that could be followed to complement this proposal.
Some such projects could be to

Study the network communications made by the
malware samples when they are executed and use them
as a feature to cluster them
Expand the visualization features, offering the user an
interactive representation of the results, allowing them
to directly browse through the different samples or
filter them by selecting certain characteristics.
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Figure 5: Clusters generated for all architectures using the execution traces obtained in the dynamic analysis. *e n-gram size used for the
syscalls sequence is four. *e edges connect those samples with a similarity index greater than 0.8.

Security and Communication Networks 11

78



Add other IoT architectures so that samples designed
for them could also be examined.
Employ other metrics to determine sample similarity,
and even to use advanced machine learning techniques
to add a layer of intelligence to the framework.
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a b s t r a c t

Malware targeting interconnected infrastructures has surged in recent years. A major factor driving this
phenomenon is the proliferation of large networks of poorly secured IoT devices. This is exacerbated by
the commoditization of the malware development industry, in which tools can be readily obtained in
specialized hacking forums or underground markets. However, despite the great interest in targeting
this infrastructure, there is little understanding of what the main features of this type of malware
are, or the motives of the criminals behind it, apart from the classic denial of service attacks. This
is vital to modern malware forensics, where analyses are required to measure the trustworthiness of
files collected at large during an investigation, but also to confront challenges posed by tech-savvy
criminals (e.g., Trojan Horse Defense).

In this paper, we present a comprehensive characterization of Linux-based malware. Our study is
tailored to IoT malware and it leverages automated techniques using both static and dynamic analysis
to classify malware into related threats. By looking at the most representative dataset of Linux-based
malware collected by the community to date, we are able to show that our system can accurately
characterize known threats. As a key novelty, we use our system to investigate a number of threats
unknown to the community. We do this in two steps. First, we identify known patterns within an
unlabeled dataset using a classifier trained with the labeled dataset. Second, we combine our features
with a custom distance function to discover new threats by clustering together similar samples. We
further study each of the unknown clusters by using state-of-the-art reverse engineering and forensic
techniques and our expertise as malware analysts. We provide an in-depth analysis of what the most
recent unknown trends are through a number of case studies. Among other findings, we observe that: i)
crypto-mining malware is permeating the IoT infrastructure, ii) the level of sophistication is increasing,
and iii) there is a rapid proliferation of new variants with minimal investment in infrastructure.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The security community has been fighting against malicious
software (malware) for over three decades. Prior to the pro-
liferation of smartphones, malware developers mainly targeted
Windows due to its market share. More recently, the focus of mal-
ware authors has slowly but steadily shifted towards Linux-based
operating systems, the main factor being its growing popularity
and the huge number of computing devices that are part of the
Internet of Things (IoT).

The IoT is globally expanding (it is expected there will be
50 billion devices by 2020 [1]), providing diverse benefits in
nearly every aspect of our lives, such as industry, transportation,
smart-cities, health-care, entertainment and our daily life. One of

∗ Corresponding author.
E-mail addresses: javier.carrillo@uclm.es (J. Carrillo-Mondéjar),

joseluis.martinez@uclm.es (J.L. Martínez), guillermo.suarez-tangil@kcl.ac.uk
(G. Suarez-Tangil).

the main characteristics of an IoT infrastructure is the ability to
capture data, and this collected information can be the objective
of attackers. Also, the huge number of devices with very limited
characteristics in terms of available memory, bandwidth, power
consumption, vulnerable software, etc. make it possible for a
simple attack to achieve many objectives, for example to create
a botnet network.

Embedded devices rely on a variety of different architectures.
While PCs run predominantly on x86-flavored architectures, the
IoT framework normally runs on open hardware architectures
such as Advanced RISC Machine (ARM), PowerPC (PPC), and Mi-
croprocessor without Interlocked Pipeline Stages (MIPS), among
others. From an attacker’s point of view, IoT devices are quite
attractive compared with PCs or laptops as they are online at
all times and have no AntiVirus (AV) or Intrusion Detection Sys-
tems (IDS). These devices are created with innovative features
to attract users, but often lack security and privacy measures.
This makes many IoT devices vulnerable to critical security issues,
ranging from the use of default passwords or insecure default

https://doi.org/10.1016/j.future.2020.04.031
0167-739X/© 2020 Elsevier B.V. All rights reserved.
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settings to outdated software with known security issues [2]. All
these weaknesses give attackers powerful attack vectors.

The trend for Linux-based malware that is especially designed
for the IoT is relatively new compared with classical malware, and
therefore the number of known malware families is still small.
The first malware family especially designed for IoT devices is the
Mirai botnet. This malware family was mostly aimed at perform-
ing Distributed Denial of Service (DDoS) attacks. The source-code
was released in 2016 but this malware was first seen at the end
of 2014. Since the release of Mirai’s source-code, new variants of
malware have proliferated. While some of these variants exhibit
similar behaviors to that of Mirai,1 others present novel fea-
tures and display completely different behaviors. Despite recent
commercial reports having shown that IoT malware has been
constantly growing [3], there is very little understanding of what
the main characteristic features of recent malware samples are.

Due to the coexistence of multiple architectures in the IoT,
malware analysis is an important part of the forensic process,2
allowing the forensic analyst to know how a sample behaves and
what parts of the system it modifies. Therefore, machine learning
and pattern recognition can be seen as a new paradigm for digital
forensics [4,5]. This is particularly relevant in malware forensics,
where human analysts are confronted with a challenging adver-
sarial task [6]. Advances in digital forensics require automated
processes to aid malware analysts in the process of understand-
ing: (i) whether a binary seen in an investigation is malware or
not (malware detection), and (ii) which type of malware it is
and what its expected behavior (malware characterization) might
be. Furthermore, machine learning can be used to measure the
trustworthiness of files collected during an investigation, but also
to tackle challenges posed by tech-savvy criminals, such as the
Trojan Horse Defense [7].
Contributions. This paper presents a comprehensive study of
malware that is especially designed for Linux-based systems and
tailored to IoT embedded devices. Our main contributions are as
follows. (i) We build an automated system to study the problem
of malware in IoT systems. Our system uses both static and
dynamic analysis, together with a similarity function designed to
relate unknown samples to known threats. (ii) We use our system
to assist a malware expert (one of the co-authors of this paper) in
the process of vetting recent unknown IoT malware samples and
characterizing their behavior. We then present an in-depth anal-
ysis of the most recent unknown trends through a number of case
studies. (iii) We dissociate the problem of understanding Linux-
based IoT malware from the IoT architecture used for malware in
the wild. We show the influence that the architecture has on the
spread of malware. Finally, we have released the characterization
produced for each of the clusters.3
Findings. By systematizing the analysis of the most representa-
tive dataset of Linux-based malware collected by the community
to date [2] and dissecting samples in the most relevant clusters,
we have made the following findings:

1. We show that malware designed for architectures such as
x86_64 is quite different to that designed to attack dedi-
cated IoT architectures. Moreover, we also show that ap-
plying Machine Learning (ML) to understand large datasets
of samples is challenging, especially when there is ‘‘noise’’
in the dataset. Due to the fact that malware especially

1 In fact, these variants are adaptations of Mirai source code.
2 Locate, identify, collect and acquire data which may be relevant to an

investigation.
3 Characterization of the clusters can be downloaded from here:

https://bitbucket.org/Dankitan/characterizing-linux-based-malware-findings-
and-recent-trends/src/master/.

designed for Linux-based systems is still simpler, the tech-
niques based on static analysis work well, mainly because
the disassembly code of malware is not obfuscated. How-
ever, dynamic analysis generally fails for two reasons: (i)
many samples cannot be executed on custom emulated IoT
devices, as they do not provide the correct environment
for which the malware has been designed; and (ii) the
Command and Control (C&C) server of the sample changes
quickly over time, rendering the sample inoperative.

2. The level of sophistication of Linux-based malware varies
significantly. It ranges from malware which uses classical
but effective techniques such as brute force attacks, to
malware which exploits some vulnerability to spread to
other victims. Here, we show that crypto-mining malware
is currently targeting IoT platforms. Finally, malware de-
signed for the creation of bots to carry out denial of service
attacks continues to appear.

3. Linux-based malware is publicly available on the Inter-
net, causing the rapid proliferation of new variants which
base their main techniques on artifacts that are publicly
available on the Internet (e.g., on GitHub).

The rest of the paper is organized as follows. Section 2 intro-
duces the threat overview related to this work. In Section 3.1
the methodology for understanding IoT malware is addressed.
Section 4 presents the results of the classifiers when applied to
labeled samples and the visualization of data. The results of the
classifier tests with unlabeled samples are shown in Section 5.
Section 6 shows the analysis of different groups of unlabeled sam-
ples related to each other. Section 7 contains a discussion about
IoT malware, taking as its starting point the analysis presented in
this paper. The state of the art in malware especially designed for
IoT platforms is described in Section 8. Lastly, our conclusions are
presented in Section 9.

2. Threat overview

The IoT is a quickly developing entity made up of embedded
and multi-platform devices. The majority of IoT malware focuses
on devices with default login credentials, and these devices are
being targeted by newly discovered Linux malware. In the last
few years, malware in the IoT has gained more attention due to
the damage caused by large-scale attacks such as the one carried
out by the Mirai botnet. The increase in IoT devices together
with the lack of updates in the face of the emergence of new
vulnerabilities has led to the proliferation of malware targeting
these platforms. In addition, the publication or leaking of the
source code of some families such as Mirai or Bashlite causes new
variants to appear or the creation of new families using part of
their functionality or method to spread and infect new devices.

Unlike conventional malware that is aimed at a platform
and/or specific architecture, IoT malware is available for different
architectures such as MIPS, ARM or PowerPC, among others. Due
to the wide range of Linux-based IoT devices, the creation of
malware capable of attacking and infecting many of them has
become one of the priorities of cybercriminals.

Currently, the methods used to spread through the network
are not very sophisticated. Primarily, they rely on the use of brute
force attacks using default credentials or known vulnerabilities
whose exploits are in most cases published on the Internet. In
this way, they take advantage of the lack of updates and the use
of default device settings by users.

Initially, IoT malware focused on the creation of bots to be
marketed for the carrying out of denial of service attacks. Nowa-
days, the trend is changing and new samples are appearing for
other purposes such as mining, which tries to take advantage
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Fig. 1. Overview of our system.

of existing resources in the form of infected devices to mine
cryptocurrencies.

Due to the time required to perform a manual malware anal-
ysis and the large number of attacks that appear every day, the
security community is focusing its efforts on fighting a threat
that is constantly growing. Therefore, it is necessary to build
automated systems that, in addition to detecting new samples,
allow the extraction of knowledge about the malware as well as
its classification.

3. Methodology

In this section we present our methodology. We first provide
an overview of the system and then describe each step in our
pipeline.

3.1. Overview

Fig. 1 shows an overview of the main building blocks of our
pipeline, which consists of three phases. First, we have the feature
extraction and the Modeling phase. The idea of this phase is to
perform an exploratory analysis to guide the feature engineering
process. Once the most relevant features in the IoT realm are
selected, we build a supervised ML classifier capable of charac-
terizing different known threats. Second, there is the Discovery
phase. In this phase, we use the classifier trained in the previous
phase and a metric based on sequences of opcodes from the disas-
sembling of the malware to relate unknown samples to samples
of known threats. Finally, we have the Vetting phase, in which
we unveil novel threats that are unknown to the community.
Specifically, we combine the features engineered in the first phase
and the metric computed in the second phase with a custom
distance function. This distance function is used to perform an
unsupervised clustering task on unknown threats.

3.2. Modeling

In this section, we present the details of the Modeling phase.
This phase is responsible for the collection and cleaning of the
data as well as the selection of the characteristics that will be
used for the learning of ML algorithms. The results of this phase
will be presented in Section 4.

Data acquisition and cleaning

This research is based on a sizable dataset of Linux-based
malware samples. Linux is the main operating system for the IoT
infrastructure. For each malware sample, the dataset contains: a

Table 1
Samples distributed by architectures.
Architecture Labeled Not labeled

ARM 32-bit 493 62
ARM 64-bit 31 16
AMD x86–64 1765 1253
Intel 80386 607 113
MIPS I 1960 160
Motorola 68000 1169 47
SPARC 1144 26
SPARC Version 9 0 1
PowerPC 1509 60
PowerPC 64-bit 1 0
Hitachi SH 127 3
EM_ARC_A5 1 0

8807 1741

binary, features extracted from an automatic analysis and, in the
majority of cases, a label characterizing the type of malware using
AVClass [8] for readily available threat intelligence. Thus, the
dataset consists of a set of different malware samples distributed
among different architectures with Linux as the target operating
system. The dataset used in this paper has recently been col-
lected by the authors in [2] and the threat intelligence has been
obtained from VirusTotal [9]. As mentioned above, AVClass has
been used for labeling the samples. It is a tool which unifies
sparse labels given by different AVs to each malware sample
by assigning them to a malware family. Typically, AVClass relies
on VirusTotal reports to label each sample on the basis of the
labels provided by the AV. Basically, AVClass receives the labels
from the AV engines and, once the duplicated labels have been
removed, a tokenization and filtering process is applied. Finally,
it applies an alias detection process and a ranking, using the most
frequent labels as the family name for the family of a sample.
One of the main limitations of AVClass is that it cannot label
samples when there is no consensus among a minimum number
of AV engines. Therefore, the final decision of labeling a malware
sample depends on the quality of the AV labeling process. This
process is an error-prone task, as pointed out previously [10] and
as discussed below in Sections 4 and 6.3.

After obtaining the data and the labels, we clean the dataset by
removing those samples that cannot be labeled by AVClass, either
because they are not detected by more than two AV engines or
because they are detected by the AV heuristics and, therefore,
their labels are generic. Table 1 shows the number of samples
distributed among the different architectures and how many of
them are labeled.

Feature analysis

The first approach to dealing with the problem of understand-
ing malware behavior, or even family malware classification, in
the IoT is to apply Machine Learning techniques to as much
information extracted from the dataset as possible. Although the
use of ML to classify malware has been widely studied for other
operating systems such as Windows or Android, there are not
so many studies focused on different operating systems for the
IoT such as Linux-based ones. One of the problems that we face
when building a generalized model is the diversity of existing
architectures, as Linux-based operating systems and compilers
make the same sample look different even when it belongs to
the same malware family. At this point, the first step was to try
to determine the most significant features from among all the
information available in the dataset. For this, we use the following
feature extraction techniques.
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• Static features: analysis focusing on intrinsic characteristics
in the executable itself without actually executing it. Within
this group are characteristics of the binary file such as head-
ers, strings that appear in the executable, machine code,
imports of the library functions, entropy, etc.

• Dynamic features: analysis focusing on features obtained
through monitoring the execution of an executable. For ex-
ample, system calls made to interact with the system, infor-
mation about opened files, memory, etc, that is, information
about the behavior of the executable at run time.

• Hybrid features: the combination of the two previous meth-
ods, so that the characteristics used are extracted in a static
and dynamic way.

To design our model, we decided to follow the three ap-
proaches. Although using only static features can cause a bad
generalization of the model, since some of these characteristics
could change between different architectures (especially in the
IoT scenario), we believe that there are some static characteristics
that should remain unchanged between different platforms, as for
example strings. In terms of dynamic features, the behavior of
the same sample must be similar regardless of the architecture
on which it is executed. For this reason, we started with a single
static model, then we included a dynamic model in the analysis
and, finally, a model that combines both characteristics has been
developed.

Static features selected
Machine learning models require a diverse set of features to

learn. One of the disadvantages of static features is that they are
susceptible to obfuscation, although in the IoT scenario it is not
very common, with around only 3% of the samples inside the
dataset being packed, most of them using Ultimate Packer for
Executable (UPX) or some variant of it. This is mainly because,
nowadays, malware for Linux-based systems does not imple-
ment techniques to avoid AV or IDS; with resource-constrainted
devices, such as those used in the IoT infrastructure, there is
not enough memory or battery power to deploy them. Thus,
the proposed algorithm firstly looks for static features that do
not change too much between different platforms. We do not
consider features such as assembly code to be a good option
since the same sample can be compiled for different architectures,
and the instructions set for each one is different. This is an
important issue because, as was shown in Table 1, the number of
different architectures for Linux-based operating systems is large.
Although there are several static features that could work well,
such as text strings, we have focused on data based on Cyclomatic
Complexity. Cyclomatic complexity [11] is a metric that is used
in software engineering to calculate, in a quantitative way, the
complexity at the logical level of a program or function. In our
case, we have used the Cyclomatic Complexity of all program
functions, as well as the maximum and average complexity. For
example, say a malware sample has five functions with Cyclo-
matic Complexities 5, 7, 5, 3 and 5 respectively. We then account
for 3 functions with complexity 5, 1 with 7 and 1 with 3. The
maximum would be 7 and the average 5. We also use the number
of basic blocks and its average. A basic block consists of a set of
instructions that begins with a single instruction and ends with
an instruction that redirects the execution flow to another basic
block or ends the program. These characteristics allow us to know
whether two programs are structurally similar at the machine
code level. Since there are very few packed samples and we wish
to check whether the use of static features works well for IoT
malware, we have discarded packed samples from the dataset.

Table 2
Number of final samples.
Architecture Labeled Not labeled

ARM 32-bit 445 47
MIPS I 1705 63
AMD x86–64 1600 787
Intel 80386 523 71
PowerPC 1492 49

TOTAL 5765 1017

Dynamic features selected
Regarding characteristics based on behavior which are col-

lected at run time, we have chosen the following features:

• Unique syscalls.
• Ioctl.
• Rename process.
• Number of processes created.
• Check user and group identifier.

These features have mainly been encoded in a binary way (one
or zero), indicating whether they are used (one) or not (zero). For
example, if a process uses the ioctl SIOCGIFHWADDR command
to obtain the MAC address of an interface, we use the number
one to indicate that sample uses that feature. Otherwise, it will
contain a zero. The number of processes created is encoded as a
numerical feature.

While dynamic features are extremely useful to characterize
the behavior of a program, we note that it is not always possible
to obtain features for all samples. This is because performing
dynamic analysis for certain IoT architectures is a challenging
task [2]. This is due to the problem of managing different virtual
machines to emulate a wide range of architectures. In addition,
analyzing malware is a time sensitive task as, at the time of
execution, C&C infrastructures or other external resources needed
for the execution of the malware might be unavailable.

Moreover, families that do not contain at least ten samples
have been removed from the dataset because we consider that
less than ten samples is not enough for the model to generalize
correctly. Table 2 shows the final sample set once the families
are extracted. Likewise, packed samples and samples that do not
contain dynamic feature are also filtered out from our analysis.

3.3. Discovery phase

This phase is aimed at characterizing the dataset of samples
that are not labeled. For this, we will use the classifier built in the
previous phase. Note that it is not possible to assess quantitatively
whether the predictions made by the classifier are correct or
not (there are no labels). Thus, in this phase we measure the
similarity between predicted samples and labeled samples as a
method to evaluate our accuracy (Section 5). Intuitively, samples
that are associated with a family might be structurally similar to
the samples of that family. This holds true for samples that are not
obfuscated and thus we see this evaluation criteria as an under-
approximation. It is also important to note that the performance
of the classifier is formally evaluated in the previous phase using
k-fold cross-validation, as shown in Section 4.1. However, this
phase aims at discovering unknown threats and the similarity
metric should be seen as a means of providing confidence in the
decisions of the classifier.

The similarity metric is calculated as follows. First, we dis-
assemble each executable. Then, we compute the sequences of
operation codes (opcodes) of size n, namely n-grams. Listing 1
shows a small example with five assembly code instructions. For
a sequence of n = 3, the resulting set of three-grams is: (push,
mov, push), (mov, push, push) and (push, push, sub).
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1 push rbp
2 mov rbp, rsp
3 push r12
4 push rbx
5 sub rsp, 10h

Listing 1: Extracting n-grams

Therefore, given two sets of n-grams, the similarity between
them can be calculated using the Jaccard index [12] as:

jacc(s1, s2) =
|s1| ∩ |s2|
|s1| ∪ |s2|

, (1)

where the numerator indicates the number of subsets (denoted
by |si| for i ∈ {1, 2}) that are found in both samples, s1 and s2,
and the denominator indicates the total number of unique subsets
between s1 and s2. The result is a value between 0 and 1 that
indicates the degree of similarity between two sets. As mentioned
above, the similarity based on n-grams works well as long as the
samples are not obfuscated or packed. The results for the number
of unlabeled samples that match at the n-gram level with labeled
samples, and the number of hits of the classifier, are presented in
Section 5.2.

3.4. Vetting

While the previous phase aims at associating unlabeled sam-
ples with known threats, this phase aims at characterizing novel
threats from our dataset of non-labeled malware. For this, we
cluster samples in the non-labeled set using unsupervised learn-
ing. This clustering process is driven by a custom distance func-
tion that relies on both the features extracted in phase one (Sec-
tion 3.2) and the similarity index from phase two (Section 3.3).
This function is formalized as follows:

distance(s1, s2) =

∑
|F |

i=0
min(f

s1
i ,f

s2
i )

max(f
s1
i ,f

s2
i )

×
1
|F |

+ jacc(s1, s2)

2
(2)

where f s1i is the feature i of sample s1 (likewise for s2) and |F | is
the total number of features. In other words, we normalize the
feature vectors with respect to all other samples in our dataset
samples. Given two vectors, the similarity index is calculated
by means of the average distance of each pair of features. For
example, given a sample with 100 functions and the use of the
read, write and execve syscalls, and another sample with 80 func-
tions and the use of the read, write and open syscalls, we obtain
the following two vectors: (100, 1, 1, 0, 1) and (80, 1, 1, 1, 0). The
resulting similarity index is 0.56, , which is computed as follows:
((0.8/1+1+1+0+0)/5). This means that the similarity between
the two sets of features is 56%. Then, we compute the average
between the index of similarity obtained at the n-gram level
(calculated in the previous section) and at the level of features
(Section 3.2).

To cluster samples together, we use the similarity function
in Eq. (2). We consider that two samples are in the same cluster
if they have an index higher than 0.8, that is, if they have a ratio
greater than 80%. We chose this empirically after testing differ-
ent thresholds. A higher threshold does not produce a notable
increase in performance. However, a lower threshold produces
false positives. We also use this distance function to represent
the relationships between the malware samples in the form of
a graph. For the purpose of our study, we consider that clusters
of unlabeled samples alone constitute a group of samples that
belong to a threat or family that it is currently unknown. Where
applicable, we also connect clusters of unlabeled samples to
clusters of known threats using the threshold described above.
This enables us to vet the discovery phase discussed above (see
Section 3.3). The most interesting clusters are further discussed
in Section 6.

Table 3
Results for the different types of algorithms and characteristics used in our
model.
Feature type Algorithm Features Precision Recall FScore

Static

K Neighbors 470 80,99 78,22 77,27
220 80,67 78,42 77,38

SVM kernel=’rbf’ 470 73,46 80,91 72,53
220 74,23 82,29 73,29

SVM kernel=’Linear’ 470 62,10 56,33 57,09
220 58,10 54,64 53,71

Decision tree 470 82,18 83,44 79,61
220 80,58 83,18 78,85

Random forest 470 83,01 83,67 81,02
220 84,23 84,41 81,70

Dynamic

K neighbors 211 86.17 82.08 82.46
134.67 84.79 81.42 81.99

SVM kernel=’rbf’ 211 83.29 85.58 82.38
134.67 82.28 86.50 82.13

SVM kernel=’Linear’ 211 84.49 82.38 81.70
134.67 82.09 81.15 80.32

Decision tree 211 80.06 86.78 81.26
134.67 80.32 88.71 81.93

Random forest 211 83.28 87.60 84.08
134.67 82.72 88.96 83.91

Hybrid

K neighbors 681 86.60 83.40 83.31
269.5 86.31 84.43 84.04

SVM kernel=’rbf’ 681 88.80 84.17 84.47
269.5 88.26 86.07 85.35

SVM kernel=’Linear’ 681 87.92 85.39 85.37
269.5 83.14 81.47 81.02

Decision tree 681 81.36 84.80 80.30
269.5 82.31 83.53 80.57

Random forest 681 88.08 87.17 86.55
269.5 87.70 86.61 86.07

4. Modeling

This section evaluates the effectiveness of the modeling phase
presented in Section 3.2.

4.1. Machine learning

First, static features have been used to train the model. Then,
dynamic characteristics have also been used and, finally, all the
features have been included. Basically, we have carried out these
experiments with different types of characteristics to understand
how much each characteristic contributes to machine learning
algorithms. This is because the automatic extraction of static
features is far more efficient than automatic dynamic analysis,
which in the best case can take several minutes of execution
in a sandbox environment, causing the extraction of features to
consume a lot of time.

Then, these same tests have been performed by applying fea-
ture selection to eliminate those features that contribute least
to machine learning algorithms. Different machine learning al-
gorithms have been used, such as Random Forest [13,14], K-
nearest [14,15], Decision Tree [14,16] and Support Vector Ma-
chines (SVM) [14,17] using the Radial Basis Function (RBF) and
Linear kernels [14]. The implementation of these algorithms was
provided by the sklearn library [18], which is written in python.

As a dataset, 5765 samples containing more than 20 different
families have been used. K-fold [19] has been performed as a
cross-validation strategy with the dataset being divided into 6
stratified folds, so that there is the same percentage of samples
from each family in each split. Feature selection has been per-
formed for each training split in the cross validation loop, since
the test is considered unseen.
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Fig. 2. Importance of the 30 features that contribute most value to the Random
Forest algorithm.

As evaluation metrics, precision, recall and Fscore [20] have
been used. These metrics have been applied to each class in-
dependently, with the final result being the average of all the
classes, that is, each class has the same weight in the results
regardless of the number of samples. Table 3 shows the results
obtained with each of the classifiers. The best results obtained by
the ML algorithms are in bold. It can be observed that in no case is
there much difference in the use of all the features from the use of
a subset of them, and in some cases it even improves the results
when applying feature selection. In general terms, Random Forest
offers the most balanced results in terms of precision, recall and
FScore. In addition, it can be observed that the use of only static
features does not work very well with SVM.

As mentioned above, the selection of variables produces sim-
ilar results in most cases to those when working with the com-
plete set of characteristics. Fig. 2 shows the 30 most representa-
tive variables of the random forest (dynamic + static) algorithm,
that is, those whose influence on the model is greatest. We
can observe that the two characteristics that most influence this
algorithm are the average cyclomatic complexity and the number
of basic blocks. Among the other static characteristics that appear,
it is important to highlight certain cyclomatic complexities of
functions that have a very high value, such as cc_444, cc_340
and cc_289. Among the features based on its behavior are those
related to syscall sockets, ioctl, perf_event_open, chroot, etc.

Table 3 shows the results obtained for the different algorithms
and features used. We can observe that most of the models yield
a performance of around 85% on average. As we discussed above,
the metrics used have been applied to each class independently.
The overall results are summarized using the average, which does
not take into account the size of the class. Here, we observe
misclassifications of families with a small number of samples
(e.g., 10 samples), which brings the average down despite having
large classes (e.g., 2K samples) correctly classified. The confusion
matrix in Fig. 3 details the percentage of correct and incorrect la-
bels predicted in each class and provides a more accurate picture
of the classification performance. In particular, as a representative
example, Fig. 3 shows the confusion matrix generated for the
Random Forest hybrid model. If we look this matrix, we can see
that 25% of the time the chinaz family is treated as znaich, and
33% of znaich is treated as chinaz. Actually, this makes sense if
we look at it: the name of the family is very similar, chi-na-z
and z-na-ich, and therefore it is very likely that it is the same
family which is labeled differently or that both families have

Fig. 3. Confusion Matrix of the Random Forest Algorithm using the hybrid
approach.

been created by the same authors. The same case occurs with
Mrblack and Dnsamp: several anti-viruses label these samples
as Mrblack and others as Dnsamp, so both are the same family.
In the case of Ircbot and Lightaidra, some samples could have
been incorrectly labeled. After reviewing the VirusTotal reports
of some samples labeled as Ircbot and Lightaidra, we observed
that some anti-viruses mark some of them as Gafgyt or Mirai.
This makes us think that the prediction could be correct and some
of these samples are these kinds of malware, or that as many
of the malware samples in the IoT have had their source code
leaked, there are similar code pieces in samples from different
families, causing the antivirus to label them incorrectly due to the
fact that they can match with static signatures or on the basis of
their heuristics. We should bear in mind that AVClass labels are
determined by the consensus of the different labels that the AV
gives to a sample. Therefore, the label selected as AVClass may be
incorrect.

4.2. Data visualization

The objective of this section is to visualize the set of samples
using a three-dimensional plane so that we can observe in a more
visual way whether the chosen characteristics allow the gener-
alization of the families that are part of the dataset. Since the
number of features is much higher, we have used T-Distributed
Stochastic Neighbor Embedding (T-SNE) [21] to reduce the data
dimensionality and visualize them correctly. In order to improve
the visualization of the samples and make this clearer, we will
only show the families with the largest number of samples on
the chart.

Fig. 4 shows the most populated families of the dataset. We
plot the families and their labels together with the unlabeled
samples. Note that it includes samples compiled for different
architectures. We see that our set of features are representative
regardless of the architecture. In general, samples of a family
are close in the plane to other samples of the same family. For
example, the families with the largest number of samples. We
observe that samples from Gafyg, Mirai and Tsunami are grouped
together. We observe also that there are sub-clusters which are
attributed to either set of samples from the same architecture
or to variants within the family. Intuitively, when we look at
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Fig. 4. Visualization of the labeled malware samples with the greatest presence in the dataset and unlabeled samples.

families that are less populated such as Hajime or Dofloo, we
observe fewer sub-clusters. On the other hand, when we look at
the representation of the unknown families, we see that they are
very close to each other and distributed over several clusters. This
tells us that unlabeled samples can be attributed to a handful of
new, but prolific, families.

5. Discovery phase

In this section, we test the classifier with the unknown set of
samples.

5.1. Description

As we mentioned in Section 3.3, this set of samples is not
labeled so we do not have a quantitative way to know whether
the prediction is correct or not. Therefore, we calculate the level
of similarity between unlabeled and labeled samples and we
check how many unlabeled samples are similar at the n-gram
level with labeled samples and whether the label predicted by
the classifier is correct in those samples that display similarity.

The steps followed to calculate the similarity are the follow-
ing:

1. Extract the sequences of opcodes from each of the malware
samples and generate the n-grams.

2. Compare each sample of unlabeled malware with the other
samples of that same architecture since each architecture
has a different set of instructions.

3. Check how many unlabeled samples are related to labeled
samples.

The n-gram tests have been carried out evaluating different
values of n (6, 8, 10, 12 and 14). In the case of a small size of
n-gram, a high similarity level might be obtained due to the fact
of having sets with small opcode sequences in different parts of
the program functions, and the fact that the Jaccard Index only
takes into account unique sets of n-grams. Increasing the n-gram
size allows us to match similar samples in a more reliable way be-
cause it is more complicated to match sequences of, for example,

14 opcodes without there being any relation. The threshold used
to consider that they are the same sample is 0.8, that is, that the
degree of similarity between two samples is greater than 80%. As
with the size of the n-gram, the higher the threshold, the greater
the probability that two samples that exceed that threshold will
be from the same family, that is, the probability of false positives
will be lower. Based on the similarity at the n-gram level, there
are between 126 and 134 (around 12%–13%) unlabeled samples
that are related to samples whose label is available.

5.2. Evaluation

Once the similarities between unlabeled samples and others
have been obtained, we can test the classifier with those samples
whose label we do not know and verify, in a quantitative way,
how many labels it correctly predicted. The procedure that has
been carried out is the following:

1. We pass the new samples through the different classifiers
using both static and dynamic features and feature selec-
tion, obtaining the predicted label for each of the samples
according to the classifiers.

2. For each predicted sample we search with the samples with
similarity higher than 80% calculated previously. We check
those samples that have a label if it matches the label that
the classifier predicts. A threshold of 80% has been chosen
so that the samples that exceed it have a high probability
of being from the same family.

Table 4 shows the results obtained for each algorithm and
size of n-gram used. The results are classified by architecture,
indicating howmany samples have been predicted from the totals
for that architecture. Also, the hits column is shown as the total
number of hits with respect to the total number of unlabeled
samples that have a relationship with samples with labels at
that n-gram size. Finally, the last column shows the calculated
percentage of success.

If we look at the table in more detail, we can see that with
the ARM, MIPS and PowerPC architectures, almost all the algo-
rithms come close to correctly predicting almost all the samples.
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Table 4
Predictions of the classifiers with the unlabeled samples that maintain similarities at the n-gram level with labeled samples.
Algorithm ngram ARM 32-bit MIPS I AMD x86-64 Intel 80386 PowerPC Hits Percent

K neighbors

6 35/38 18/19 38/60 3/4 11/13 105/134 78,36%
8 35/37 18/18 38/59 3/4 11/13 105/131 80,15%
10 35/37 18/18 36/57 3/3 11/13 103/128 80,47%
12 35/37 18/18 36/57 3/3 10/12 102/127 80,31%
14 35/37 18/18 36/56 3/3 10/12 102/126 80,95%

SVM kernel=rbf

6 38/38 19/19 40/60 3/4 12/13 112/134 83,58%
8 37/37 18/18 40/59 3/4 12/13 110/131 83,97%
10 37/37 18/18 38/57 3/3 12/13 108/128 84,38%
12 37/37 18/18 38/57 3/3 11/12 107/127 84,25%
14 37/37 18/18 38/56 3/3 11/12 107/126 84,92%

SVM kernel=linear

6 37/38 19/19 39/60 3/4 12/13 110/134 82,09%
8 37/37 18/18 38/59 3/4 12/13 108/131 82,44%
10 37/37 18/18 36/57 3/3 12/13 106/128 82,81%
12 37/37 18/18 36/57 3/3 11/12 105/127 82,68%
14 37/37 18/18 36/56 3/3 11/12 105/126 83,33%

Decision tree

6 37/38 19/19 37/60 3/4 11/13 107/134 79,85%
8 36/37 18/18 37/59 3/4 11/13 105/131 80,15%
10 36/37 18/18 37/57 3/3 11/13 105/128 82,03%
12 36/37 18/18 37/57 3/3 10/12 104/127 81,89%
14 36/37 18/18 36/56 3/3 10/12 103/126 81,75%

Random forest

6 38/38 19/19 41/60 4/4 13/13 115/134 85,82%
8 37/37 18/18 39/59 4/4 13/13 111/131 84,73%
10 37/37 18/18 38/57 3/3 13/13 109/128 85,16%
12 37/37 18/18 38/57 3/3 12/12 108/127 85,04%
14 37/37 18/18 38/56 3/3 12/12 108/126 85,71%

However, for the AMD x86-64 architecture, in most cases it
correctly predicts nearly 66%. This makes sense, since it is the
CPU architecture that is most widely used on desktop computers
and in many cases the malware’s source code has been leaked on
the Internet, so it may have been modified, mixed with different
malware functionalities, etc. This produces new variants of the
malware which are created to improve the sample or to try to
avoid detection by antivirus systems. In addition, as it is the
architecture that is most widely used on personal computers,
even a simple port scanner can be classified as malware and fall
within the dataset.

6. Case study

After grouping similar samples together, we next characterize
their functionality and study the most relevant threats as dis-
cussed in Section 3.4. For the purpose of this case study, we use a
similarity of 80% or higher when building the clusters. We chose
this threshold empirically after manually evaluating the resulting
clusters. We refer the reader to Section 7 for a discussion on the
implications behind our choice.

In this section, we report results that are unknown to the com-
munity (i.e., unlabeled samples). Thus, clusters of samples that
are not associated with an unlabeled sample are not reported. We
then describe a number of Linux-based malware threats targeting
the following architectures: AMD, MIPS, ARM, PowerPC and Intel.
Table 5 summarizes the findings of the unknown samples for each
platform.

6.1. AMD x86-64

AMD x86-64 is the architecture with the largest number of
unknown threats as well as the most targeted platform, as shown
in Table 2. Fig. 5 shows a number of unlabeled clusters of AMD
x86-64 Linux-based malware samples (depicted in gray) and their
relationship with known threats (a different color per threat).
Samples are represented as nodes of the graph and the edges rep-
resent that two samples are similar. The samples that have labels
are represented by different colors and have some relation with
some unlabeled samples. We observe three distinct patterns:

(i) clusters of unlabeled samples alone (clusters #2-#16); (ii)
clusters with unknown samples associated with known threats
(unnumbered clusters); and (iii) unknown samples that are not
similar to any other sample (i.e., singletons). We next present a
number of case studies characterizing primarily the most relevant
clusters of (i), i.e., unknown clusters alone. However, we also
describe cases where a large number of unlabeled samples are
clustered together with a small number of labeled samples. While
the former are relevant to understanding novel threats, the latter
can shed some light on why signatures for ‘‘semi-known’’ are not
successfully detecting all other related threats.

6.1.1. Dropper (clusters #9 and #12)
Our vetting process shows that samples in clusters #9 and #12

in Fig. 5 have a similar behavior, namely they are both droppers.
In both clusters, all samples contain a payload that is encrypted
and stored in the data section of the executable. We also observe
that the decryption routine is similar. In particular, they seem
to be using the RC4 algorithm or a variation of it. While these
two clusters share a similar backbone, they have been grouped in
different clusters mainly because the dynamic features of samples
in cluster #9 differ from those in #12. This indicates that samples
in these two clusters might belong to the same actor (family
and/or botnet), although they participate in different campaigns.

The samples in cluster #12 belong to the largest unlabeled
cluster in our dataset. After deciphering the payload of the sam-
ples in this cluster, we observe an in-memory bash script that
is executed during runtime via the execvp syscall. A dump of
the script is presented in Listing 2. This routine simply checks
whether the target machine has wget or curl to download a file
and prepares for its execution. Also, it informs the server of the
user name of the machine, the IP address and operating system.
At the time of writing, some samples observed in this campaign
are active and the infrastructure still operational. In particular,
the executable dropped by the samples of this campaign fetch
an AMD-compatible version of a crypto-mining tool. This tool
uses CryptoNight Proof-of-Works (PoW) through Stratum, a Pool
mining protocol [22]. Pool mining protocols are used to build a
distributed partnership to verify the different PoWs in a block.
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Table 5
Summary of the results found in the unknown samples for each of the platforms analyzed.
Arch Type Comments

AMD x86-64

Dropper Script Bash encrypted with RC4 and stored in the data section. Once decrypted,
the script downloads an executable related to cryptomining campaigns.

Flooder Malware used to perform flooding and botnets with flooding capabilities or DDos.

Shellcode and Exploits Dirtycow and some type of privilege elevation exploits.

Goscanssh Malware written in Goland that spreads through SSH services vulnerable to brute
force attacks.

Python Embedded Python interpreter. Some python scripts belong to a Drobur malware,
others are benign.

ARM 32 Botnets Known malware such as Mirai and Gagyt.

Exploit Privilege escalation exploits on Android devices.

MIPS I
Botnets Known malware such as Mirai, Gafgyt, Remaiten, TheMoon, Dofloo and Dnsamp.

Hacktool Hacking tools such as aircrack or ones to clean the footprints of a system.

Downloader Mirai malware downloader.

PowerPC Botnets Known malware such as Mirai, Gafgyt, Tsunami and Remaiten. Mainly used to
perform DDos attacks.

Exploit/Shellcode Generic shellcodes and exploits.

Intel 80386
Virus ELF File infector known as Vit.

Backdoor Ganiw/Setag family, which executes the commands received by the
cybercriminals.

Rex Malware family written in Goland with mining, flooder and brute force
capabilities.

Fig. 5. Unknown AMD x86-64 clusters and their relationship with known
threats. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

In this way, the complexity required to check a block is dis-
tributed among the participants. Therefore, the set of samples
in #12 are droppers that are responsible for downloading and ex-
ecuting custom crypto-mining malware. The use of CryptoNight
PoWs indicates that droppers are probably part of a larger botnet
mining ASIC-resistant cryptocurrencies [23]. ASIC-resistant min-
ing prevents the use of dedicated mining hardware. Thus, using

IoT malware to mine can be profitable, especially when mining
through a Pool. Finally, we also observe a few unlabeled samples
that are related to known mining campaigns (c.f., green cluster in
Fig. 5 for a Coinminer campaign).

Listing 2: bash version
#!/ bin / bash
i f [ ! −f " / var /tmp / . " / x ] | | [ ! −f " / var /tmp / . " /xh ] ; then
#echo F i l e not present . I n s t a l l i n g .

i f [ −x / usr / bin /wget ] ; then
wget −−dns−timeout 10 −−user−agent="wget" −−connect−timeout 20

−−read−timeout 30 −q −O $mydir / xx . tgz
−−header "Host :www. btcsavetheworld . org "
"hxxp : / /104 .24 .123 .53/ x l a te s t . tgz " 2> / dev / nul l >> / dev / nul l

e lse
i f [ −x / usr / bin / cur l ] ; then

cur l −f −A " cur l " −−connect−timeout 10 −qs −−max−time 500
−−header ’ Host :www. btcsavetheworld . org ’
"hxxp : / /104 .24 .123 .53/ x l a te s t . tgz "
−o $mydir / xx . tgz >> / dev / nul l 2> / dev / nul l

f i
f i
i f [ −f $mydir / xx . tgz ] ; then

mypwd="$ (pwd) " 2>/dev / nul l >> / dev / nul l
cd $mydir 2>/dev / nul l >> / dev / nul l
tar −zxvf xx . tgz 2>/dev / nul l >> / dev / nul l
rm −r f xx . tgz 2>/dev / nul l >> / dev / nul l
mkdir −p " / var /tmp / . " 2>/dev / nul l >> / dev / nul l
mv −f i n i t " $myfile " 2>/dev / nul l >> / dev / nul l
mv −f xh " $myfile " 2>/dev / nul l >> / dev / nul l
chmod +x " $myfile " "$myxh" 2>/dev / nul l >> / dev / nul l
cd "$mypwd" 2>/dev / nul l >> / dev / nul l
#echo F i l e i s in s t a l l ed

f i
f i

When looking at samples in #9, we observe that the main
differences lie in the dynamic characteristics, presenting different
types of syscalls (e.g., ioctls). This relates to the differences in
the behavior of the dropped file. Understanding in detail the
characterizing features of the executable files dropped by this
campaign is the aim of our future work.

6.1.2. Flooder (#2, #5, #7, #10, #11, #14, and #15)
The next most relevant threat is structured around clusters

#2, #5, #7, #10, #11, #14, and #15 (see Fig. 5), and it relates
to network flooders. We also found a few unlabeled samples
assigned to clusters largely populated with samples of known
flooders such as: Gafgyt,4 Mirai, Tsunami or Flood. These are tools

4 For instance, Gafgyt (depicted in red in Fig. 5) is a known IoT botnet that
has flooding capabilities.
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that are typically used to perform Distributed Denial of Service
(DDoS) attacks. We have vetted most of the samples in these
seven unlabeled clusters. We have observed that all these flooders
can be characterized into the following groups according to the
protocol they rely on: UDP, SSDP, NTP and Netbios. Similarly
to what we observe with the droppers, some of these variants
share a common backbone. However, in this case the fact that
some clusters share a common backbone does not mean that
the clusters are part of different campaigns from the same actor.
Instead, they have proliferated after the source code of some
of these samples became available [24]. During our analysis, we
have been able to track some characterizing features (e.g., strings
that are referenced in the disassembly) of the samples in these
clusters to IoT flooders with source code that it readily available
online. This might explain why this type of threat has proliferated
so quickly over the last few years [25,26].

6.1.3. Shellcode and Exploits (#4, #6, #8, #13, and #16)
We have observed a wide range of clusters with malware that

runs shellcode and executes exploits. The most notable cluster is
#4, which uses an exploit that leverages the so-called dirtycow
vulnerability [27]. This exploit takes advantage of a race con-
dition in the kernel’s memory management system to escalate
privileges. We performed a reverse search between the exploit
found in the samples of cluster #4 and exploit-db [28], a popular
open-source repository for exploits. We found that the samples
analyzed share code with one exploit-db entry.

Likewise, samples in clusters #6, #8 and #13 belong to some
type of privilege elevation exploit. The flow of the logic and the
disassembled samples are very similar, but we did not find any
payload that would allow us to characterize these clusters. There
are similar functions (such as ‘‘kernel_code’’ or ‘‘get_kernel_sym’’)
in all the samples but they are not referenced in the programs
that we have vetted. We have not been able to identify any
corresponding CVE associated with the exploit either. These clus-
ters probably correspond to more sophisticated malware samples
than those observed before.

Finally, cluster #16 is largely related to malware using shell-
code. Contrary to what we observed in the previous clusters,
we find that most of the samples in this cluster are simple
programs. These samples are mainly used to test and debug the
shellcode, where they print the size of the binary and make a
call at the beginning of the code. Typically, this is used to verify
that the code is executed correctly before including an exploit
in it or distributing it in online forums [29] or underground
markets [30,31]. Within these samples, there are several that
invoke system functions using a PowerShell command as an argu-
ment. PowerShell has been heavily abused by criminals to easily
create cross-platform fileless infections — files that are fetched
dynamically and executed directly in memory [32].

6.1.4. GoScanSSH (#3)
Another prominent cluster is #3, which is also shown in Fig. 5.

Samples in this family are related to the GoScanSSH family [33].
This family spreads by searching for servers that are vulnerable
to brute force attacks over SSH. The malware is written in the
Go language and all samples are stripped binaries with layout
obfuscation (i.e., no meaningful function names). However, Go
maintains a section called ‘‘.gopclntab’’ with a manifest of the
functions that might keep the function names if not properly
obfuscated. Despite the binary being stripped, we were able to
map this cluster to the GoScanSSH family by looking at the
‘‘.gopclntab’’ section. An analysis of this section of the binary
reveals that the samples in cluster #3 attempt to perform ssh
activity, that they also generate wordlists (typical of dictionary
attacks), and that the malware maintains a blacklist of domains.

Judging by the VirusTotal first seen attribute associated with the
samples in this cluster and the first known report modeling this
threat [33], we are able to tell that some of these samples have
remained undetected for more than a year.

6.1.5. Python and Drobur (#1)
This refers to cluster #1 in Fig. 5. Although the unknown

samples in this cluster are related to several labeled samples,
there is no consensus among the labeled samples. In particular,
some AV vendors label some of these samples as Python and
some others as Drobur. When we go deeper into analyzing these
samples, we verify that they all have an independent Python
executable. Specifically, the executable has the embedded Python
interpreter, as well as its dependencies, so that it can be executed
without the need of having Python installed on this architecture.
Many IoT platforms are hardened, and it is thus common to find
malware samples that piggyback all the dependencies needed to
set the scene.

Note that what characterizes the behavior of the samples is
the Python script that is executed in each infection, rather than
the piggybacked tools. This means that although the distance
between these samples might be small, the common factor is
generally the use of the same auxiliary tool. The fact that they
all have the Python interpreter might mean that these samples
belong to the same campaign (e.g., same dropper or the same Pay
Per Install botnet). However, it could also be that a given sample
is not related to the others at all.

We have randomly chosen several samples and further ana-
lyzed them manually. After extracting the Python bytecode and
reconstructing the original script, we have verified that some of
the samples do not seem to contain harmful code. Some of them
contain the same code as the sample labeled as Drobur, which
appears to be an IRC bot. However, two of the samples look
benign: one is a dot file editor and the other is a Taxii Service
Connector. This makes us think that some of the samples detected
by some antivirus engines and, therefore, marked as malicious in
VirusTotal, use some kind of signature that flags any executable
with Python embedded.

6.2. MIPS, ARM and PowerPC

We now look at the MIPS, ARM and PowerPC architectures
together. Fig. 6 shows the clusters for the different malware
samples on the MIPS I architecture. Due to space constraints, we
do not visualize clusters for ARM or PowerPC. However, unlabeled
clusters are structured in a similar way on ARM and PowerPC to
that on MIPS. That is, there are almost no singletons and most of
the unlabeled samples are connected to a known family.

For MIPS, as discussed in Section 4, we can observe that
Mrblack and Dnsamp are the same sample that has been labeled
differently by the antivirus engines. For ARM, we can observe
that most of the unlabeled samples are related to Mirai, and on
PowerPC with Gafgyt and to a lesser extent with Mirai.

Finally, we have vetted most of the singletons shown on these
three architectures. In general, these samples seem to belong
to known malware families, corresponding to generic malware
samples. However, we have also seen some samples piggybacking
exploits that we have not seen before, similarly to what we saw
on AMD x86-64 (see Section 6.1.3). We also found some malware
piggybacking known hacking tools such as Aircrack.5 or a tool to
clean fingerprints in a system.6

5 Suite of tools to assess WiFi network security widely used to crack WiFi
passwords (c.f., https://www.aircrack-ng.org/).
6 UNYUNZ Log Remove & Rename Utility.
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Fig. 6. Clusters on the MIPS I architecture.

6.3. Intel 80386

We next focus on the Intel 80386 architecture. Although this
case study resembles the one in the previous section (Section 6.2),
the main difference here lies in the existence of a relatively large
group that contains only unlabeled samples. Fig. 7 shows the
relationship between the unlabeled samples and known threats.
It can be seen that several unlabeled samples are related mainly
to the Setag family and to the Ganiw family. After further analysis,
we observe that the Ganiw family is also named after Setag by
some AVs. These findings enable us to re-label these new samples
and approach the supervised learning phase in Section 4 with a
better ground-truth quality.

When looking at the unknown samples alone, we first focus on
the larger clusters. The largest cluster belongs to a family called
Vit.4096, which is a virus that has been around for over two
decades. This virus replicates itself by adding 4096 bytes after the
header of other ELFs in the system. The first reference to the virus
dates back to 1996 [34]. However, signatures for this malware
only appear in VirusTotal for the first time in 2017. In addition
to this cluster, there are two other small clusters of 4 samples,
each of which also belongs to this family. When reversing all
these samples, we can confirm that they do indeed belong to the
Vit family. We note that there is some small difference in the
number of functions among the samples of different groups. The
samples have a different cyclomatic complexity in some of their
functions. Furthermore, there is a small difference in the overall
number of functions among samples from different clusters. All
the samples have a unique Indicator of Compromise (IoC) — the
string ‘‘Vi324.tmp’’ appears across all the clusters and it is used
as a file name for a temporary file during virus replication.

When looking at other clusters we find: (i) a Bitcoin Wallet
Bot; (ii) the Rex family [35], which is malware with mining
capabilities that propagates by exploiting wordpress, drupal, and
magento vulnerabilities; (iii) flooders; and (v) more brute force
attacks on SSH services as well as on telnet services.

Fig. 7. Clusters on the Intel 80386 architecture.

Finally, when looking at the singletons we observe malware
carrying several exploits and miscellaneous shellcode.

7. Discussion

Our work is based on the most representative dataset of Linux-
based malware collected by the community to date [2]. In this
section, we first discuss the main limitations of our work. Despite
these limitations, our findings provide a fresh understanding of
recent trends in Linux-based malware. In particular, we focus on
characterizing a large number of samples that were unknown to
the community. The set of non-characterized threats constitute
15% of the samples in [2]. The analysis performed in the discovery
phase can help in the modeling of TTPs (Tactics, Techniques and
Procedures), which is key in the attribution of malware. Matching
different malware samples may identify different actors and their
TTPs [36], which is very helpful in supporting incident response
teams [37]. To the best of our knowledge, there is nothing pub-
lished on malware attribution issues in IoT environments. Thus,
we finally report key findings derived from vetting the most
prevalent threats in the non-characterized set.

7.1. Threats to validity

The proliferation of IoT malware is currently bound by the
architecture of the different types of IoT devices. Based on this,
we first describe how this affects the scope of our analysis and
we then discuss the limitations of our system.

Scope. IoT malware targets a wide range of devices [38], each
having a particular architecture. Well-known processor architec-
tures are MIPS and ARM, but also AMD and Intel have recently
been competing to provide energy-efficient chips [39,40]. On top
of the hardware, these devices are increasingly incorporating
additional layers of software to deliver cross-platform controllers
and/or operating systems. This is the case, for instance, of Arduino
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Yun,7 which runs Linux on top of an Arduino Leonardo. Another
example is Google Brillo,8 which has a scrubbed-down version of
Android (also Linux-based). Currently, a wide range of the devices
susceptible to being attacked by IoT malware run a flavor of
Linux. Thus, architectures commonly used in desktop computers
can also be targeted by the same malware and are part of this
ecosystem. Likewise, malware developed for a desktop computer,
could easily be re-compiled to run, for example, on top of a Linux-
based ARM device. In our work, we approximate the analysis of
the IoT malware landscape by focusing mainly on Linux-based
malware. In particular, we look at this threat through the lens of a
dataset collected by Cozzi et al. [2] in 2018. Although this dataset
has been collected to evaluate a malware detection sandbox
tailored to different IoT architectures, we note that it has been
collected using protected malware Threat Intelligence. Thus, we
acknowledge that there might be some multi-purpose malware
samples that could also run on desktop computers. However, we
also note that when the malware is collected through honeypots,
this figure will be very small or even non-existent.

Limitations. IoT malware is an emerging threat and, therefore,
does not yet have features as advanced as its predecessors on
platforms such as Windows or Android. This leads to the use of
both static characteristics and the use of disassembler n-gram
sequences to perform correctly. In the near future, we expect
to see an increase in the sophistication of IoT malware with the
adoption of obfuscation or packing, thus hindering static analysis
and limiting the visibility of our system. Another weakness de-
rived from the use of static features is caused by binaries that are
not necessarily malicious and that are embedded in the malware,
such as those that are built with PyInstaller [41]. Tackling this
challenge might require dedicated techniques similar to those
proposed for dealing with repackaged malware in Android [42]. In
our work, we partly overcome these limitations in two ways: (i)
we first use dynamic analysis to be able to characterize malware
intended to hinder static analysis; and (ii) we maintain a high
similarity threshold to avoid clustering samples with different
payloads but which piggyback the same library.

7.2. Key-findings

Our system builds a guided system to better characterize un-
known threats in IoT malware. We next describe the main trends,
focusing on those obtained from previously unknown threats.

Trends. We found that crypto-mining malware is targeting
IoT platforms. This provides cybercriminals with an infrastructure
connected 24 h a day that allows them to mine cryptocurrencies
in a distributed manner and obtain profits without investing
in hardware or paying the electricity bill. Originally, the mal-
ware aimed at IoT platforms had the main purpose of creating
a network of bots to perform denial of service attacks or to
make money by selling access to a network of bots on the black
market (Botnet-as-a-service) [43]. Nowadays, this is changing
and cybercriminals are taking advantage of the resources of the
infected devices. These stolen resources are currently used to
mine cryptocurrencies and, therefore, obtain a greater economic
benefit [29]. The study of the trends in malware targeting IoT
devices could help develop forensic tools and methodologies tai-
lored to such threats. This is because the characterization of IoT
malware can lead to the discovery of evidence that can change
the course of an investigation (i.e., increasing the percentage of
CPU usage or battery consumption as evidence of infection by
ransomware or crypto-mining malware [44]). Thus, the analysis

7 https://www.arduino.cc/en/Guide/ArduinoYun
8 Code-named Android Things https://developer.android.com/things.

performed can put forensic analysts in an advantaged position in
the prosecution of criminals using the Trojan Horse Defense.

Sophistication. We have observed that the level of sophistica-
tion of IoT malware varies considerably. While there is certainly
a large number of families with little sophistication, we are in-
creasingly seeing more complex malware families (e.g., droppers
and exploits, as reported in Sections 6.1.1 and 6.1.3, respectively).
This is supported by recent commercial reports, such as the one
in [45], which provide anecdotal evidence of this phenomenon.

Infrastructure. We also found that samples in a wide range
of clusters rely on publicly available repositories such as exploit-
db and GitHub (flooderscode) to manufacture new variants of
malware. For example, the code of some of the most widespread
botnets is available on the Internet [46], such as Mirai, Bashlite
(Gafgyt), or pnscan. This encourages the development of novel
samples that simply reuse part of the available code. This leads
to the rapid proliferation of new variants with little investment
and high economic returns.

8. Related work

Celeda et al. [47] present an analysis of the Chuck Norris
malware, which they discovered due to the growth of port 23
scanners in their networks. The authors prepared a vulnerable
device for the botnet and monitored all the network connec-
tions that were generated in that device for the purpose of an
exhaustive analysis of the botnet.

Bohio [48] performs a technical analysis of the Dofloo mal-
ware, using static and dynamic code analysis. It details the com-
mands supported by the malware as well as the communication
mechanisms with the C&C. It also proposes a network traffic
detection signature for Snort as well as commitment indicators
to detect malware in a compromised system.

Wang et al. [49] distinguish two main infection methods for
malware that is focused on IoT platforms. The authors use Mirai
as an example of malware that uses brute force to infect devices,
and Bashlite and Darlloz as examples to analyze malware that
exploits vulnerabilities for its propagation.

In [50] the authors carry out a review of the state of the art of
botnets, analyzing the techniques used by the Mirai and Hajime
botnets. Finally, they propose countermeasures for the detection
of these botnets.

In [25] a complete study on the Mirai botnet is presented
in which the authors analyze its evolution, before and after the
release of its source code. They describe the main devices affected
and the different types of attacks that the botnet carries out, as
well as the targets which it is aimed at. Finally, as a case study,
they analyze attacks on three Mirai victims.

Edwards et al. [51] perform a complete analysis of the Hajime
botnet, detailing everything from the recognition and infection
phase of new victims to the format of custom files used to store
the configuration and payload. In addition, they describe the
types of messages that Hajime supports. Finally, they provide
countermeasures for detecting the botnet.

Herwig et al. [52] perform a study of the Hajime botnet from
different points of view, such as the geographical locations of the
infected devices and the types of devices. In their study, they also
analyze the size of the botnet and the churn rates, as well as
the TR-064 vulnerability that Hajime exploits by analyzing the
queries collected from a DNS root server.

De Donno et al. [53] perform a study on the state of the art of
malware in the IoT, presenting a classification of DDoS attacks
according to different features such as the botnet architecture,
protocol, scanning strategy, etc. They also present a description
of the main families of botnets in the IoT and the relationships
between them, showing the types of DDoS attacks that each one
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is capable of performing, the CPU architectures that support them
and the DDoS architecture of the botnet. Finally, they present an
analysis of the Mirai botnet.

In [2], the authors present the details of a platform they
have developed that is focused on malware analysis based on
Linux. Their platform supports the main target architectures of
current IoT malware. In addition, they describe in detail different
techniques used by the malware in Linux as well as the statistics
of how many of the samples out of the total that comprised their
study implement these techniques.

In [54], a study on malware in the IoT and its families is
presented, summarizing the size of botnets as well as the esti-
mated time they remain active. It also includes an analysis of
the rules for IDS and the time window from when the mal-
ware appeared until the first rules appeared. In addition, they
present a series of errors and inconsistencies found in their stud-
ies as well as the ambiguity of vulnerability references, analysis
information, etc. Finally, they present a framework for analyz-
ing malware dynamically that is based on the open source tool
Cuckoo Box [55].

Cosa Nostra is a toolkit for clustering malware created by
Joxean Koret [56]. The tool generates a call graph signature for
each sample of malware analyzed using the complex cyclomatic
of all the functions and assigning a prime number to that cy-
clomatic complexity. Finally, it generates a hash based on the
multiplication of those prime numbers. When two hashes are
equal it is considered that the samples are structurally equal, and
if they are different, it breaks down the hash into its prime factors
to determine how much they differ from each other. It allows
the creation of phylogenetic trees of malware samples that are
structurally similar. This can be visualized in a Web GUI.

Isawa et al. [57] propose the use of static features to com-
pute the similarity between samples of IoT malware, since the
extraction of static features consumes less time than obtaining
characteristics based on their behavior. For their experiments,
they build similarity matrices based on the use of n-grams for
both disassembled code and system call traces. Finally, they visu-
alize these matrices, verifying that the use of disassembled code
works well for the classification of malware in the IoT.

Nguyen et al. [58] compare three approaches for malware
detection using Convolutional Neural Networks (CNN). The first
is based on fixed-size byte sequences, the second uses fixed-
size color images, and the third assembler instruction sequences
of variable size. Their tests are performed on 1000 samples of
malware and 1000 goodware samples for the x86 architecture,
showing by their experimental results that the approaches based
on CNN work well in the detection of malware in the IoT.

9. Conclusions

In this paper we have presented a study of malware that
targets IoT platforms. Through data analysis, we extracted static
and dynamic features to systematically characterize malware into
different threats. The proposed methodology allows the iden-
tification of new malware samples and the relationships they
maintain with previous ones. Our evaluation over a dataset of
labeled samples shows that our system can accurately perform
this task.

Our methodology allows the extraction of knowledge about
large groups of connected samples by analyzing some of their
samples and extrapolating the results obtained. We have used
this to investigate a number of unlabeled malware samples found
in the wild. Where applicable, we have associated unknown clus-
ters with known threats. This showed that the current detection
mechanisms deployed by commercial AntiVirus systems are be-
hind in the arms race. We have also gone one step further and

studied each of the unknown clusters by using state-of-the-art
reverse engineering techniques and our expertise as malware
analysts. In this way, we were able to verify that the relationship
formed by samples from the same group was correct, identifying
the groups with the highest number of samples. We have also
provided an in-depth analysis of what the most recent unknown
trends are. We have shown, for instance, that crypto-mining
malware is currently attacking the IoT infrastructure. Our hope
is that this characterization will help the community to devise
better detection strategies against these specific threats. Finally,
in order to foster the development of these strategies, we have
released the characterization we have produced for each of the
clusters.
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HALE-IoT: HArdening LEgacy Intenet-of-Things
devices via retrofitting defensive firmware

modifications and implants
J. Carrillo-Mondéjar, Hannu Turtiainen, Andrei Costin, J.L. Martı́nez, and G. Suarez-Tangil

Abstract—IoT devices and their firmware are notoriously
known for their lifelong vulnerabilities. As we see a sharp
increase in the number of infected devices, we also see how
vendors fail at releasing patches at a competitive pace. Despite
security in IoT being an active area of research, prior work
mainly focuses on vulnerability detection and exploitation, threat
modelling, and protocol security. However, these methods are
ineffective in preventing attacks against legacy and End-Of-Life
devices that are already vulnerable. Hardening emerges as an
effective solution to provide IoT devices with an additional layer
of defense. Unfortunately, existing approaches are limited in their
scope and their lack of systematic techniques. Systematically
hardening vulnerable IoT devices and their firmware is important
due to the diversity in the architectures of the devices and the
heterogeneity of the firmware images, but for the same reasons
faces many challenges. Moreover, IoT firmware modifications
research is under-represented and mainly focuses on implement-
ing and demonstrating the potential of malicious modifications,
rather than addressing defensive and protective mechanisms for
firmware hardening.

In this paper, we bridge these gaps through the design of
HALE-IoT — a generically-applicable systematic approach to
HArdening LEgacy IoT non-low-end devices via retrofitting
defensive firmware modifications without access to original source
code. HALE-IoT approaches this non-trivial task via binary
firmware reversing and modification and is underpinned by a
semi-automated toolset that aims at keeping cybersecurity hale,
focusing both on modern and, especially, on legacy or obsolete
IoT devices as they become increasingly prevalent. To evaluate
the effectiveness and efficiency of HALE-IoT, we apply it to a
wide-range of IoT devices. For this, we retrofit the firmware
of 395 images with defensive implants containing an intrusion
prevention system in the form of a Web Application Firewall (for
prevention of web-attack vectors), and a HTTPS-proxy (for latest
and full end-to-end HTTPS support) using emulation. We also
test our approach in four physical devices, where we show that
HALE-IoT successfully runs on protected and quite constrained
devices featuring as low as 32MB of RAM and 8MB of storage.
Overall, in our evaluation, we achieve a good performance and
reliability with a remarkably accurate detection and prevention
rate for attacks coming from both real CVEs and synthetic
exploits.

Index Terms—cybersecurity, IoT, devices, legacy, end-of-life,
EOL, firmware, firmware modification, retrofit security, defensive
techniques, WAF, HTTPS, SSL-proxy
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I. INTRODUCTION

Internet of Things (IoT) devices have notoriously vulnerable
firmware [1]–[3]. Exploiting these vulnerabilities is oftentimes
trivial, an example being the case of the infamous Mirai
botnet [4]. Unfortunately, keeping the firmware of these de-
vices updated is challenging. First, in many cases a firmware
update or a patch is simply not available. This is a prevalent
problem due to the number of legacy devices connected
to the internet [4]–[9]. Second, firmware is in-built to the
devices, while automated — Over-The-Air (OTA) — firmware
updates are generally not implemented or still have limited
adoption [10]. Updating IoT devices, when and if available,
may require a fairly technical manual intervention, including
having admin access and re-flashing the device, and can prove
challenging and error prone even for experienced users. These
difficulties foster a culture of bad security hygiene around
IoT. As a result many IoT devices are left vulnerable with
long-lasting dire consequences [11]. For instance, researchers
recorded over 1.5 billion attacks against IoT devices in the first
half of 2021 [12]. In this context, just one single vulnerability
(CVE-2021-28372) [13] was responsible of affecting around
83 million devices, while some others (e.g., CVE-2013-7471)
have been active for years and are still seen in the wild.1

In the absence of regular updates, bastioning IoT devices
and hardening potentially vulnerable services emerges to offer
a first-line defense. The Center for Internet Security (CIS)
offers pre-hardened images and hardening checklists that have
been adopted by the research community, which includes
mechanisms to disable non-essential services [14]. While
this reduces the attack surface, essential services may still
suffer vulnerabilities [15]. Furthermore, existing approaches
like [14], [16] do not address the constrains and the hetero-
geneity of modern IoT devices. Thus, applying off-the-land
defenses at the network level, like third-party firewalls, has
been previously the subject of some research [17]–[19]. The
next line of defense include retrofitting active [20], [21], and
retroactive defenses [4], [22]. Retrofitting defenses into an
IoT devices offers the same advantages as general-purpose
hardening, while allowing the enhancement of its security
mechanisms even without the support of the manufacturer.

Retrofitting security to legacy IoT devices faces many chal-
lenges. First, the firmware stock is large and heterogeneous,
and non-generic solutions hinder the adoption of this defense.
Second, injecting externally compiled code then expecting it

1See timeline in: https://vuldb.com/?id.136365
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to tightly co-exist with the firmware is a challenging and error
prone process. Third, IoT devices generally have constrained
resources and I/O interfaces, hence cannot easily accommodate
arbitrary defensive solutions (e.g., IDS, antivirus) that are
useful at defending traditional computing devices (e.g., PCs,
laptops, servers). Constrained by such challenges, existing
approaches are limited in the scope of their implementation.
For instance, Cui and Stolfo [20] present a binary-patching
tool called Doppelgänger that only offers in practice protection
against rootkits. Doppelgänger is a system that computes
hashes of memory regions where “critical system processes”
are mapped, and is essentially a memory integrity monitor. The
system then monitors changes in the hashes as a mechanism
to detect function hooking an other types of code injection.
While Doppelgänger can compute and monitor hashes for
any arbitrary memory region, identifying and understanding
those regions requires considerable human expertise. Thus,
approaches such as Doppelgänger [20] do not scale in practice,
and can not be systematically deployed. Other works focus
on hardening a particular type of web applications against
XSS and SQLi [15] attacks. However, these approaches rely
on modifying the web interpreters, which requires: i) deep
software modifications; ii) intimate knowledge of the targeted
technology (e.g., PHP); iii) pre-automation tedious taint anno-
tations (e.g., sensitive sinks); iv) and access to source code.

To address existing shortcomings, we use the notion similar
to Symbiotic Embedded Machines [20] to design a systematic
approach to harden legacy non-low-end IoT devices. We
retrofit complex defense systems into raw firmware binaries
via systematic yet minimally-intrusive low-level modifications.
Our approach differs from the state-of-the-art in several ways.
First and foremost, we design a generically-applicable frame-
work to provide reliable security and protective standards to
legacy firmware. Second, we develop a systematic testing
methodology that constitute the first benchmark to assess the
effectiveness of retrofitting defensive firmware modifications.

We develop a cross-platform system, called HALE-IoT , that
at the time of writing successfully runs at least on MIPSeb,
MIPSel, ARMel, and Intel 80386 architectures. HALE-IoT
incorporates several industry-standard security tools. We make
a battery of tests using real-world attacks, particularly focusing
its evaluation on fuzzing the web interface for two main
reasons. On the one hand, the web-interfaces are well known
to be exposed and lacking security in many aspects [23],
[24], while IoT devices are often proven to have their web-
interfaces highly vulnerable and exposed [2], [3]. On the other
hand, several studies reported that compared to other online
services, the (I)IoT devices much more often run missing,
lax, or insecure SSL/TLS implementations [25]–[28], and see
insignificant progress towards secure TLS [25].

We note that while our evaluation reports detection rates,
its main focus is not to assess how well HALE-IoT detects
and prevents real-world attacks. In essence, HALE-IoT embeds
industry-standard protection mechanism such as the ones that
have been widely tested before, e.g., Web Application Fire-
walls (WAF) like Raptor [29]. Instead, we aim at assessing
that the retrofitted defensive mechanism can effectively (e.g.,
detect and protect) and correctly co-exist within the retrofitted

firmware without preventing the normal use of the system
(e.g., not crashing it). This is important as software projects
such as full-fledged WAF are fairly sophisticated. To the best
of our knowledge, no prior work has attempted and assessed
the feasibility of implanting sophisticated frameworks 2 into
IoT firmware.

We evaluated the effectiveness of our methodology using
395 different firmware images from a wide-range of ven-
dors, including D-Link, Netgear, Linksys, TRENDnet, and
OpenWrt. We emulate those 395 firmwares using a similar
procedure as in the state-of-art works [2], [3]. Due to the
limitations behind acquiring hardware for all vendors, we
restrict our bare-metal evaluation to four physical devices
(Table IV) featuring 32MB to 1024MB of RAM and 8MB
to 4096MB of storage, while representing both ARM and
MIPS architectures as well as open-source and proprietary
hardware and firmware. At the same time, we note that our
current efforts do not attempt test HALE-IoT in the “long
trail” of architectures (e.g., niche architectures and targets not
supported by GCC,3 nor on architectures that are supported but
are not widespread, the same way we do not claim that HALE-
IoT works on low-end and very constrained targets such as
MSP430). A more extensive evaluation is part of future work.

Our main contributions are summarized as follow:
1) We develop a generic methodology supported by a system

architecture and a reference implementation for hardening
legacy IoT devices via defensive firmware retrofitting and
implants. To the best of our knowledge, it is a first of its
kind.

2) We evaluate the effectiveness of our methodology by test-
ing it on potentially vulnerable and insecure web-interfaces
of a large and diverse set of IoT vendors and devices.

3) We identify and derive several core challenges of this
problem space that require further attention and research.

The rest of the paper is organized as follows. We first
introduce and detail the HALE-IoT architecture and method-
ology in Section III. In Section IV we detail the experimental
setup, the datasets. We present the testing methodology and
the results in Section V. We then discuss challenges and future
improvements in Section VII. We present and discuss related
work in Section VIII. Finally, we conclude the paper with
Section IX.

II. THREAT OVERVIEW

There are nowadays millions of devices connected to the
Internet that shape the way users interact with technology.
These devices provide several attractive features that make
them popular. Unfortunately, many of these devices lack
basic security and privacy protections. This leaves IoT de-
vices exposed to major security issues ranging from insecure
configurations and protocols (i.e., Telnet, HTTP) to outdated
software with known vulnerabilities and public exploits.

2For instance, at the time of writing, Raptor has an estimated 22700 LoC,
and SSL-proxy with Golang has an estimated 8600 LoC. Raptor and Golang
are two of the frameworks we systematically retrofit.

3https://blog.yossarian.net/2021/02/28/Weird-architectures-werent-support
ed-to-begin-with
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From the attackers’ point of view, IoT devices are very
attractive due to the weaknesses they present and their ab-
sence of IoT-centered defensive tools (e.g., Antivirus, Intrusion
Detection System (IDS). Mirai is a proof of this. Mirai is
the first malware specifically designed to infect IoT, which
managed to infect around 600,000 devices [30]. Unlike the
first samples of Mirai, which used only a set of usernames and
passwords to gain access to IoT devices via insecure Telnet
and SSH configuration, IoT malware currently incorporates
a wide portfolio of exploits for N-days vulnerabilities in
order to gain access, install and spread their malware [31].
Particularly, in a vast number of cases they (ab)use CVEs for
web-interfaces [32]–[34].

IoT devices often provide network management interfaces
for their configuration and maintenance (i.e., Telnet, SSH,
HTTP), due to the lack of interactive interfaces like the
ones offered in desktop computers (i.e., mouse, keyboard,
video). Consequently, these network services are exposed to
the attackers, offering access to the devices through notorious
security issues, as shown in [2], [3], [35]. In [2], authors
perform a large-scale analysis of web services provided by
different IoT devices, discovering 225 high-impact vulnerabil-
ities (i.e., Command execution, Cross-site scripting) verified
through dynamic analysis, and around 9000 possible vulnera-
bilities reported through static analysis in 185 firmware images
that were analyzed. These security issues, coupled with the
shortage of security updates or patches, make IoT devices an
attractive target for attackers, allowing miscreants to create
large botnets or to mine cryptocurrency [36].

The next section introduces HALE-IoT , a methodology
designed to offer an extra layer of security to IoT devices,
focusing on the protection of the core and yet the most
vulnerable services exposed to the Internet by IoT devices.

III. HALE-IOT

This section introduces the main components of our system.

A. Methodology & System Overview

HALE-IoT is a system designed to harden IoT devices.
Motivated by the wide-spread network of obsolete IoT devices,
our system focuses on legacy and End-Of-Life (EOL) firmware
for the following reasons: i) devices with a legacy firmware
are prone to be vulnerable; ii) they are extremely likely to
expose exploitable services leading directly to breaches; iii)
and almost certainly they will never get a security patch.
For example, in Figure 1 we depict a high-level view of
a hardened IoT firmware/device. From the point of view of
“inner components” of a firmware, the diagram captures two
dimensions: 1) “vulnerable services” – the services that will
eventually be spawned when loading the firmware (e.g., a
web HTTP server, TELNET, FTP); and 2) “file system” –
the original file system itself, i.e., where the binaries and the
configuration of such potentially vulnerable services reside.
The diagram also represents the entry point of these services,
typically a network interface. A service can listen to different
interfaces at the same time (e.g., Wireless or Wide/Local Area

Network, WLAN and WAN/LAN respectively). We represent
as 0.0.0.0 a generic network interface which is very likely to
be attacker-accessible.
Methodology: We follow three core principles when designing
the methodology that underpins the development of HALE-
IoT . First, the hardening process has to be generic and
flexible to accommodate the most popular services available
in IoT devices. We also require that the system can accept
the integration of generic protection mechanisms that match
in complexity the type of attacks that generally target IoT
devices. Second, we follow the fail-safe minimization prin-
ciple [37] by which the modifications we introduce during
the hardening process should be as least intrusive as possible,
always preserving the normal-operation of the device. In
other words, HALE-IoT will perform minimal changes to the
firmware, having its main focus to first harden the system
via re-configuration, then patch existing configuration files,
and only proceed to making code-level modifications (namely,
binary patching) as a last resort. Only in situations when
binary patching is necessary, we apply a two-fold strategy:
the analysis phase — a human-guided semi-automatic process
that produces a proof-of-concept; and the deployment phase
— which can reproduce the patching and retrofitting at scale
in a fully automated fashion.
System design: HALE-IoT leverages the methodology above
to design a practical system that addresses the challenge of
hardening heterogeneous devices from the following angles:

• Secure front-end. This step aims at hardening insecure ser-
vices through the deployment of wrapper(s) designed to turn
a possibly vulnerable service into a secure one. HALE-IoT
will expose a secure interface of the service and it will act
as a proxy of the actual service while offering certain guar-
antees, such as confidentiality and secured access control.
Central to this step is the retrofit of a Secure Sockets Layer
(SSL) proxy that will: 1) offer a cryptographic upgrade if the
device lacks it, including the use of HTTPS instead of HTTP,
SFTP instead of FTP, or SSH instead of TELNET; and 2)
offer protection against SSL/TLS attacks (e.g., downgrade,
MITM — Man In The Middle), and patch weak SSL/TLS
configurations (e.g., hardcoded self-signed certificates).

• Proactive detection. This steps aims at offering a proac-
tive protection against application-layer attacks through the
retrofit of a domain-specific firewall. For instance, HALE-
IoT will implant a web application firewall when an IoT
device processes web HTTP connections either directly from
the user through a web browser or a RESTful client.

• Advanced-level access. This step aims at hardening a
critical component of IoT devices, their admin interface. IoT
devices do not generally have a graphical user interface, and
their administration is generally done remotely.

The result of applying our methodology to hardening a generic
IoT device is presented in Figure 1. In this paper, we offer an
implementation of HALE-IoT that can scale the deployment
of pre-hardened images for vulnerable legacy firmware that
can benefit from a secure front end. We assume that these IoT
devices expose services through the network while listening to
a port through a socket. Our system performs best when there
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Fig. 1. IoT firmware system diagram AFTER hardening with HALE-IoT (shows also long-term vision for additional hardening at layers L3-L4, L7).

is a configuration file that specifies the network settings, and
we restrict binary patching only to changes in the interface
or the port number when these are hard-coded into the binary
(see Section VII-F). Note that more intrusive modifications
are subject to less automation, and it is thus less scalable
and cost-effective. Also, the more intrusive modifications are
highly likely to interfere with normal intended operation of the
given service or even the entire device. While our methodology
supports any type of binary patching, the assessment on the
impact they have to the fail-safe minimization principle is the
scope of our future work. We next describe in detail each of
the three layers that constitute HALE-IoT .

B. Secure Front-End: SSL/TLS Hardening

An SSL/TLS Proxy is a specific type of proxy server
design to add a layer of SSL/TLS to protocols that lack
this feature. For example, it is commonly used for adding
HTTPS encryption to plain-text HTTP services without native
HTTPS support. It is mainly responsible for the encryption
and decryption of SSL traffic between the client and the server,
and redirecting the packets once decrypted to the HTTP web
server. As mentioned, the rationale behind adding an SSL/TLS
proxy is driven by the prevalence of IoT devices running
insecure or weakly secured HTTP implementations [26]–[28].
This in turn provides a false sense of security.

In our implementation we used two approaches for
SSL/TLS proxying – SSL-proxy [38] as the main approach,
and Lighttpd [39] as an alternative approach. SSL-proxy is
a project written in the Golang programming language. SSL-
proxy features a high portability to other systems, making it a
good candidate for systems that require multiple architectures.
SSL-proxy allows generating self-signed certificates as well as
working with existing certificates and full certificate chains,

that are stored locally or generated through Let’s Encrypt [40].
For SSL-proxy cases, our toolsets generate Go binaries for the
different architectures HALE-IoT supports, and then use the
same SSL-proxy code in corresponding interpreted environ-
ments. As an alternative to SSL-proxy, we cross-compiled a
statically-linked version of lighttpd with SSL/TLS and proxy
support, which similarly to SSL-proxy supports self-signed
certificates or certificates generated through Let’s Encrypt.
In practice, it was only necessary to use lighttpd-based TLS
proxy for the real device presented in Section VI-D, however
this lighttpd-based setup was also successfully tested on other
several devices. For the purpose of our experiments we used
self-signed certificates, but we later discuss deployment issues
in Section VII-G. However, the main idea of adding SSL-
proxy is to provide any IoT device a guaranteed and uniform
way of HTTPS support (e.g., latest TLS protocols) that can
also operate proper full certificate chains [26]–[28].

C. Proactive Detection: Application-layer Firewall Hardening

A generic Application-layer Firewall (xAF) is the type
of firewall that can potentially detect and prevent malicious
inputs designed to exploit specific application protocols. Our
architecture allows the retrofit of multiple xAF, one for every
potentially vulnerable network service. Therefore, HALE-IoT
can both isolate local networks (from 0.0.0.0 to 127.0.0.1),
and harden traditionally vulnerable services such as TELNET
(secured with SSH), FTP (secured with SFTP), UPnP, MQTT.
This architectural vision is presented in Figure 1.

Our current implementation of HALE-IoT methodology pri-
marily offers support to harden web services at the application
level. A Web Application Firewall (WAF) is an additional se-
curity layer that inspects web requests before redirecting them
to their destination, allowing it to detect potentially malicious
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requests and avoid redirecting them to the web server or to
the web application. When a malicious request is detected,
the WAF is supposed to prevent the request from reaching the
web server, being able to detect the most common attacks at
the web application level such as Structured Query Language
(SQLi), Remote Code Execution (RCE) injections, Cross-Site
Scripting (XSS), or Cross-Site Request Forgery (CSRF) at-
tacks. In particular, we use Raptor [29] which is a lightweight
open-source WAF written in the C programming language. It
has very few dependencies, making it a good candidate for
use in embedded systems. Raptor adds an additional security
layer protecting web applications by comparing the content of
HTTP requests with common signatures using a Deterministic
Finite Automata (DFA) algorithm. Additionally, its function-
ality can be extended with rules and other matching strings
algorithms, such as Karpe Rabin, Boyer Moore Horspool,
or Perl Compatible Regular Expressions (PCRE). We cross-
compile Raptor for the MIPSeb, MIPSel, ARMel, and Intel
80386 architectures, which are the ones currently supported
by HALE-IoT . However, there is virtually no limitation to
which CPU platforms Raptor (or any other WAF) can be cross-
compiled for. At the same time, HALE-IoT could implant any
other WAF as long as it can be either cross-compiled to native
binary format for device’s CPU, or can run in a cross-compiled
runtime environment (e.g., Python, Go). The only unavoidable
limitation our system inherits stems from the constrains of
the actual devices in terms of obsolescence of runtime, RAM
memory, and flash storage (cf. Section VII-E, VII-H).

D. Administration of HALE-IoT

HALE-IoT is composed of third-party components (e.g.,
WAF, xAF, HTTPS proxy) that may require bug-fixes, im-
provements, and configuration updates over time. For example,
there is also a constant evolution of the threat landscape (e.g.,
applicable vulnerabilities, working exploits) against which
HALE-IoT offers protection to the (legacy) IoT devices, and as
such requiring updates to the xAF rules-set. These and similar
related factors dictate the need of a way to administer HALE-
IoT in an easy, secure, universal, and low-footprint manner. A
classical way would be to use a web-interface to administer
HALE-IoT , however we opt for an SSH-based administration.

There are several reasons why we choose the use of an
SSH-based interface for HALE-IoT administration, instead of
a web-based administration interface for example. First, SSH
by default has a proven and strong built-in authentication
and authorization mechanism and protocol based on public-
private key infrastructure. In case of web-servers, it would
required adding HTTP and/or HTML authentication models
that would add to the complexity of implementation and
maintenance, as well as potentially expose own set of authen-
tication/authorization vulnerabilities. Second, compared to a
web-interface, SSH does not require additional third-party de-
pendencies and interpreters (e.g., PHP, Python) to provide full-
fledged server-side functionality. With SSH-based approach
the overall “application attacks surface” remains generally the
same even after adding the new SSH dependency. The web-
interface option on the other hand would increase the attack

surface through addition of the web-server and the admin web-
pages themselves. Third, SSH provides a simple yet powerful
interface to perform additional system-administration tasks
should the need require (e.g., reboot, power-off, filesystem
access). In case of a web-interface, there could be certain
limitations to what administrative actions would be available
to the web-server or the web-pages. Last but not least, efficient
SSH implementations can be statically built with much lower
footprint and overhead (e.g., Dropbear SSH at 100–200 KB).
Such footprints are considerably lower when compared to most
web-servers coupled with runtime interpreters (e.g., PHP).

E. Other Types of Hardening

The simplicity and flexibility of HALE-IoT approach is one
of its core design principles (as stated in Section III-A) which
also makes this one of its strong aspects compared to the
state-of-the-art. In this sense, an additional improvement by
HALE-IoT would be the addition of hardening at networking
layers L3-4 and L7. In essence, it would mean protecting all
the interfaces and all the services in a generic whole-system
manner against network layer attacks (L3-4) as well as against
application layer brute-force attacks (L7). For layers L3-4,
HALE-IoT’s architecture can integrate industry-standard tools
like iptables, Snort, Suricata, Bro, and for layer L7 fail2ban.

There are several adoption challenges that need to be con-
sider. First, some IoT devices may not expose direct or stan-
dard access to various interfaces, thus requiring more intrusive
re-configuration, binary-patching, or OS/kernel “hacks”. Sec-
ond, some IoT devices may use less common OS flavours (i.e.,
other than Linux-derivatives), hence re-binding and configura-
tion of network interfaces may be different and may require
certain HALE-IoT implementation adaptations. We thus leave
the implementation and evaluation of additional L3-L4 and L7
retrofits as immediate future work.

IV. EXPERIMENTAL SETUP

To evaluate the effectiveness and efficiency of HALE-IoT
method, we applied it to web services of a wide-range of
IoT devices. We chose to harden and evaluate web services
as immediate focus, because these are the most commonly
present services on most IoT devices. For this, we retrofitted
and emulated 395 firmware packages with defensive implants
containing a WAF (for prevention of web-attack vectors), and
an HTTPS-proxy (for proper end-to-end HTTPS support).

In order to implant HALE-IoT , we have identified the
web server configuration files and have re-configured them
for hardening as follows. First, taking into consideration
firmware’s CPU architecture, we copy corresponding cross-
compiled files to the firmware filesystem the implants needed
by HALE-IoT . This includes executable and other files for the
hardening elements (Raptor, SSL-proxy, Dropbear), configura-
tion and rules-set files, and authentication keys for HALE-IoT
SSH sysadmin interface. Then, we add the initialization scripts
of the tools to the set of scripts that will be executed once
the booting process finishes (e.g., init.d, rc.d, registration.d).
Finally, we re-configure the web server configuration files or
web server initialization scripts to isolate the interface and
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TABLE I
OUR INITIAL FIRMWARE DATASET (BY VENDOR AND ARCHITECTURE)

Vendor ARMel MIPSeb MIPSel Intel/386 Total HALE-IoT
Asus 0 0 1 0 1 0
Belkin 4 10 30 0 44 0
Buffalo 1 0 2 0 3 0
D-Link 76 54 1 0 131 37
Huawei 0 0 1 0 1 0
Linksys 2 3 19 0 24 8
Netgear 45 174 150 0 369 46
OpenWrt 1 146 166 7 320 293
Tenvis 0 0 6 0 6 0
Tomato by Shibby 8 0 171 0 179 0
TP-Link 2 152 5 0 159 0
Trendnet 3 25 9 0 37 11
Ubiquiti 8 3 0 0 11 0
Total 150 567 561 7 1,285 395

listening port of the service (e.g., original web server re-bind
to 127.0.0.1 : 81), and then we start full-system firmware
emulation [2], [3]. This process has been fully automated, and
has been carried out for each of the tests of the evaluation.

A. Dataset

Our initial dataset consists of 4,809 real-world firmware
images extracted from FIRMADYNE [3]. Note that the original
FIRMADYNE dataset is larger, but 4,809 images are avail-
able to download at the time of writing. We then retain
only the images in the architectures that HALE-IoT currently
supports (i.e., ARMel, MIPSel, MIPSeb, and Intel 80386 cf.
Section III), making a total of 1,328. From these, we discard
43 images that have a custom format compression algorithm
hence cannot be systematically unpacked with Binwalk [41]
(which comes as part of FIRMADYNE setup). After processing
all remaining images, we manage to extract the root filesystem
from 13 device vendors (ranging from Asus to Ubiquity)
for 1,285 images overall. Overall, these root filesystem are
associated with devices of the following type: Ethernet routers,
WiFi routers, xDSL modems, IP cameras. Table I shows the
distribution of vendors in our dataset, per CPU architecture.

It is important to note that when trying to address such
an immense and heterogeneous experimental population and
space, for practical and resource reasons we are bound within
magnitudes that are feasible for handling such experiments. At
the same our work exceeds comparable experimental state of
the art works such as Firmalice [42] (dataset size: 3 samples),
and generally positions our experiments within the magnitude
range of similar state of the art works such as FIRMADYNE [3]
(dataset size: N x pow(10, 2), i.e., hundreds of samples).

B. Emulation

To evaluate HALE-IoT we emulate a device that runs the
firmware images in our dataset. Since we are mainly interested
in systems that have a Web interface to administrate the device,
we next describe the steps we take to select those images. We
first scrape the file system of the image in the look for binaries
that are core components of a Web server (e.g., uhttpd). We
then identify the configuration files that inform settings to
the Web server (e.g., boa.conf, lighttpd.conf). Table II shows
the different type of web servers together with the number
of firmware images (marked as “FWs”). As expected a large

TABLE II
DISTRIBUTION OF THE INITIAL FIRMWARE DATASET (BY WEB SERVER

AND CONFIGURATION FILES).

Web server # of FWs # of FWs
(config file)

# of FWs
(HALE-IoT)

lighttpd 58 52 42
httpd 649 74 68
minihttpd 37 0 0
AppDemo 71 0 0
boa 46 44 7
uhttpd 390 314 278
webs 2 0 0
goahead 9 0 0
Not found 23 0 0
Total 1,285 484 395

subset of images have a web server configuration file together
with the server binary, an exception being uhttpd. Images with
a binary and without a configuration file have the settings
of the server embedded in the binary itself. To scale our
evaluation, we focus primarily on the 484 images that have
an explicit and non-embedded configuration file.

We note that from architecture and design perspectives,
HALE-IoT can run virtually on any type of firmware as long as
the user(s) can change the binding network interface and port
of the service that we aim to harden. However, in certain cases
(e.g., service uses custom or binary-hardcoded configuration)
changing the network interface and the port may require more
manual effort, and we discuss such challenges in Section VII.
In the end, out of all 484 images that have a Web server
configuration file, we manage to successfully emulate and
implant HALE-IoT to 395 firmware images. The emulation
and HALE-IoT implant covers the following five vendors (D-
Link, Netgear, TRENDnet, Linksys, and OpenWrt) (Table I),
and the following four web-servers (lighttpd, httpd 4, boa, and
uhttpd) (Table II). Once the emulation started, we were able to
successfully communicate with all 395 web server processes
and, more importantly, we were able to retrofit the HALE-IoT
security hardening measures in all those firmware images.

C. Toolsets

One key aspect of HALE-IoT is that it supports out-of-
the-box different CPU architectures, and is flexible enough
to keep adding more architectures and defenses in the future.
In particular, we compile our framework for ARMel, MIPSel,
MIPSeb, and Intel 80386 as discussed before. While it is possi-
ble to use QEMU to emulate one-by-one the operating system
used by the different vendors, we opt to perform a systematic
cross-compilation through a toolchain. There are different
toolchains available including Linaro [43], or Linux MIPS
Toolchain [44]. For the purpose of this paper, we create our
own customized toolchain using Buildroot [45]. Our toolchain
uses musl [46], which implements the standard C library
with some improvements such as enhanced support for static
linking. When cross-compiling the different binaries using our
toolchain, we strip the binary of all symbols to optimize size.
At present, we automatically cross-compile Raptor (for WAF),

4In most IoT devices we encounter, “httpd” is just a generic placeholder
name for the web-server, and should not be assumed Apache’s HTTP server.
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and Dropbear (for HALE-IoT SSH-based administration) for
all the supported architectures. We do not cross-compile SSL-
proxy, as it is written in Go programming language and the
binaries for the different architectures can be generated directly
without using a specific toolchain. Final builds of the toolsets
resulted in the following footprints: Raptor 275.8–346.6 KB,
SSL-proxy 5053.5–6244.3 KB, Dropbear SSH 179.8–228 KB
and lighttpd 2381–3018 KB. For additional resource overheads
incurred from HALE-IoT implant, see Section V-E.

It is important to note that our experimental setup is
systematic and is easily extensible to other architectures and
defensive toolsets, which is precisely the scope of our future
work as discussed in Section IX.

V. TEST METHODOLOGY AND RESULTS

A. Test Methodology

We run two tests for each QEMU-emulated firmware fol-
lowing a DevOps methodology [47], [48]. This methodology
evaluates changes into a system in an incremental fashion so
that failure causality can be properly attributed. One test con-
tains a hundred common (i.e., non-exploiting) web requests,
while the other test has a hundred web requests with some type
of web-attack payload (e.g., XSS, SQLi, Command Injection).

Our DevOps-style testing methodology has the following
steps. First, we emulate the firmware without any kind of mod-
ification and we run the tests as a control measure to evaluate
the differences. We also check how many firmware images
accept connections through the HTTPS. Then, we retrofit the
firmware with the Raptor WAF and we launch both tests again.
We do the same again but only after implanting the SQL-
proxy in the firmware. Finally, we launch both tests on the
firmware emulated with both protection measures retrofitted,
that is, the Raptor WAF and the SQL-proxy working together.
We also ensured that random non-malicious requests return
exactly the same result in both tests (i.e., with and without
HALE-IoT). For this, we compare the HTTP headers and
the content returned in both test setups (normal vs. non-
malicious) requests. To assess the performance of the devices
after retrofitting the WAF in a realistic setting, we use Raptor’s
DFA algorithm and fifty-five regular Perl Compatible Regular
Expressions (PCRE) we gather from the community [49], [50].

We apply our test methodology to answer the follow-
ing questions: Q1) Is HALE-IoT able to retrofit defensive
firmware modifications and implants without disrupting the
normal operation intended for the firmware? Q2) Can HALE-
IoT effectively deploy a secure front-end in legacy devices?
Q3) Can HALE-IoT effectively deter known attacks and known
vulnerabilities against legacy devices? Q4) Can HALE-IoT
effectively cover multidimensional heterogeneity (e.g., physical
vs. emulation, ARM vs. MIPS vs. x86, real CVEs vs. synthetic
vectors, open-source vs. proprietary, cross-vendor)? Q5) What
is the potential performance overhead incurred by HALE-IoT?
Q6) Can HALE-IoT actually work with services that appar-
ently cannot run on 127.0.0.1 :< port > via configuration
file? Q7) Finally, does HALE-IoT actually work on physical
devices, rather than just emulated environments?

We evaluate question Q5 using emulation only, question Q7
using bare-metal hardware only, and questions Q1, Q2, Q3,
Q4, and Q6 using both bare-metal and emulation.

B. Correctness and effectiveness of the Retrofit (Q1)

To test how well HALE-IoT retrofits defensive firmware
modifications, we deploy all hardened images in our own
emulator environment resembling the on in [2] and borrowing
additions from FIRMADYNE (e.g., NVRAM) [3]. Table III
shows a summary of our results. We see that all 395 images
remain functional, i.e., the hardening process does not disrupt
the normal operation intended for the firmware. However,
some cases under-perform in terms of isolation. In particular,
we see that in 8% of the images we continue to see the web
server listening in the external interface (0.0.0.0), and thus
potentially-exploitable connections are possible to the original
web server without going through our hardening proxy-chain.
We also see that 78% of the emulated firmwares do not use
HTTPS by default before the retrofit. We next explore in detail
the performance of HALE-IoT when looking at the first layer
of its architecture (cf. III-B).

During our HALE-IoT experiments neither our human experts
nor our automated tools have encountered any functional
abnormality, and the emulated-and-hardened web services
along with the entire system emulation performed normally
and as expected.

C. Secure front-end in legacy devices (Q2)

One of the main hardening goals of HALE-IoT is to isolate
the vulnerable services from attacker-accessible interfaces
(e.g., WAN, LAN), while at the same time keeping the original
services running on 127.0.0.1 to satisfy Q1. Our evaluation
shows that HALE-IoT successfully re-configures original web-
servers from 0.0.0.0 : 80 into 127.0.0.1 : 81, replacing the
former address with the service running our WAF implant
while relaying only safe HTTP web requests to the original
web-server now residing in the latter address.5

While further analyzing the results shown in Table III, we
make two key observations. First, 100% of the original web-
servers (from the successfully emulated 395) re-bind well to
port 81 as instructed by HALE-IoT’s re-configuration routines.
Second, despite being explicitly instructed to change binding
from 0.0.0.0 to 127.0.0.1, there are 32 firmware images that
remain bounded to 0.0.0.0 (in addition to the new address).
This can keep exposing a potentially vulnerable service to
attacker-accessible interfaces, thus rendering our hardening
ineffective. We posit this is due to vendor’s (un)intentional
implementation and coding choices or errors, where only
some values from the configuration file(s) are taken into
consideration while the rest of parameters are either hardcoded
into the binary executable or taken from other non-obvious
configuration files. We present some evaluation of HALE-IoT
for this case in Section VI-A, and discuss this challenge in

5When WAF is chained with SSL-proxy, the WAF is further isolated to
127.0.0.1:80, and web service is exposed by SSL-proxy binding to 0.0.0.0:443.
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more detail in Section VII, but we emphasize that this happens
only in 8% of our images.

Another of our aims is to add secure tunnel wrappers
around services through the use of SSL-proxy. Our rationale
is that these services either have weak secure tunnels, or are
just plain-text altogether (i.e., adding HTTPS support to IoT
devices that quite commonly are lacking it). As discussed, in
certain instances the IoT device may provide by default an
HTTPS server. In 84 emulated firmware images, the original
web servers also start a “default HTTPS server”. However,
besides carrying a self-signed certificate, the “default HTTPS
server” also featured an outdated SSL/TLS version (e.g.,
TLSv1), hence still very likely exposing the web interface
to various HTTPS and MITM attacks. On the other hand,
with HALE-IoT (e.g., with SSL-proxy) we are able to provide
the hardened IoT devices with the latest and most secure
TLS implementations along with the proper support for full
certificate chains (see also discussion in Section VII-G). This
in turn provides real increased security rather than merely a
“sense of security” provided by most default HTTPS servers
when these are implemented in IoT devices and working with
self-signed or expired certificates.

Overall HALE-IoT automatically manages to fully isolate 92%
of the potentially vulnerable web services, while correctly
providing a secured SSL tunnel in 100% of the tested cases.

TABLE III
CORRECTNESS AND EFFECTIVENESS OF THE RETROFIT 395 EMULATED

WEB SERVERS.

Test under evaluation # of emulated FWs (%)
Firmware is functional after retrofit 395 (100%)
Isolation OK (web service re-bind to 127.0.0.1) 363 (91.9%)
Isolation FAIL (web service hardcoded to 0.0.0.0) 32 (8.1%)
Default HTTPS present before retrofit 84 (21.3%)
Default HTTPS missing before retrofit 311 (78.7%)
HTTPS present after retrofit 395 (100%)

D. Detection and prevention of attacks and exploits (Q1, Q3)

To evaluate the performance of HALE-IoT in regard to its
second architectural layer (cf. Section III-C), we perform two
experiments.
Automated-attacks. We leverage a battery 200 web requests,
out of which half are common requests and the other half are
known web attacks. The attacks include known XSS, SQLi,
and Command Injection attacks coming from both actionable
CVEs and synthetic input. Our results show that HALE-IoT
can detect all known attacks when configuring the WAF vanilla
community detection rules. The detection rate itself is not at
all surprising, but this experiment reports a valuable finding:
HALE-IoT can reliably retrofit complex defense mechanisms
into the firmware of IoT devices through binary retrofits while
keeping the original firmware functional (Q1), and offering
the full-fledged level of protection of the retrofitted secure
mechanism (Q3).
Targeted-evaluation. We also evaluate the effectiveness of
HALE-IoT by targeting some firmware images with CVE-
2016-1555 (also known as ACSA-2015-001). CVE-2016-1555
was independently discovered by Chen et al. [3] and Costin

et al. [2]. This known vulnerability covers a series of pre-
authentication XSS and RCE in several devices from Net-
gear (many of which are already EOL, hence will remain
unprotected indefinitely unless it gets hardened with HALE-
IoT or similar). First, we exploit the vulnerabilities in the
emulated environment and confirm that the original firmware
is vulnerable and exploitable. Then, we apply HALE-IoT to
the emulated firmware and see that all attacks are efficiently
stopped. This further proves the effectiveness of our approach,
but this time with an attacks that targets End-Of-Life devices.
We refer the reader to Appendix A for visual representation
of the success of our proof-of-concept attack and defense.
Takeaway. HALE-IoT can effectively deter known attacks
against legacy devices. Naturally, our system inherits the
limitations of the defense mechanism we implant. In particular,
Raptor is mainly effective at detecting known attacks and can
miss connections that encapsulate zero-day web attacks. We
discuss this limitation in detail Section VII through different
axes, including the WAF’s inherent limitations (§VII), and
limitations in the datasets (§VII-C). However, we also note that
the overall effectiveness of HALE-IoT when it comes to the
detection of attacks has to be seen from an holistic perspective.
In Section V-C we report the effectiveness of our system at
hardening insecure (superfluous) services other than HTTP.
When putting together the secure front-end and the proactive
detection layers (Figure 1), HALE-IoT can offer a system
resilient to both known attacks against web services, and
against unknown attacks targeting all other hardened services.

With HALE-IoT implanted, we achieve 100% detection
and prevention rate of known attacks in both emulated and
real-devices, while effectively hardening other services that
are often target of unknown (zero-day) attacks. This 100%
detection ratio is taken as a unit test rather than a detection
ratio. This provides assurances that the WAF we retrofit
works as expected under active attacks. We are aware that
WAF systems detect attacks for which there is a known rule,
and they are unquestionably subject to evasion, just like any
other rule-based detection system—whether the WAF is on
a high-end production system, VPN appliance, or a Hale-IoT
retrofitted router/camera. However, they provide an extra layer
of security that protects against known exploits targeting the
firmware’s web interface, and they prevent most automated
attacks (i.e., via bots looking for vulnerable devices) that target
vulnerabilities in the exposed web servers of IoT devices [5],
[35].

E. Functional, Performance, Overheads Evaluation (Q4, Q5)

We have collected measurements of the performance over-
heads introduced by various components of the HALE-IoT
implant. Since HALE-IoT is highly flexible and configurable,
we use a modular analysis to assess our performance. This
is, we measure the performance of the WAF alone, the SSL-
proxy alone, and the SSL-proxy chained with WAF. For
each test we collect benchmarks for the CPU and memory
consumption, as well as the response time of the web re-
quests. The performance evaluation in the emulation provides
an approximation of the memory and CPU consumption as
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the difference between runs with and without any type of
retrofitted tool.

In Figures 2, 3, 4 the references to “WAF”, “SSL-proxy”,
and “WAF + SSL-proxy” represent the use of HALE-IoT
with a particular self-descriptive configuration. On the other
hand, “Control” represents firmware emulation without any
added components. As we discussed in Section V, each test is
made up of one hundred common web requests represented as
“Normal”, and one hundred requests that contain some type of
attack represented as “Crafted”. We carry out all tests in each
of the firmware that we emulate and implant HALE-IoT into.
In total, our evaluation scripts made 316,000 web requests.
Figures 2, 3, 4 represent the average of the results over the
entire set of emulated and tested firmware images. The data
has been collected using common Linux tools (e.g., mpstat or
vmstat) from the host side.
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We also provide an interpretation of the performance over-
head graphs. In Figure 2, we see that the response time
for “Normal” requests increases proportionally to the number
of chained components for the particular hardened service.
For example, “WAF + SSL-proxy” complete request time
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Fig. 4. Average RAM memory consumption for each test run.

takes longer than “WAF” or “SSL-proxy” separately. This
is somewhat expected as the request in the case of “WAF
+ SSL-proxy” is being forward back and forth via multiple
connections and software modules that have their own context-
switching delays, etc. At the same time, Figure 2 shows that in
case of “Crafted” requests, whenever the “WAF” component is
present the complete request time is significantly lower com-
pared to Normal. This is both expected and a direct evidence
that the “WAF” effectively detects and blocks attack attempts,
and as such protectively terminates at much earlier stages
the HTTP communications carrying potentially malicious pay-
loads. A similar pattern can be seen in Figure 3. In case of
“Crafted” requests, whenever the “WAF” component is present
(e.g., when only “WAF” is present without “SSL-proxy), the
average CPU usage is sensibly lower compared to “Normal”.
Once again, this is both expected and a direct evidence that
the “WAF” effectively detects and blocks attack attempts,
as “WAF” does not continue any further computations and
processing (e.g., relaying it to the original web service) once
it has detected and prevented potentially malicious payloads.

Moreover, the average memory consumption increase shown
in Figure 4 is expected as the additional components require
memory for operation and for storing their data such as WAF
rules-sets and SSL/TLS certificate chains. The memory con-
sumption, though, is harder to fully interpret when compared
to CPU usage and processing time of requests, as the coding
practices can vary greatly across the applications. Also, as
opposed to CPU usage which stops when a particular function
flow stops (e.g., HTTP request blocked and terminated), the
memory often is not immediately freed (or not made visibly
available to OS, even if freed by the application) when the pro-
gram reach certain states such as “Crafted” packet detected and
blocked. In terms of storage overhead introduced by HALE-
IoT , Figure 5 shows the distribution of sizes for all firmware
images along with the retrofitted binaries. Specifically, as
detailed in Section IV-C, the increase by each components
is as follows: Raptor 275.8–346.6 KB, SSL-proxy 5053.5–
6244.3 KB, Dropbear SSH 179.8–228 KB.

During the evaluations presented in this work, we did
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not particularly focus on performing an exhaustive regression
testing on the web interface (nor on other functions and
services) operating within the evaluated devices and emulated
firmware. Because such exhaustive complete system regression
testing would be a non-trivial experiment in itself, we leave
as future work the large-scale evaluation of the functional
impacts induced by retrofit defense systems such as HALE-
IoT . However, we have also performed an evaluation of the
retrofitted software. We apply fuzzing by creating a harness for
the main core of the WAF (i.e., the function to which any data
received through the socket is passed) and use American Fuzzy
Lop (AFL) as a fuzzing tool. We found some memory related
bugs and several crashes in the fuzzing stage that we patched.
The crashes occurred in wafmode four (one of the command
line options). This parameter has four levels of protection,
number four being the highest, and defines the mode of the
DFA algorithm to detect common attacks. With the rest of the
modes and with DFA disabled using only regular expressions
as rules, the application did not produce any crashes with the
same test cases. After a further inspection and debugging, the
crash occurs when trying to read a value beyond the stack
limit, which causes a segfault. This error is caused by the
use-after-return memory error, and since this memory area
belongs to a function that has already terminated, it can cause
undesirable behavior. We discuss the bugs found as well as
the security limitations that any retrofitted piece of software
may have on a system in Section VII-I.

A differentiating end goal of HALE-IoT w.r.t. the related
work (e.g., ABSR and Symbiotes [51]) is that we aim at being
as least intrusive as possible, and to ensure that legitimate
requests do not have in important impact in the performance
of the device. Our results strongly support this goal.

We see that the use of HALE-IoT introduces some interesting
trade-offs. When attacks are blocked, we effectively reduce
the overhead. Judging by the performance of the hardened
device when processing legitimate requests alone, we see that
HALE-IoT does not introduce an important overhead.

VI. CASE STUDIES

We next present a number of case studies that aim at better
understanding the performance of HALE-IoT in detail. In par-
ticular, we look at a firmware image from Linksys, and Asus.

TABLE IV
SUMMARY OF REAL DEVICES PERFORMING SUCCESSFULLY IN OUR

EVALUATION.

Device CPU / Cores / MHz Architecture RAM Storage
Asus RT-N12+ B1 MT7628NN / 1 / 580 MIPSel 32 MB 8 MB
Netgear R6220 MT7621ST / 1 / 880 MIPSel 128 MB 128 MB
Linksys EA4500 88F6282 / 1 / 1200 ARM 128 MB 128 MB
RaspberryPi 3 BCM2837B0 / 4 / 1400 ARM 1024 MB 4096 MB

We conclude our case study with the deployment of a hardened
version of Asus RT-N12+ B1, RPi3 OpenWrt, Netgear R6220
and Linksys EA4500 over four different hardware devices.
Table IV summarizes the technical specifications of the actual
physical devices used in our evaluation.

A. Reverse-Engineered Hardcoded Binary for Linksys
wrtsl54gs (emulation) (Q6)

As presented in Section V-C, there were 32 emulated
firmware that failed to isolate web-server via binding to
127.0.0.1. For unknown reasons the firmware kept the web
service binding to 0.0.0.0. In order to demonstrate that HALE-
IoT is also feasible, practical, and effective even when the re-
configuration retrofitting fails, we attempted a minimal-effort
manual reverse-engineering of one such web-server binary.

For this we chose the “httpd BusyBox” web server binary
from OpenWrt firmware built for wrtsl54gs device by Linksys.
Even though, “httpd BusyBox” is known to support “-p”
option to change the binding interface and port (e.g., “-p
127.0.0.1:81”), in this particular case it was not supported
or it did not work. We then investigated the potential reasons
behind this fail. The wrtsl54gs firmware image has a non-
stripped BusyBox binary that is dynamically linked, therefore
our first approach was to look for HTTP functions to recognize
the httpd BusyBox applet. Then, we identified the call to the
bind function and check the parameters backwards. We found
the inet_aton function that converts a string IP address into
binary form, and that it is using as a parameter the variable
assigned from the “-l” command-line argument. Though this
argument does not appear in the help menu of the httpd
command, it allows to change the listening interface of that
specific httpd binary. We leverage the hidden “-l” option to
successfully run HALE-IoT in the wrtsl54gs firmware.

We can further generalize this one-time manual effort into
HALE-IoT’s automation as follows. We can identify similar
service-exposing binaries using, for example, Yara rules [52],
or heuristics and matching based on op-code level or se-
mantic code-similarity [53]. Similar binaries could relate to:
i) the same device (but different firmware version), ii) the
similar device models (from the same vendor), iii) or even
distinct devices across vendors (e.g., “white label” products).
The takeaway from this case study is that manual efforts
can sometimes provide “intelligence” that can help to scale
the hardening of images over very large number of similar
firmware environments.

B. Evaluation on RaspberryPi with OpenWrt (device) (Q7)

To evaluate HALE-IoT over a bare-metal device, we deploy
an OpenWrt (LEDE 2017 build) into a RaspberryPi 3 device.
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OpenWrt is the most popular vendors in our dataset that has
firmware images for all our architectures. The LEDE 2017
build version of OpenWrt has a known XSS in its LuCI web
interface.6 Therefore, we first run a non-hardened OpenWrt
firmware and we see that the vulnerability can be exploited in
practice (see Figure 8 in Appendix A). We then hardened the
same OpenWrt firmware with HALE-IoT and see that with
the “WAF + SSL-proxy” configuration we can completely
prevent the XSS attack, in addition to being able to add full
HTTPS support (see Figure 9 in Appendix A). This case study
indicates that HALE-IoT works as expected on bare-metal
devices, but our next case study further dwells on this.

C. Evaluation on Asus RT-N12+ B1 (device) (Q6, Q7)

We evaluate HALE-IoT on another bare-metal device we
have had access to, i.e.: Asus RT-N12+ B1. This device runs
MIPS32 binaries, and in particular uses a custom httpd as
its web server. This image requires a retrofit at the binary-
level as the configuration parameters of the web server are
hardcoded into the binary and can not be identified by HALE-
IoT automatically. After reversing it, we see that the binary
accepts three arguments: 1) the name of the interface whose IP
address will be obtained through SIOCGIFADDR ioctl; 2) the
port; and 3) a way to enable SSL connections. The device also
runs and exposes TELNET and SSH services that we used for
“live implanting” (§ VII-A).

As a result of our implant, we see how HALE-IoT spawns
the WAF into the device, and how the web service is
secured behind HTTPS while hardening all other services.
We see that Raptor works as expected, detecting and pre-
venting potentially malicious input test-vectors. However,
we notice that the device periodically faced some resource
limitations manifested as unavailability of RAM memory.
Non-deterministically, when insufficient RAM is available
for handling HTTPS/HTTP/network requests via Hale-IoT
processing chain, the spawned process/thread (e.g., WAF, SSL-
proxy) is killed by the OS/Kernel due to lack of sufficient
memory blocks to allocate. This is a limitation rooted into
a combination of technical factors such as the hardware
runtime environment (i.e., device with very limited RAM),
and the implementation choices (i.e., SSL-proxy executable
size). However, this case study shows how our methodology
can harden Asus RT-N12+ B1. In practice, for this type
of device, a more lightweight defensive mechanism would
have to be deployed in order to make the added defenses
effective and usable. We further discuss the implications that
drive the choices of the implants in Section VII-H. This case
study shows that our generic methodology let us work with
heterogeneous firmware images, and it works also on bare-
metal devices and firmware.

D. Evaluation on Netgear R6220 (device) (Q6, Q7)

Next, we evaluate HALE-IoT on Netgear R6220. This
device runs MIPS32 little-endian binaries, and in particular
it uses the mini httpd web server. The web server does not

6More details here: https://github.com/openwrt/luci/issues/1731.

contain any configuration files, and the server options are con-
figured through the command line. Therefore, we can change
the listening port and interface via the server’s arguments.
We retrofitted Raptor and SSL-proxy on the device through
a Telnet server that can be enabled in debug mode. Raptor
worked as expected, however SSL-proxy did not work due to
Golang incompatibilities with older MIPS kernel versions7. As
an alternative to SSL-proxy, we use a statically-linked cross-
compiled lighttpd server with support for SSL/TLS and reverse
proxy. We use a configuration that listens on port 443 with
SSL enabled and redirects incoming requests to the WAF.
As a result of using lighttpd as an alternative, we can see
that the extra security layers added by HALE-IoT are working
correctly. This case study shows us that our methodology is
functional, flexible and independent of the type of tools used.

E. Evaluation on Linksys EA4500 (device) (Q6, Q7)

Finally, we evaluate HALE-IoT on the Linksys EA4500
device. This device runs ARMv5 and lighttpd binaries as
a web server. The default firmware does not present any
access to the command line, which posses a challenge to
HALE-IoT . However, we find a workaround that shows how
our system can be deployed through unconventional means.
Linksys EA4500 allows a user to connect USB devices to
the router to share files over the network. When a USB is
plugged in, it is mounted in the /tmp folder of the device. If
a folder named packages exists, it is symlinked directly
to the /opt directory. Finally, whatever file is present in
/opt/etc/registration.d/, it will be executed by the
shell8. Therefore, we use this hack/vulnerability to add a
statically-linked version of dropbear and HALE-IoT into the
device’s running firmware. As a result of this implant, Raptor
WAF and SSL-proxy work properly together with access to
the device via SSH to update or modify its configuration.

VII. CHALLENGES AND DISCUSSIONS

A. Delivery of the Retrofitted Implants

Modifying an existing firmware is the first step in the
delivery of an implant, and it can be done leveraging tools
like Firmware-Mod-Kit (FMK) [54]. However, in certain cases
implants are not easy to realize in practice. This happens, for
instance, when the firmware update needs a digital signature
or there is a cryptographic protection (e.g., strong and secured
private key, correct implementation of validation). However,
there are also vulnerabilities that allow flashing a non-certified
or modified firmware into a device with these restrictions.
Some of these vulnerabilities relate to forging digital signa-
tures or bypassing digital signature verification. Giese [55]
exploits a Domain Name System (DNS) redirect to trick
Xiaomi Cloud to download modified firmware from a local
server. Another example is when there is no firmware update
available, except the original firmware running on the device.
Finally, low level frameworks like Firmware-Mod-Kit may be

7https://github.com/golang/go/wiki/MinimumRequirements
8Dan Walters: https://web.archive.org/web/20120914060622/http://blog.d

anwalters.net/
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unable to support the specific firmware format that requires
hardening. We next discuss alternative methods that HALE-
IoT could deploy to circumvent this limitation. These methods
revolve around the idea of making the implant directly into the
device in runtime.

The first option is the use of network or serial interfaces
(e.g., Joint Test Action Group – JTAG, Universal Asyn-
chronous Receiver-Transmitter – UART) to access the built-
in TELNET and SSH services via the bootloader or the OS
prompt. Then, we can implant HALE-IoT using automation
scripts over traditional OS sysadmin techniques as shown
in the case study in Section VI-C. The second option is to
exploit a known vulnerability in the running device, such as
Remote Code Execution (RCE) or Command Injection (CI),
to inject benign code and implant the HALE-IoT , for example
as demonstrated for Linksys EA4500 (see Section VI-E).
Naturally, HALE-IoT can then also patch those particular
vulnerabilities so that they can not be abused further. Note that
similar techniques have been used by both highly-competitive
malicious botnets and vigilante IoT malware [56]. While
this section discusses the challenges of modifying firmware
(software), we next look at the issues behind dealing with the
actual devices (hardware).

B. Persistence of the process behind Retrofitting Implants

The IoT realm is heterogeneous, and the process of
retrofitting additional security into these devices is highly
technical task. One task that remains particularly challenging
is keeping these retrofits persistent across reboots and power-
offs. HALE-IoT is stored at the filesystem level (e.g., flash
storage) to keep persistence. However, several factors can
prevent HALE-IoT from being persistent, including: factory
resets, firmware upgrades, forceful flash storage cleanup (e.g.,
SPI communication with flash chipset), or even protections
from manufacturers (e.g., restricting partitions to read-only).
In many cases, the implants (both benign and malicious) can
survive the above “cleanup” scenarios by installing an implant
component at the bootloader level, thus essentially acting as
a boot-time rootkit. However, this is a challenging research
area that requires further explorations and ethical consider-
ations. Other specific protections from manufacturers can be
overcome with case-by-case basis techniques For example, the
restriction of partitions to read-only) could be overcome with
repack and re-flash of the firmware (cf. Section VII-A).

C. Dataset Size and Representativeness

In order to analyze, harden, and test our HALE-IoT system,
a dataset of firmware is required. The vendor’s website is the
premier choice to gather firmware. However, third-party web-
sites also host firmware images. The most convenient way to
acquire firmware online is via web-crawlers [1], [3]. However,
harvesting a dataset through web-crawling has its limitations.
On the one hand, the firmware that were once available online
are many times being pulled offline by the vendor. This can
threaten the reproduciblility of the evaluation. For example,
state-of-the-art projects, such as FIRMADYNE [3], face this
problem and we see a gap from the time of their release to the

time of our experiments — many URLs and firmware are not
available online anymore [1], hence limiting the experimental
datasets from the start. Even if the crawlers can be updated
to work with a redesigned website (which is tedious and does
not scale in effort), they fundamentally can not be fixed to
download a firmware file taken offline by the vendor.

On the other hand, some devices do not have firmware
images available online. This could be due to the nature of
the product or the age of the device. Pulling the firmware
out of a device through Telnet or secure shell (SSH) connec-
tions is possible in some scenarios [57]. However, in many
cases, memory dumps through hardware hacking is the only
viable option [58], [59]. IoT devices often accommodate low-
level hardware interfaces such as Universal Asynchronous
Receiver/Transmitter (UART) or Joint Test Action Group
(JTAG), through which it is possible to connect directly to
the device’s bootloader or to its root shell [59], and then
take a storage and memory snapshot, or just perform a live-
implant. This approach requires extensive human expertise and
interventions, and also does not scale well.

A fundamental challenge to all research targeting IoT de-
vices and firmware the lack of a highly representative baseline
of IoT firmware dataset. Building a dataset is challenging
and tricky from multiple perspectives. On the one hand,
collected firmware can face copyright scrutiny from vendors
if it includes proprietary firmware. Also, it is highly unlikely
that many relevant and omnipresent vendors will sign-off
releases of their firmware into such a dataset. On the other
hand, ignoring proprietary images and including only open-
source firmware would be relatively easier to accomplish,
however this would bias the dataset and make it unrepresenta-
tive toward the myriad of Commercial-Off-The-Shelf (COTS)
devices running proprietary firmware. Our evaluation uses the
FIRMADYNE dataset [3], which is considered the state-of-the-
art. From it, we were able to successfully process 395 images,
which it is comparable in size to the datasets used by prior
works [2]. However, given the large number of IoT vendors,
this dataset can be seen as limited. Future work is needed to
create a dataset, that is:
• highly representative baseline of IoT firmwares (e.g., multi-

dimensional representativeness — CPU arch, OS, device
type, core services and functionality, networking interfaces
and stacks, firmware packaging formats),

• not facing licensing issues (e.g., firmware that is proprietary,
non-distributable, etc.),

• stable and always available for download, duplication, and
improvement (e.g., never lost partially or totally).

D. Firmware Obfuscation

Firmware images are often packaged and compiled, thus,
requiring preparation before analysis [1]. Specialized software,
such as Binwalk [41] and BinaryAnalysis-NG (BANG) [60], is
used to unpack the firmware revealing the file system and other
information, thus enabling further analysis. However, as there
is no standardization, some manufacturers try to obfuscate
and complicate unpacking and reversing their firmware, for
example, by adding custom format compression [1]. Due to
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the memory and other resource constraints, IoT devices often
ship with file systems designed for constrained devices, such
as Squash File System (SquashFS) or Journaling Flash File
System (JFFS, JFFS2) [61]. These file systems are often read-
only and have file system compression enabled. Additionally,
software such as Firmware-Mod-Kit (FMK) [54] is one of the
few available and one of the most popular tools to perform
firmware modifications on a relatively wide range of formats
and devices.

When not performing a live implant, HALE-IoT focuses on
retrofitting legacy binary firmware via firmware modifications,
hence it requires and performs: i) the unpacking, and modifica-
tion steps (if emulation is involved); ii) the unpacking, modifi-
cation, and also repacking (if physical devices force a firmware
upgrade for implant to work). In these cases (especially when
physical device with firmware upgrade is involved), in the
end must produce a firmware that is accepted by the device
and is fully functional. However, even though both firmware
unpacking as well as modification-and-repacking are some-
what represented by existing toolsets, current state-of-the-art
does not addresses the fundamental challenges of unpacking
and modification-and-repacking of non-trivially obfuscated or
encrypted/signed firmware. In this sense, HALE-IoT system
inherits all the limitation of the existing tools (e.g., Binwalk,
BANG, FMK), which however is not a limitation of the HALE-
IoT methodology. In our current evaluation, the physical
devices and the emulated firmwares were representative to
the IoT device populations that allows relatively easy live-
implanting as well as unpacking, modification, and repacking.
We posit that more work is required to overcome the analysis
of obfuscated or encrypted firmware packages.

E. Runtime Environments Being Obsolete

Runtime challenges became notorious when we started
experimenting implants into random COTS IoT devices for
the purpose of our case study. We next discuss some of
those challenges to illustrate the complexity of the problem
space and elicit research efforts towards better instrumenting
obsolete runtime environments.

In one instance, the router undergoing hardening had the
vendor’s original firmware, and was running BusyBox, Linux
kernel, and other executable files compiled for MIPS-I. How-
ever, the Buildroot environment we use (including many of
its prior versions), while producing MIPS32 builds, does not
produce MIPS-I cross-compilations anymore 9. For example,
even though we tried to run on the router our toolsets pre-
compiled by Buildroot for MIPS target, certain binaries threw
errors such as “Illegal instruction”. This is the most tangible
confirmation of a mismatch between the hardware CPU In-
struction Set Architecture (ISA), and the ISA generated into
the executable by the cross-compilation.

Addressing the “obsolete firmware environment” challenge
is important for several reasons. Any system, whether offen-
sive [51] or defensive such as HALE-IoT , will most likely face
exactly similar challenge on a constantly and increasing basis.
Some reasons for this are that devices become obsolete/EOL

9https://github.com/buildroot/buildroot/blob/master/CHANGES

faster and on a larger, and the technology and software
development life-cycle is constantly accelerating. The above in
turn implies several more things. First, to support many legacy
IoT devices will require having an ever growing toolbox of
cross-compilation environments. Such backward compatibility
toolbox should provide as complete coverage as possible in
terms of combinations for CPU ISA, OS/kernel, Application
Binary Interfaces (ABI), runtime environments (including all
different versions and inter-compatibility). Second, it will re-
quire human expertise and manual intervention to generate and
maintain such cross-compilation environments, as well as to
ensure that the target-specific builds of system such as HALE-
IoT actually work without errors (e.g., “Illegal instruction”).

F. Runtime Services Hardcoded to 0.0.0.0 :< port >

Sometimes network services (e.g., web-servers) have the
port and the network interface binding hardcoded instead
of being read from a configuration file (whether standard
or proprietary one). This is problematic as it exposes the
original built-in network server to potential attacks coming
from attacker-accessible interfaces. In fact, in our dataset that
expose web services, there were 32 firmwares that had either
the interface and/or the port hardcoded directly into the binary.
Ideally, with HALE-IoT (cf. Figure 1) the aim is to isolate
(inherently) vulnerable services to 127.0.0.1 :< port >, and
to expose via HALE-IoT only the hardened services.

One possible workaround to this challenge is to manually
reverse-engineer and binary-patch the executable files of in-
terest and ideally force them to bind to 127.0.0.1 :< port >.
While this approach most likely will work in most cases,
it cannot still scale similarly to the automated configura-
tion change approach we presented above. Another possible
workaround is to force-start a dummy TCP/UDP server on
0.0.0.0 :< port > before the built-in network service (e.g.,
web-server on port 80) has a chance to bind to it, and then
observe how the original service behaves for re-binding (e.g.,
moves to another port, moves to another interface, fails to start
altogether). Implementing and testing these adjustments is the
scope of our future work.

G. From Self-signed HTTPS Certificates to Full CA Chains

One of the core aims of HALE-IoT is to generically harden
IoT devices with proper HTTPS, including support for full
chain certificates. For this, HALE-IoT approach uses the
concept of HTTPS-proxying that creates a proper HTTPS
service point that is being relayed to the built-in web server.
Our current implementation choice is to use SSL-proxy, that
provides latest and most secure TLS implementations, and
supports full chain certificates. However, in order to simplify
our experiments and for several practical reasons, we have
used self-signed certificates generated by the SSL-proxy itself.
Should we deploy and evaluate HALE-IoT on real-world
internet facing IoT devices in the future, the following minimal
steps would ensure an example implementation when using
proper PKI full certificate chains:

1) Configure and connect the device to a public
DNS sub-domain name under user’s control (e.g.,

110



14

using DDNS services or otherwise), for example
device-X.fleet-Y.service-provider.c0m.10

2) Have a full certificate chain issued by a
trusted CA (e.g., Let’s Encrypt), and covering
*.fleet-Y.service-provider.c0m or
device-X.fleet-Y.service-provider.c0m
(depending on the desired granularity of “device identity
management” versus “PKI/certificate/key control”).

3) Use the corresponding full certificate chain and its
private-key(s) to configure the SSL-proxy implant that
goes into a corresponding device. This can be done before
implanting HALE-IoT , or can be done while the hardened
device is already running by using HALE-IoT’s SSH-
based administrative interface.

The above is an example of the improvements needed to ensure
a secure management of DNS, PKI, certificates, private-keys,
and device identities.

Moreover, effective and efficient PKI implementations rep-
resent an ongoing area of research on its own [62], [63], espe-
cially when considering deployment of PKI for IoT [64], [65].
Therefore, we leave research, experimentation, and validation
of full-blown PKI support for HALE-IoT as future work.

H. Resource Constraints: Static Linking vs. Dynamic Loading

We present two approaches to deal with constrains in
physical devices. On the one hand, static linking allows the
toolsets within HALE-IoT to be self-contained, and not to
depend on the existence of particular libraries within the
target retrofitted firmwares. This makes the approach highly-
scalable — cross-compile once, run everywhere. However,
this approach considerably increases the size of the binaries
included with the implant. This is problematic from a storage
perspective, and from a memory perspective as there is essen-
tially a possible duplication of library code loaded into RAM
due to static linking. Flash storage and RAM memory are
quite constrained and minimal in many devices. For instance,
Asus RT-N12+ features a 32MB RAM chipset, where 28MB
is allocated for userland applications, from which less than
2.5MB was available for entire HALE-IoT.

On the other hand, dynamic loading allows the toolsets to
be build with minimal binary size and runtime RAM memory
consumption, as there is no code duplication and the hardening
toolsets can rely on the libraries already present on device’s
storage and RAM. However, this approach is highly non-
scalable. For example, it means that the toolsets would have to
be linked with dynamic loading to a myriad of library versions
present in each different firmware version. Even if that could
be automated somehow, it does not guarantee that the library
exposes the correct and expected interface and functions (e.g.,
library is vendor-customized, missing headers).

This challenge is not easy to solve systematically. Our
experience suggests that the best approach is to write highly-
optimized toolsets design to fit into highly-constrained devices.
If this is not feasible, then the newly developed hardening

10A full first-level DNS domain name would also work for a single device,
but is sub-optimal and hardly practical for managing larger fleets of devices.

toolsets, and especially the ones that are tailored specifically
for IoT devices, should incorporate these design principles.

I. Inherent Limitations of WAFs and xAFs

Like any piece of software, WAFs and xAFs or, in general,
any implant that can be retrofitted into a system may be
subject to limitations that can range from own implementation
errors (e.g., WordPress WAF plugin recently vulnerable to
SQLi itself 11), or new vulnerabilities and zero-days that may
arise in the future to outdated software configurations. Such
fundamental limitations would also be inherited by HALE-IoT .

One limitation is that most WAFs can detect and prevent
input-driven exploits, but very often they are unable to detect
and prevent other attacks such as “stored XSS”. Another
limitation is that WAFs are mostly rule-based, hence the
presence or absence of specific rules may affect the successful
of detection/prevention versus a failed one. Also, keeping such
rules up-to-date is another factor that may affect or limit the
effectiveness of any given WAF. We have designed HALE-
IoT with an administrative interface in mind. This feature, if
used often and correctly, may help overcome the limitations
of outdated rule-sets and components. Though technically
possible, we leave full automation of updating HALE-IoT rule-
sets (and other components) as future work.

As a result of our work we have fixed several bugs in
Raptor that have improved the overall reliability of the WAF.
The discovery of the bugs and the development of their
patches are a relatively modest contribution in itself. However,
their discovery underpins the importance and the need of
performing experiments such as ours, hence exposing well-
known and widely-used software to even more scenarios.
Bugs in Raptor WAF – HTTPS. During the course of
the experiments, we detected certain bugs in the way the
WAF should work. First, the communication lasted longer
than expected even when all the response had been received,
causing, for example, the browser to appear to still be loading
the web page. After a little inspection in the source code we
observed that the socket descriptor was not closing, which
caused the connection to remain established. Second, we
encountered strange behavior when the WAF was running
alongside the SSL-proxy. In this case, when we made POST
type HTTP requests that included some payload, Raptor did
not detect them correctly. When only the WAF was running
instead, it worked as expected with the same request. After a
closer inspection, we found out that the WAF checks whether
it is a web request or not, and analyzes this in case it is.
Most web clients (e.g., curl or web browsers) send the headers
and the data in the same packet (unless the data is very large
that it will be divided into different TCP packets). However,
the HTTP libraries of the Go programming language, split
the request — first send the headers, and then the data itself.
Hence, Raptor WAF fails to analyze the data from following
GET/POST request(s). We patched Raptor’s code to check the
data size of the headers, and then reassembling the packets
before analyzing and proxying the traffic to the web server.

11https://portswigger.net/daily-swig/wordpress-security-plugin-hide-my-w
p-addresses-sql-injection-deactivation-flaws
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Bugs in Raptor WAF – Memory Leaks. We found several
memory-related problems in Raptor WAF. First, we encoun-
tered a use-after-return error [66]. This error occurs
when a function returns the memory address of a local
variable, which is “destroyed” when the function terminates.
Therefore, the returned pointer references to an area of the
stack that could be used for another function, and could cause
unwanted behavior or exploitation of the program [67]. Finally,
we found several cases where dynamically allocated memory
areas are not properly released, which caused memory leaks.
Not freeing up memory causes the program to eventually
store more memory than it needs, which is a major issue
with memory-constrained devices (see also Section VII-H).
This can be an overall limiting factor to the usability of the
retrofitting implants, and can also lead to general instability
and crashes of the systems where Raptor WAF is installed,
i.e., can affect high-end servers and not just constrained IoT
devices. Lastly, there is inherent risk of the uninitialized mem-
ory created by the dynamic allocation algorithm. This is not
a security bug per-se (rather a feature of many programming
languages), but certain functions such as malloc return a
pointer to a block of memory that has uninitialized values
and can be potentially exploited [68], [69]. However, the
shortcoming of having uninitialized memory areas can be
effectively remedied by making use of the calloc function
which fills the dynamically allocated memory block with
zeros as deterministic initial value, at the expense of minor
performance overheads.

VIII. RELATED WORK

Hardening legacy IoT devices has been a subject of few re-
search papers over the years [14], [20], [22], [70]–[73]. Related
works follow different strategies, we group them in three cate-
gories: i) embedding defensive software or retrofitting security
measures, ii) securing firmware from malicious modifications,
and iii) securing access control and communications.

A. Retrofitting, Patching, and Hardening for Security

Enhancing the security of a single IoT device is a defensive
strategy that works best when the devices are not part of a
large centralized network of IoT devices. Cui and Stolfo [20]
introduce the notion of Symbiotic Embedded Machine (SEM),
a software design to embed defensive software into an existing
installation. The authors embedded an intrusion detection
system and show how these strategies can lead to the detection
of stealthy malware (i.e., a rootkit) into a Cisco router. Choi et
al. [14] followed similar approach in their research. They de-
veloped a scheme to deploy security features in poorly-secured
IoT devices through the deployment of a monitoring Web ser-
vice that manages multiple IoT devices in a network. Recently,
Maroof et al. [74] presented iRECOVer, a holistic solution for
the security management IoT devices. It aims to replace “vul-
nerable modules” with “secure modules” and offering “secure
channels” for communicating devices, without specifically
addressing backward compatibility and equivalent intended
functionality of secured modules. The authors demonstrated
iRECOVer only on a single Raspberry-Pi 4 Model B device

running customized open-source Linux distribution running.
The authors were unable to demonstrate iRECOVer on real-
world IoT devices, as they acknowledge that “programming
a commodity IoT device is difficult”. HALE-IoT is somewhat
fundamentally different as it is demonstrated to work on a
large number of heterogeneous and original commodity IoT
devices/firmware, and does not replace original modules but
rather wraps them with added-secured layers. These works
came to show that retrofitting security measures is a process
agnostic to the platform (hardware and software), and it does
not need to attune to any executable format. Similarly to ap-
proaches based on SEM, HALE-IoT is installed alongside the
original operating system and injects protecting payloads into
the target. However, prior work propose hardening solutions
that are tailored to specific attacks and are limited by the
scale and lack of automation. HALE-IoT is designed as a
generic method to deploy universal and hardening solutions
with proven effectiveness, while at the same time minimizing
intrusion and re-configurations to the original firmware.

Not every hardening tool is universal as some target to
secure a more specific section of IoT devices. For exam-
ple, Christensen et al. [70] introduced DECAF, their Unified
Extensible Firmware Interface (UEFI) firmware code pruning
system to reduce redundant and possibly vulnerable code from
firmware while increasing system performance and security.
These firmware commonly exist in motherboards. The DECAF
platform does this “debloating” by performing “dynamic itera-
tive surgery” and utilizing existing knowledge of the firmware
via removing possible known issues. The authors declare that
in some cases, DECAF has reduced the UEFI firmware code
by over 70%; thus, notably reducing the attack surface of
the firmware. The authors claim that DECAF could poten-
tially be extended to prune any type of firmware. Similarly,
Cui et al. [51] propose ABSR as an early conceptual ideal
for firmware code-debloating technique achieved via binary-
patching and binary-rewriting. Recently, Zhang et al. [75]
presented µTrimmer, a system to identify and remove unused
basic blocks from binary code of shared libraries and tools.
The authors implemented µTrimmer for MIPS architecture
(a very common one for IoT devices), and tested its effec-
tiveness on SPEC CPU2017 benchmarks, popular firmware
applications (e.g., OpenSSL), and a single real-world wireless
router firmware image. µTrimmer demonstrated that static
library debloating on stripped binaries challenge, while being
enormous, is not insurmountable for MIPS-based firmware
– their system produced functional programs while reducing
unnecessary exposed code surface and remarkably eliminating
various reusable code gadgets. However, debloating itself is
ineffective at hardening core services in the firmware (e.g.,
fragments of the firmware that cannot, or should not, be
pruned). Additionally, debloating in principle is a high-risk
technique as it may prune code segments that are instrumental
for normal and intended operation of the system/device as a
whole. Our system avoids debloating altogether and hardens
the potentially vulnerable services with securing wrappers that
bring proven effectiveness (e.g., Raptor WAF) and security
guarantees (e.g., SSL-proxy).

Standalone IoT devices often interface with the user via
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built-in web servers due to its wide and cost-effective adoption.
However, web services often introduce vulnerabilities to the
system. Gourdin et al. [76] tackled this issue by develop-
ing WebDroid, an IoT focused Android OS web interface
developing framework with security as a priority. WebDroid
enables developers to easily create more secure web inter-
faces for their Android-based IoT devices. The framework
takes into account many important security issues such as
bad authentication practices, cross-site scripting (XSS), and
cross-site request forgery (CSRF). These frameworks are an
interesting first step towards securing devices for vendors that
lack means to produce secure environments [77]. However,
these type of frameworks are meant to be integrated into the
source-code and development life-cycle, and can not be easily
adopted to secure firmware already deployed. Our work, on the
other hand, practically demonstrates a systematic approach to
integrating defensive measures post-deployment and without
access to the source-code.

B. Malicious Firmware Modifications

Other related works perform firmware modification to attack
devices [73], such as malware targeting Universal Serial Bus
(USB) devices [78] or printers [51], as well as attacks to
critical infrastructures [79] (including smart grids [80]). These
works are certainly a strong testament that firmware mod-
ifications have important real-world implications. However,
modifying the firmware to embed defensive and protective
mechanisms (as we do with HALE-IoT) requires an entire
methodological consideration and evaluation to both preserve
the correct functioning of the device (§ V-E) and to assess the
real effectiveness of the multi-dimensional defenses (§ V-D).

C. Authentication and Encryption of IoT Communications

Perhaps weak authentication, lack of encryption and vul-
nerable web services are altogether one of the largest attack
surfaces in IoT devices to date [7], [26]–[28], [81]–[83]. There
is a significant number of previous work that:

1) measures and points out crypto-security deficiencies in
the IoT realm as a whole [7],

2) identifies the use of weak cryptography in constrained
devices [27], [28], or

3) discovers weaknesses in the way TLS or PKI is deployed
over the IoT [26], [82].

However, none of the existing works in the literature manage to
effectively harden these services due to its intrinsic complexity
— “HTTPS deployment process is far too complex even for
people with proficient knowledge in the field” [84], not to
mention when such deployment is rooted into an obscure
component such as the firmware of a legacy IoT device. It
is also well known that the web is “large and complicated
enough to make even conceptually simple security upgrades
challenging to deploy in practice” [85]. The web of IoTs of
all networks is perhaps one of the hardest to harden. Still, our
work presents a practical, sound, and actionable contribution
towards addressing these non-trivial challenges.

D. Over-The-Air (OTA) Firmware and Software Updates
Kolehmainen [86] performed a survey of secure firmware

updates for IoT. The author concluded that there are virtually
as many firmware and software update procedures as there are
manufacturers, and proposed a common four element update
model – packing, delivery, authentication, and attestation.
Bauwens et al. [87] summarized and outlined key-principles
of OTA for IoT devices and deployments.

Regarding (secure) OTA and Firmware OTA (FOTA) imple-
mentations, the automotive industry is perhaps the forerunner
and trend-setter within the research literature. Idrees et al. [88]
showcased a model for manufacturers, workshops, and vehi-
cles to establish secure end-to-end link using a trusted platform
model and secure communication. The model can be used
to secure FOTA updates. Chowdhury et al. [89] proposed an
ISO 26262 and SAE J3061 utilizing assurance case template
for OTA updates. If used properly, the template is a valuable
tool for manufacturers to root out security issues in their
automotive OTA implementation in the development phase.

In 2020, Halder et al. [10] concucted a survey in regards
to OTA updates of network connected vehicles. The identified
some challenges that the industry is yet to fully solve. For
example, the software distribution needs to protect privacy as
well as be secure. Latency of the software installation can also
be an issue especially to autonomous vehicles. Furthermore,
key management is generally based on the trust of pre-installed
keys, considering the lifetime of an automobile, key refresh
may be in order and propose issues.

However, our present work have a different and comple-
mentary impact, meaning that HALE-IoT does not propose to
solve any challenges faced by (secure) OTA/FOTA software
updates. In fact, HALE-IoT itself could be delivered/deployed
by any OTA/FOTA system that is running (or supported) by
the particular device(s). We leave the exploration of integrating
HALE-IoT into OTA/FOTA workflows as promising future
work.

IX. CONCLUSION

The Internet and private networks are littered with millions
of vulnerable IoT devices. A large number of these devices
are effectively abandoned by manufactures, who do not issue
patches to fix known issues. This prevents users and network
administrators from keeping their devices up to date, and thus
poses an endemic risk to the security of the Internet, as well as
of the enterprise and private/home networks. Hardening IoT
devices allows to reduce the attack surface, emerging as a
promising countermeasure. However, prior work is limited by
scope of their contribution, and clearly fail to deal with the
heterogeneity and the many technological constraints of both
modern and legacy IoT devices.

In this paper, we presented a systematic methodology de-
signed to retrofit sophisticated state-of-the-art defensive mech-
anisms into IoT firmware, with particular focus on legacy and
obsolete firmware. We tested our framework with a wide-
range of firmware images from different vendors and het-
erogeneous architectures, totaling 395 emulated firmware and
four physical devices. Our results demonstrated that HALE-
IoT successfully retrofits defensive implants in a scalable and
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safe manner (i.e., without breaking the firmware). We also
evaluated the performance of our approach under a battery of
one hundred attacks, showing it is feasible to deploy HALE-
IoT in the wild.

We discussed our findings and identified a number limita-
tions that came to show the challenges behind dealing with
the idiosyncrasies of hardening IoT devices. Our discussion
elicited also a number of future promising directions. First, an
interesting avenue of research is to explore the use of defense-
in-depth strategies as a mechanism to harden IoT devices. This
introduces non-negligible trade-offs between the complexity
of the method (e.g., iptables, Snort, fail2ban) and the overall
gain. Second, we identify the need to automate the cross-
compilation of the implants to more CPU architectures (e.g.,
RISC-V, or Xtensa) and to a more diverse set of obsolete
environments (e.g., MIPS-I), while minimizing the overall
footprints at build and runtime (e.g., storage, RAM, CPU).
Finally, we would like to encourage researcher and industry
practitioners having access to large sets of physical devices to
enlarge the evaluation and their support in HALE-IoT .
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APPENDIX

A. Supporting Materials – Screenshots

1) Screenshots for Evaluation on IPTV camera (emulation):
Figure 6 shows the TRENDnet TV-IP121WN IP camera web
interface running with HALE-IoT via firmware emulation.

Fig. 6. Screenshot depicting emulated TRENDnet TV-IP121WN IPcam’s
web-interface along with the generated HTTPS certificate as part of the
SSL/TLS hardening by HALE-IoT (emulation).

2) Screenshots for Evaluation on CVE-2016-1555 (emula-
tion): Figure 7 shows the successful detection of the attempted
exploitation of CVE-2016-1555 (XSS and Command Injec-
tion) on an emulated firmware that is hardened by HALE-IoT .

Fig. 7. Evaluation on CVE-2016-1555 (emulation): Screenshot depicting
successful detection and prevention of both XSS and Command Injection
attacks attempting to exploit CVE-2016-1555 on an emulated firmware
hardened with HALE-IoT .

3) Screenshots for Evaluation on RPi3 with OpenWrt (de-
vice): Figure 8 and Figure 9 show how HALE-IoT works on
a RaspberryPi 3 running OpenWrt (Section VI-B). Figure 8
shows the successful exploitation of an XSS in the LuCI web
interface without HALE-IoT , while Figure 9 shows that the
attack is detected and prevented when the device is hardened
by HALE-IoT .

4) Screenshots for Evaluation on several devices (device):
Figure 10, 12 and 11 show the successful installation of HALE-
IoT on the physical devices Asus RT-N12+ B1 (Section VI-C),

Fig. 8. Evaluation on RPi3 with OpenWrt (device): Screenshot depicting
XSS in OpenWrt’s LuCI web interface running on RPi3 without HALE-IoT .

Fig. 9. Evaluation on RPi3 with OpenWrt (device): Screenshot depicting
successful prevention of XSS and addition of HTTPS after RPi3 running the
same originally vulnerable OpenWrt was hardened with HALE-IoT .

Netgear R6220 (Section VI-D), and Linksys EA4500 (Sec-
tion VI-E), respectively.

Fig. 10. Evaluation on Asus RT-N12+ (device): Screenshot depicting HALE-
IoT implant successfully running on Asus RT-N12+ B1 device.

5) Screenshots for Evaluation on Linksys wrtsl54gs Hard-
coded Binary (emulation): Figure 13 shows the Ghidra decom-
piled code of the BusyBox httpd applet showing that it accepts
an option to change the IP address to bind the web server. On
the other hand, Figure 14 shows that this option is not available
in the help menu of the httpd applet. Finally, Figure 15 shows
that through this option it is possible to isolate the web server
when it is working with HALE-IoT (Section VI-A).

Chapter 7. HALE-IoT: HArdening LEgacy Intenet-of-Things devices via
retrofitting defensive firmware modifications and implants

117



21

Fig. 11. Screenshot depicting Netgear R6220’s web-interface along with the
generated HTTPS certificate as part of the SSL/TLS hardening by HALE-IoT .

Fig. 12. Screenshot depicting Linksys EA4500’s web-interface along with the
generated HTTPS certificate as part of the SSL/TLS hardening by HALE-IoT .

Fig. 13. Linksys wrtsl54gs Hardcoded Binary (emulation): Screenshot
depicting the presence of a hidden “-l” option used for binding network
interface.

Fig. 14. Linksys wrtsl54gs Hardcoded Binary (emulation): Screenshot
depicting that the builtin httpd server’s help menu does not normally show
the hidden “-l” option.

Fig. 15. Linksys wrtsl54gs Hardcoded Binary (emulation): Screenshot
depicting that builtin httpd server did a successful re-bind to 127.0.0.1 by
forcing this via the hidden “-l” option.
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CHAPTER 8

Conclusions and Future Work

The purpose of this chapter is to conclude the doctoral thesis by summarizing the conclu-
sions drawn from this work. In addition, it also discusses some lines of research that follow
on from this proposal.

8.1 Conclusions

The rapid and growing development of the IoT ecosystem brings us services and utilities
that a few years ago seemed unthinkable. However, this has led to a scenario in which
everything is connected, prompting security and privacy concerns. In recent years, the
number of attacks on this type of device has increased andwill continue to do so in the years
to come. Therefore, having solutions to understand the actions carried out by attackers, as
well as tools to analyze and detect attacks, is an important aspect of cybersecurity.

In view of the above, the main conclusion of this doctoral thesis is that there is a need
to model, analyze and detect attacks in the IoT ecosystem, which has been the main
objective of this doctoral thesis. To achieve this goal, the actions carried out by the attack-
ers have been measured, and tools have been designed and implemented to analyze and
correlate malicious software. The last step was to design and implement a methodology for
adding additional security measures to IoT devices.

In order to fulfill this objective, several goals were established to address the proposal
in the correct way. The first goal was centered on the analysis of the proposals from
the scientific community regarding the classification and detection of threats in
IoT environments, and from this the following conclusions can be drawn:

• Technology is constantly evolving and it is crucial to understand the latest proposals
in order to keep at the cutting edge in the research process.

• The IoT ecosystem is very heterogeneous, being made up of different types of devices
with highly varied hardware and software architectures, and interconnected to each
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other through different communication protocols. All this has led to the appearance
of inherent vulnerabilities in this ecosystem and a perfect scenario for cybercriminals,
who take advantage of these vulnerabilities to exploit them in the wild and get access
to devices.

• Malware targeting Linux/IoT-based systems is continually growing and, unlike that
of other ecosystems such asWindows andAndroid, there are notmany tools available
to perform dynamic analysis, mainly because IoT malware is compiled for different
hardware architectures (e.g., PowerPC, ARM, MIPS).

Regarding the second goal, which focused on the analysis of attack trends in the
IoT ecosystem, this allowed the study of two honeypots. The first was focused on Tel-
net and SSH services and the actions that attackers take once they are in control. From
this analysis we can conclude that brute force attacks on these services remain one of the
preferred methods for taking control of, and infecting, devices. Most of the sessions estab-
lished were carried out automatically, and they can be related by the commands they used
once they accessed the device. These types of honeypots are an effective way of collecting
new variants of malware that attack IoT devices and valuable information about the actions
they take. The second honeypot was focused on the actions that attackers take once they
gain access to VoIP accounts. From this analysis we can conclude that phone scammers
have access to more powerful technology that allows them to target a larger number of
victims. They use brute force to gain access to accounts, but also obtain valid credentials
through paste sites and underground markets. Different fraud campaigns have been iden-
tified through the personalized honeypot, with Toll Evasion and Revenue Share being the
two most prevalent types. Fraudsters use different tricks to evade calling plan restrictions
and use calls to incorrect numbers in order to check whether the compromised systems are
honeypots. Directly related to this second honeypot, an architecture was deployed to deal
with cybercriminals who use phone calls to carry out their scams and classify call types. A
scam and spam classifier was built using different machine learningmodels and two chatbot
models were created. The main conclusions drawn from this study are that the rules-based
chatbot provides the best performance in terms of interaction time with fraudsters, and that
this type of solution allows us to deplete fraudsters’ resources and prevent that time from
being used to attack other victims.

Regarding the third goal, which is focus on the design, implementation and evalu-
ation of an architecture to analyze IoT malware, a modular framework was designed
to automate the analysis of malware targeting IoT architectures. This framework supports
different CPU architectures, and is capable of extracting the static and dynamic characteris-
tics of a sample and relating it to other similar samples that have previously been analyzed.
The framework was evaluated with almost 1,500 malware samples that were divided among
the supported architectures. The main conclusions drawn from this goal are the following:

• The automation of malware analysis for tthe IoT is effective in performing large-
scale analysis and obtaining information on which samples are similar to each other
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through their clustering and visualization. This allows analysts to spend their time
and effort on samples that are not similar to other known samples.

• Through static analysis it is possible to cluster malware samples, although if the
characteristics are architecture dependent (e.g., ISA), it is not possible to correlate
the samples between different architectures. Also, one of the main disadvantages of
static features is that they can be affected by compiler options and code obfuscation.

• Through dynamic analysis it is possible to analyze samples compiled for different ar-
chitectures, allowing them to be correlated with each other regardless of their archi-
tecture. However, obtaining dynamic features is more expensive than static analysis
and not all architectures present in the IoT are supported for emulation in QEMU.

The fourth goal of this thesis is focus on the development of tools and techniques
to assist malware analyst and automate the process of relating malware samples.
This goal was achieved by designing a methodology to assist malware specialists in the
classification, discovery and vetting of malware samples tailored to Linux-based IoT mal-
ware. Through data analysis, static and dynamic features were extracted to characterize the
malware in different threats. The proposed methodology allows us to extract knowledge
from large sets of related samples through the analysis of some of them and extrapolate the
results to the rest. This makes it possible to investigate a large number of unlabeled samples
in order to know their behavior. The main conclusions of this goal are the following:

• Malware specifically designed for the IoT is relatively simple, and techniques based
on static analysis work well. This is mainly due to the fact that most samples do not
use any obfuscation technique, mainly because they do not need to avoid detection by
an antivirus due to the limitations of the devices in terms of memory and computing
capacity.

• The level of sophistication of the malware is very varied, from families with little
sophistication to some more complex ones that contain droppers or exploits.

• A large part of the analyzed clusters contain source code that is publicly available on
the Internet, so code reuse leads to the creation of new malware variants, and thus
very little effort is required in their creation.

• Although much of the IoT malware is aimed at creating large botnets to carry out
denial of service attacks, cybercriminals are taking advantage of the resources offered
by IoT systems to mine cryptocurrencies. This allows them to obtain an economic
advantage without having to invest in specific hardware or pay the electricity bill.

Regarding the last proposed goal, which corresponds to the design and implemen-
tation of a methodology for adding defensive capabilities to IoT devices, HALE-IoT
was designed. The methodology was tested on a large scale through the emulation of 395
firmware images from different vendors. Through emulation, a WAF and SSL proxy were
added to support HTTPS for the devices, and the performance in terms of CPU, RAM and
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response timewasmeasured and compared against the original firmware. The effectiveness
of HALE-IoTwas also evaluated with several firmware images containing some knownweb
vulnerabilities and on four real devices. The main conclusions that can be drawn from this
goal are the following:

• There are millions of IoT devices on the Internet and a large part of them are outdated
or do not receive security patches to fix known issues. Of the emulated firmware im-
ages, only 21.3% have an HTTPS server by default. These HTTPS servers mostly have
outdated versions of SSL/TLS and expired certificates, thus exposing this interface to
Man In The Middle (MITM) attacks.

• Most devices can be non-intrusively reconfigured to isolate the original web servers
to listen on localhost, replacing the original address with a WAF to inspect incom-
ing connections and redirect them to the original web server. This allows additional
security measures for web services to be incorporated into the firmware without in-
terrupting its original operation.

• Hardening IoT devices is a promising countermeasure that allows us to reduce the
attack surface of IoT devices, making it possible to detect and stop attacks against
vulnerabilities that are publicly known on the Internet, with very little overhead com-
pared with the original firmware.

8.2 Future Work

The work presented in this thesis is a first approach to modeling, analyzing and combating
attacks in the IoT ecosystem. However, attackers are constantly evolving and looking for
new ways to compromise devices. For this reason, this section presents several ways in
which the work presented in this doctoral thesis could be extended and complemented.

• Threatmodeling. In this dissertation, the Telnet, SSH and VoIP protocols have been
examined, studying how these services are exploited by attackers and what actions
are performed once they have control. Attackers use brute force to gain access to
devices, but also exploit known vulnerabilities in other services to gain access (e.g., in
HTTP, Home Network Administration Protocol (HNAP), and UPnP) [29]. However,
it is not always easy to obtain exploits in the wild using traditional honeypots with a
specific service as attackers can fingerprint the service. If the servicematcheswith the
model of the device to be attacked, the attacker can use the exploit to take advantage
of the vulnerability. Otherwise, they take no action, making it difficult to collect new
and more sophisticated attacks. This therefore, makes it difficult to obtain valuable
information from the attacker since it stops the execution. Although there are some
works focused on the creation of honeypots for the detection of attacks that are not
easy to capture with traditional honeypots [15, 17], this line of research is still in
its early days. For this reason, the field of computer security has yet to find new
ways of detecting these new types of attacks, meaning that a greater research effort
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is required from the scientific community in order to find more specific solutions for
certain devices and versions.

• Malware analyisis. IoT devices are a favorite target for malware creators, and
Linux/IoT-based malware will continue to evolve towards similar levels of sophisti-
cation as those of other platforms such as Android or Windows. Currently, IoT mal-
ware authors do not use advanced code obfuscation techniques to complicate static
analysis, and mainly rely on packaging samples with Ultimate Packer for eXecuta-
bles (UPX) [73, 74] or some modification of it (for example, inserting garbage bytes,
modifying strings or magic headers) to prevent it from being unpacked directly with
the official tool. Although the proportion of packed IoT malware in the wild is still
small, compared with the total number of samples, our automatic analysis frame-
work does not unpack them, and is therefore less robust against code obfuscation.
In addition, IoT malware can use sandbox detection or anti-debugging techniques to
detect whether the sample is running in a controlled environment [18], allowing it
to detect whether it is being monitored by tools that use technologies similar to a
code debugger or if the sample is running in an environment that uses virtualiza-
tion or emulation technologies. Therefore, our malware analysis framework can be
extended to use custom kernel environments that allow instrumentation and moni-
toring, thus making detection by malware more difficult. Furthermore, the work can
be complemented via new code similarity metrics that use higher level features such
as decompiled code, and thus allow searching for code similarities between samples
compiled for different architectures.

• Retrofit security measures. In this doctoral thesis, we have designed a method-
ology for implementing defensive measures in the firmware of legacy devices that
are no longer maintained by the manufacturer and therefore lack software updates.
There are different areas of interest for future work in this direction. First of all, our
methodology is focused on Type-I: general purpose OS-based devices according to
the taxonomy defined in [75]. The application of defensive measures to other types
of targets that are more limited in terms of storage and memory needs further inves-
tigation. During the evaluation of our methodology, we did not focus on performing
extensive regression testing on the web interfaces of the device or other services.
Therefore, it would be useful to carry out a large-scale functional analysis of the im-
pact that the implementation of defensive systems in devices can have. In addition,
in the Hale-IoT evaluation we used the Firmadyne dataset [26], which is considered
the state of the art. However, being proprietary firmware, the Firmadyne dataset only
contains the download links and not the firmware images. At the time of the experi-
ments, only 4,809 out of 23,035 images were available. Therefore, future efforts by the
community are needed to create datasets that are representative (i.e., with different
CPU architectures, OS’s, and functionalities), do not have licensing issues, and are
always available.
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