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pasado; sin ellos se me habŕıan hecho los 3 meses mucho más largos.
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importante en mi vida y me reservo las últimas palabras para ti. Gracias por tu cariño,
por tu apoyo, por tu comprensión, por estar ah́ı ¡¡¡Gracias por todo!!!. También quiero dar
las gracias a Amado, a Trini, a Marina y a la abuelita que también me habéis ayudado.
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Resumen

En los últimos años, los contenidos multimedia han crecido de manera espectacular.
Este crecimiento ha sido provocado por el rápido avance de las redes de telecomunicación
y el rápido desarrollo de los dispositivos móviles y de visualización. Cada d́ıa, millones
de v́ıdeos son transmitidos por Internet o son emitidos desde una estación de televisión.
Sin embargo, un v́ıdeo en bruto consume demasiados recursos (espacio en disco y ancho
de banda en las redes de comunicación), por lo que es necesario comprimirlo antes de ser
transmitido o almacenado, reduciendo el consumo de recursos.

H.264/AVC es el último estándar de codificación de v́ıdeo establecido, el cual es ca-
paz de obtener mayor compresión que otros estándares previos para una misma calidad.
Esta eficiencia en la codificación se logra mediante el uso de nuevas técnicas o mediante la
mejora de algunas ya existentes. Esta mejora en la compresión se obtiene a base de au-
mentar la complejidad de los codificadores. Es cierto que el futuro estándar H.265/HEVC
reemplazará a su predecesor (H.264/AVC), pero actualmente H.264/AVC es el estándar
más utilizado.

Desde que H.264/AVC fue establecido en 2003, ha habido muchas propuestas que han
tratado de reducir el coste computacional de los codificadores H.264/AVC y muchas de
ellas se han centrado en el módulo de inter predicción. Estas propuestas en su mayoŕıa han
tratado de identificar ciertos modos que no es muy probable que fueran a ser utilizados
para no tener que evaluarlos o definir algoritmos de búsqueda rápidos. Sin embargo, con
la aparición de las GPUs se ha abierto una nueva v́ıa para acelerar este módulo.

En el mercado existen varios fabricantes de GPUs, pero la mayor atención se la han
llevado las desarrolladas por NVIDIA debido a su facilidad de programación. La principal
caracteŕıstica de estas GPUs es disponer de una gran cantidad de elementos de proceso
en un mismo chip a costa de una reducción significativa de otros elementos, por ejemplo
la memoria cache. Estas GPUs son construidas siguiendo el modelo SIMD y son usadas
normalmente como co–procesador.

En este escenario, donde es necesario reducir el tiempo de ejecución de los codificadores
H.264/AVC, el uso de las GPUs es la solución ideal. Además, es importante mantener
la eficiencia en la codificación. Para ello, las GPUs van a ser usadas conjuntamente con
varios algoritmos diseñados para reusar la información de movimiento obtenida para ciertos
modos con el fin de obtener la información de movimiento de otros modos. Esta tesis
propone varias técnicas dependiendo del tipo de imágenes que se use en la codificación: se
ha propuesto un algoritmo para imágenes tipo P, otro para tipo B y otro para v́ıdeos 3D.

Los algoritmos propuestos en esta tesis reducen considerablemente los tiempos de
ejecución de los algoritmos que se han tomado como referencia (búsqueda completa y
UMHexagonS), mientras que proporcionan una buena eficiencia de codificación. Además,
las propuestas son capaces de mejorar a las propuestas previas que hay en la literatura.
Finalmente, se ha demostrado la eficiencia energética de las propuestas ya que, al usarlas,
el codificador consume menos enerǵıa que usando los algoritmos de referencia.
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Summary

In the last few years, multimedia content has grown dramatically. This growth has
been driven by both the rapid advance in telecommunication networks and the quick de-
velopment of portable devices and screens. Every day, millions of videos are transmitted
over the Internet or are broadcast from a TV station. However, raw video consumes too
many resources (storage capacity and network bandwidth), so video content is encoded
before being transmitted or stored, reducing the resources used.

H.264/AVC is the latest–established video coding standard, and it achieves much higher
compression than other previously existing video coding standards at the same quality.
This compression efficiency is obtained by adopting some new or improved coding tech-
niques. This improved performance is achieved by increasing the computational complexity
of the encoders. It is true that the future H.265/HEVC standard will replace its predecessor
(H.264/AVC), but at present the H.264/AVC standard is the most widely used.

Since the H.264/AVC standard was established in 2003, there have been many proposals
that have sought to reduce the computational complexity of the H.264/AVC encoder and
most of them focus on the inter prediction process. These proposals aim at discarding some
coding modes before being checked, or at proposing fast search algorithms. However, with
the emergence of GPUs, a new door has been opened for speeding up this quite complex
process.

In the consumer market there are different GPU manufacturers, but most attention has
been focused on the GPUs made by NVIDIA due to their programmability, the main feature
of these GPUs being the large number of processing elements integrated into a single chip at
the expense of a significant reduction in other components e.g. cache memory. These GPUs
are built following the SIMD programming model and are normally used as coprocessors
to assist the CPUs with massive data computations.

In this scenario, it is necessary to reduce the encoding time employed by an H.264/AVC
encoder, and GPUs are the ideal solution. Moreover, the coding efficiency should be
maintained. For this purpose, the parallel and powerful engine of NVIDIA GPUs will be
used jointly with algorithms designed to reuse the motion information of the smallest inter
prediction mode to obtain the motion information for the other higher inter prediction
modes. This thesis proposes several techniques depending on the frame/slice types used to
encode the video sequences, including an algorithm developed for P frames, an algorithm
developed for B frames and an algorithm developed for 3D stereo video sequences.

The proposals presented in this thesis greatly reduce execution time when compared
with the two reference algorithms tested (full search and UMHexagonS) and deliver an
acceptable coding efficiency. The proposed algorithms obtain almost the same coding effi-
ciency as the full search algorithm and surpass the coding efficiency of the UMHexagonS
algorithm. Moreover, the proposed algorithms outperform previous approaches available
in the literature. Additionally, the energy efficiency of the GPU solutions is also demon-
strated, since the GPU–based H.264/AVC encoder consumes less energy than the reference
H.264/AVC encoder.
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Chapter1
Introduction

IN this chapter, we introduce the main reasons that have motivated this work. Then,
we define the objectives we wish to accomplish in the course of this PhD, and finally

we outline the organization of this thesis.

1.1. Motivation

In recent years, we have witnessed a particularly rapid advance in telecommunica-
tions, caused by the rapid development of the Internet, telephony networks, mobile devices
(smart–phones, tablets and laptops) and screens. This has led to new market opportunities
for companies which provide all kinds of information to customers spread across the globe
using these networks.

Multimedia traffic in general, and digital video in particular, has increased spectacularly
in recent years. This video traffic, both on the Internet and on mobile networks, increases
daily. Nowadays, video coding is the main technology behind a wide range of applications,
which include video conferencing, video streaming, and more [Wiegand et al. 03] [Sullivan
et al. 06].

Moreover, Digital TeleVision (DTV), whether terrestrial or satellite, has been imposed
on the domestic TeleVision (TV) market. At present, users have the possibility to demand
the type of content they want to view at any time. High Definition TeleVision (HDTV) is
the latest trend regarding DTV, representing a revolution in the domestic TV market.

HDTV offers qualities close to those that can be seen in the best cinema, implying an
increment in the resolution of domestic TVs. The images for old TVs were transmitted
with a resolution of 720x576 pixels, while the images for recent HDTVs are transmitted
with a resolution of up to 1920x1080 pixels. That means that the image resolution, and
as a consequence the amount of information being transmitted or stored, is increased by
a factor of 5. If we take into account that one pixel is represented using at least 3 bytes,
it implies that one High Definition (HD) image is represented using nearly 6 Mbytes.

1
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Moreover, knowing that a video sequence is sampled at least 25 times per second, this
implies that a one hour video requires over 520 Gbytes to be stored, or 150 Mbytes per
second. Additionally, in recent years 3–Dimensional (3D) videos have emerged in the
industry in order to provide the sensation of immersion in the video scene. Usually, a
3D video is sampled using two different viewpoints (stereo), doubling again the amount of
information being transmitted or stored.

This huge amount of information must be transferred and processed in real time for
an appropriate visualization of the video content. However, such an amount of informa-
tion cannot be transmitted by existing interconnection networks or handled by existing
devices. This is where video compression standards become extremely useful. Companies
use these standards to store the information in a compressed form, minimizing the amount
of information sent to the clients.

A decade ago, MPEG–2 [ISO/IEC 99] was the most widely used video compression
standard. It was able to offer very good quality with an acceptable level of resource
utilization (network bandwidth or disc storage). However, companies demanded a new
video compression standard able to maintain the quality offered by MPEG–2, but able to
further reduce resource consumption. This new standard is the H.264 or MPEG–4 part
10 /Advance Video Coding (AVC) video compression standard [ITU–T 03] [ISO/IEC 03]
and was established in 2003. It is true that the future H.265/High Efficiency Video Coding
(HEVC) [ITU–T and ISO/IEC 12] standard will replace its predecessor (H.264/AVC),
but at present most architectures and video coding solutions are implemented using the
H.264/AVC standard.

The main purpose of H.264/AVC is to offer a good standard of quality and to be able to
considerably reduce the output bit rate of the encoded sequences, compared with previous
standards, with a view to being used in a variety of applications such as Digital Versa-
tile Disc (DVD), video-streaming, HDTV, etc., while exhibiting a substantially improved
definition of quality and image. However, these improved capabilities are obtained at the
expense of an increment in the computational complexity of the encoder. H.264/AVC
adopts many video coding techniques, such as multiple reference frames, weighted pre-
diction, a de-blocking filter, variable block size and quarter-pixel precision for motion
compensation, causing encoding time to become very high for applications that demand
real-time encoding.

Fortunately, the high computational cost introduced by the H.264/AVC encoders can be
efficiently reduced by adapting the sequential source code to parallel architectures. In re-
cent years, different high performance computing platforms have been used for this purpose,
such as clusters or supercomputers. However, these parallel architectures are usually very
expensive and their computing power is considerably above what an H.264/AVC encoder
requires. In this scenario, it is necessary to find other cheaper and smaller alternatives.

It is in the last five years when a small and cheap device with high computing ca-
pabilities has been introduced in high performance computing. These devices are known
as Graphic Processing Units (GPUs) and are normally incorporated in modern graphics
cards. As a consequence, GPUs are an interesting and low cost alternative to accelerate
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some processes that are part of the video encoding process. These devices, designed and
traditionally used for graphics applications, have recently been incorporating many process-
ing elements that can efficiently exploit the data parallelism inherent in many applications.
The progress of GPUs is now the focus of a great deal of attention and GPUs are moving
from being exclusively used in graphics applications to being used in what is now called
General–Purpose computing on Graphics Processing Unit (GPGPU) [GPGPU 07]. They
have changed from fixed pipelines to programmable pipelines. GPUs consist of hundreds
of highly decoupled processing cores that are able to achieve immense parallel computing
performance. Moreover, these GPUs provide high memory bus widths, high speed memory
chips, and high processor clock speeds. Graphics cards deliver specifications never seen
before.

GPUs are highly parallel and are normally used as coprocessors to assist the Central
Processing Unit (CPU) with massive data computations. CPUs and GPUs have differ-
ent instruction set architectures, forming what it is known as a heterogeneous computing
platform. Now, the two together can be used to accelerate various numerical and signal
processing applications [Shen et al. 05] [Krüger and Westermann 03], among others.

In the consumer market different graphics card manufacturers, such as NVIDIA and
ATI/AMD, have proposed their different GPU implementations. However, most of the
attention has been focused on the GPUs made by NVIDIA, since they have developed an
architecture called Compute Unified Device Architecture (CUDA) [NVidia 12], which can
be easily programmed using CUDA C. This programming language is a C–based high level
programming language designed to maintain a low learning curve for programmers familiar
with standard C. The main feature of these NVIDIA GPUs is a large number of processing
elements integrated into a single chip at the expense of a significant reduction in cache
memory. Each core executes the same instruction at the same clock cycle but on different
data. GPUs also have an external Dynamic Random Access Memory (DRAM) memory
which can be classified depending on its access mode.

In this scenario, the goal of this thesis is to reduce the computational complexity of an
H.264/AVC encoder as much as possible, and it is known that most of this complexity is
intended to remove the redundancies of the video sequences. One of these redundancies is
temporal redundancy, which is removed by the inter prediction module of an H.264/AVC
encoder. This module iteratively checks how movement takes place within a search area.
To reduce H.264/AVC encoder complexity, an NVIDIA GPU will be used, but also a
technique to reduce computation. This technique uses the motion information of some
encoding modes to obtain the motion information of other encoding modes. Moreover, it
is desirable for the encoding efficiency of H.264/AVC to be maintained as far as possible,
so the encoded bit stream will be evaluated in terms of image quality and of the number
of bits required to store or transmit it. Additionally, the energy efficiency of the proposed
H.264/AVC encoder will be evaluated, since this is a strong criticism that has been made
of GPU solutions.

There are many potential applications of this thesis. Nowadays, GPUs are available
in a wide variety of environments, ranging from small and cheap personal computers, to
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large and expensive supercomputers [TOP500 12]. NVIDIA manufactures different GPU
solutions to satisfy the requirements of these different environments. As a consequence,
the solutions proposed in this thesis can be used by personal computers when performing
a video conference, by more powerful servers dedicated to video streaming or by large
supercomputers in video storage industry.

1.2. Objectives

As was mentioned at the end of the previous section, the main goal of this thesis is to
reduce the encoding complexity on an H.264/AVC encoder, taking into account that the
proposed H.264/AVC encoder should be able to maintain the encoding efficiency of the
reference H.264/AVC encoder as far as possible. The main objectives are summarized as
follows:

To analyse the different GPU architectures available on the consumer market to find
the most suitable device to develop a GPU–based H.264/AVC encoder. Different
aspects are important for this, such as their hardware design, their performance ca-
pabilities (memory bandwidth and peak performance) or their programming facilities.

To carry out an analysis of H.264/AVC. The main aim of this analysis is to check
if the most suitable module for being accelerated using GPUs is the inter prediction
module, since a priori it is known that it is the most time consuming module. Different
aspects are important for this, such as the data dependencies, the execution time or
to identify if its source code is suitable for the programming model of a GPU (e.g.
branch instructions are not desirable).

To review the most recent state of the art methodologies developed for both GPU
computing and H.264/AVC video coding. This review provides the starting point for
this thesis and an overview of the most recent and prominent related proposals. This
thesis aims to obtain better results than the ones presented in the related articles.

To propose several GPU–based inter prediction algorithms. These algorithms are
aimed at reducing H.264/AVC encoder execution time, but also at maintaining the
coding efficiency of the reference algorithms. These algorithms are:

• An inter prediction algorithm developed for P frames.

• An inter prediction algorithm developed for B frames.

• An inter prediction algorithm developed for 3D stereo video sequences, using
both P and B frames.

To evaluate the proposed algorithms using a wide variety of tests. Each algorithm
is tested using different video resolutions and is analysed in terms of execution time,
coding efficiency and energy consumption. Moreover, the different algorithms are
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evaluated using different H.264/AVC profiles, since they are intended for the require-
ments of different applications.

To compare the results obtained by using the proposed algorithms with the ones
reported in the most recent and prominent related proposals, aiming to improve
upon their results.

1.3. Organization of this document

The thesis is organized into seven chapters and one appendix. In what follows, a brief
introduction of each is provided:

Chapter 1. The first chapter introduces the thesis. This chapter provides the moti-
vation, objectives and organization of the thesis.

Chapter 2. This chapter provides a review of the video compression standards used
in this thesis (H.264/AVC and its extension, Multi View Coding (MVC)). Moreover,
this chapter provides an introduction to GPU computing.

Chapter 3. This chapter summarizes the most recent and prominent work related to
the scope of this thesis.

Chapter 4. This chapter presents the inter prediction algorithm developed for P
frames. The algorithm is based on reusing the motion information of some encod-
ing modes and is optimized for GPU execution. Then, the proposal is evaluated,
including a comparison with the most recent related proposals where possible.

Chapter 5. This chapter presents the inter prediction algorithm developed for B
frames. This algorithm is an extension of the one developed for P frames, and is
also optimized for GPU execution. At the end, the proposal is evaluated, including
a comparison with the most recent related proposals where possible.

Chapter 6. This chapter presents the final proposal of this thesis. The proposal is a
modification to the algorithms presented in previous chapters, developed to mitigate
both the temporal and the inter–view dependences inherent in 3D video sequences.
Finally, the proposal is evaluated.

Chapter 7. This chapter presents the main conclusions derived from this thesis, and
provides future directions in which the work presented in this thesis can be extended.
Finally, the publications derived from this thesis are listed.

Appendix A. Provides extra results for this thesis. The H.264/AVC encoder is config-
ured to simulate, as far as possible, the encoding condition of the future H.265/HEVC
standard.
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Chapter2
Technical Background

S INCE H.264/AVC and its extension, MVC, are involved in the development of this
thesis, they will be described in this chapter. Moreover, this thesis has been developed

using modern GPUs, and these are also described. An extension of the contents of this
chapter can be found in [Richardson 04], in [Richardson 10] and in [NVidia 12].

2.1. H.264/AVC

In the past thirty years, there has been a marked increase in multimedia content,
encouraged by the quick deployment of the Internet, mobile networks and mobile devices.
However, to enable the storage and transmission of this multimedia content it is necessary
to employ compression techniques. Nowadays, image and video compression are very active
research fields.

During these thirty years many codecs have been standardized. This standardiza-
tion specifies the syntax of the coded information and how to decode the information in
order to reconstruct it. In this sense, there are two standardization organizations estab-
lished exclusively to develop video coding standards, the International Telecommunication
Union–Telecommunication (ITU–T) Video Coding Experts Group (VCEG) and the In-
ternational Organization for Standardization / International Electrotechnical Commission
(ISO/IEC) Moving Picture Experts Group (MPEG). Both organizations have developed
their own video codec standards separately, but in some cases they have worked together
to create common standards. In order to establish the specifications of these common
standards, the Joint Video Team (JVT) was created with video experts from both organi-
zations. Figure 2.1 shows the evolution of the video coding standards developed by these
organizations.

H.264 [ITU–T 03] or MPEG–4 part 10 Advance Video Coding (AVC) [ISO/IEC 03] is
a compression video standard developed jointly by the ITU–T VCEG and the ISO/IEC
MPEG. The first preliminary H.264/AVC implementation was released in 2003 [JVT 11].

7
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Figure 2.1: Video coding standards.

H.264/AVC emerged with the objective of creating a standard able to provide good
video quality for the encoded video sequence, as well as being able to greatly reduce the
bit stream produced by an H.264/AVC encoder, when compared with previous standards.
Secondly, it was intended to achieve this goal without increasing the complexity of the
encoder. Finally, as an additional goal, it was intended that H.264/AVC could be used in a
wide variety of applications such as video–telephony, video–conferencing, video–streaming,
HDTV, DVD storage and digital cinema, among others.

H.264/AVC represents a significant advance in terms of quality and distortion compared
with the commercial standards previously most in use, such as MPEG–2 [ISO/IEC 99].
In efficiency terms, H.264/AVC increases the compression achieved by previous standards
(up to 200%), while also increasing the image definition and quality of the encoded video
sequence [Wiegand et al. 03].

Subsequently to the definition of the H.264/AVC standard, some modifications or exten-
sions were proposed. In September 2004, the Fidelity Range Extension (FRExt) [Sullivan
et al. 04] was introduced. This extension makes it possible to use 10 and 12 high definition
bit samples for the sampling formats YUV 4:2:2 and 4:4:4, to use Intra–prediction using
8x8 blocks, and to support additional color spaces.

In 2007, the Scalable Video Coding (SVC) [ITU–T and ISO/IEC 07] extension was in-
troduced. SVC supports spatial, temporal and quality scalability, which allows the adap-
tation of the encoded bit stream to the transmission conditions, or to the application’s
requirements.

In 2009, the Multi View Coding (MVC) [ITU–T and ISO/IEC 09] extension was in-
troduced. MVC enables efficient video encoding of video sequences obtained by using
more than one camera in a single bit stream. In MVC, there is a large quantity of inter–
view dependencies which can be exploited in order to mitigate the redundancy between
the different viewpoints (cameras). The key of MVC is to combine temporal, spatial and
inter–view predictions.
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Currently, a new standard is under development. Just as happened with H.264/AVC,
the ITU–T VCEG and ISO/IEC MPEG are working together on the development of this
new standard. The name for this new standard is H.265, or MPEG–H HEVC [ITU–T and
ISO/IEC 12].

2.1.1. H.264/AVC overview

Digital video usually represents a visual scene recorded from the real world, sampled at
regular intervals of time. The visual scene may be sampled in two different ways: sampling
complete frames, which is known as progressive video, or sampling interlaced fields, which
is known as interlaced video. In an interlaced video sequence, half of the data in a frame
belongs to a field (odd lines within a frame) and the other half of the data to a different
field (even lines within a frame), each representing half of the information in a complete
frame, doubling the perceived frame rate. This sampling creates the video sequence, which
is the video stream.

The complete video sequence is organized in Groups Of Pictures (GOPs), which spec-
ify the order in which the different predictions are arranged. Each frame may be fur-
ther divided into one or more slices, and each slice is encoded depending on its type. In
H.264/AVC there are 5 slice types, but these slice types are restricted to the profile used
to encode the video sequences (further description of the H.264/AVC profiles can be found
in Section 2.1.9).

Table 2.1 shows a general description of each slice type available in H.264/AVC, as
well as the profile on which each slice type can be used. This division into slices makes
it possible to control the complexity of the encoders and decoders. Therefore, the time

Table 2.1: H.264/AVC slice modes.

Slice type Description Profile(s)

I (Intra)
Contains only I blocks (each block is pre-
dicted from previously coded data within the
same slice)

All

P (Predicted)
Contains P blocks (each P block is predicted
from previous frames) and/or I blocks

All

B (Bi–Predictive)
Contains B blocks (each B block is predicted
from previous and/or future frames) and/or
I blocks

Extended, Main

SP (Switching P)
Facilitates switching between coded streams;
Contains P and/or I blocks

Extended

SI (Switching I)
Facilitates switching between coded streams;
Contains SI blocks (a special type of intra
coded blocks)

Extended
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employed for encoding video sequences may vary considerably, as well as the compression
ratio, error resilience, and the quality of the encoded video sequence.

The frames may be acquired using different resolutions (width and height of the frames),
such as full–HD 1920x1080 pixels, HD 1280x720 pixels, Video Graphics Array (VGA)
640x480 pixels, Common Intermediate Format (CIF) 352x288 pixels, or Quarter Common
Intermediate Format (QCIF) 176x144 pixels. Additionally, the input frames are divided
into equal–size blocks, called MacroBlocks (MBs). The size of an MB is 16x16 pixels, and
most of the mechanisms applied by the H.264/AVC encoders and decoders are applied at
this level. Figure 2.2 summarizes the layer structure of an H.264/AVC video sequence.

Figure 2.2: Layer structure of an H.264/AVC video sequence.

Finally, each MB is typically represented using three components: Y, U, and V; Y is the
luminance component; U and V are the chrominance components. However, it is known
that the human visual perception system is more sensitive to the luminance component
than to the chrominance ones. Therefore, it is usual to sub–sample the chrominance
components. The most common sampling formats are cited below:

4:4:4. Luminance and chrominances are sampled using the same frequency.

4:2:2. Chrominances are sampled halving the frequency in the horizontal direction.

4:2:0. Chrominances are sampled halving the frequency in both directions (horizontal
and vertical).

4:1:1. Chrominances are sampled quartering the frequency in the horizontal direction.

4:0:0. No chrominances used, only luminance is used.



2.1 H.264/AVC 11

H.264/AVC employs a hybrid block–based compression technique, which is able to
eliminate the temporal (inter prediction) and the spatial (intra prediction) redundancies in
video sequences. In H.264/AVC, an MB will be either inter predicted, or intra predicted,
or skipped. If the MB is inter predicted, a displacement vector referring to a previously
encoded frame and its residual are obtained and stored. If an MB is intra predicted, the
MB is encoded referring to neighbouring blocks in the same frame. Finally, if the MB is
skipped, no further mechanisms are used to encode this MB.

The residual of a prediction is the difference between the current block and the reference
block. Before being stored or transmitted, the residual is transformed, quantified and
encoded using an entropy encoder. Figure 2.3 shows the block diagram of the mechanisms
previously described, which is the basic block diagram of a generic H.264/AVC encoder.

Figure 2.3: H.264/AVC encoder block diagram.

An H.264/AVC encoder has two paths, known as forward path and reconstructed path.
Both paths start with the same input frame but their ends are different. The forward
path finishes with the encoded bit stream, which will be stored or transmitted. The
reconstructed path finishes with the reconstructed frame, which will be used as reference
frame, for further frames.

On the other hand, a generic H.264/AVC decoder only has a forward path. This path
starts with the encoded bit stream and finishes with the reconstructed frame, which will
be stored or reproduced. Note that the forward path in the decoder is quite similar to
the reconstructed path of the encoder. Figure 2.4 shows the block diagram of a generic
H.264/AVC decoder.
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Figure 2.4: H.264/AVC decoder block diagram.

Originally, the H.264/AVC standard defined a set of three profiles (Baseline, Main,
and Extended), each of them supporting a set of coding mechanisms and specifying what
is required of an encoder and decoder that follows each profile. Later, in 2004, with the
definition of the Fidelity Range Extension (FRExt) [Sullivan et al. 04], four new profiles
were added (High, High10, High4:2:2, and High4:4:4). Finally, at the beginning of 2009
with the last standard update, more profiles were added to make a total of twelve profiles.
Additionally, two new extensions were added to the standard (SVC and MVC extensions),
adding extra profiles. Two profiles were added with the MVC extension: the Stereo High
profile and the Multi–View High profile, which provide support for MVC.

2.1.2. Inter Prediction

Motion Estimation (ME) and Motion Compensation (MC) are the mechanisms respon-
sible for eliminating the temporal redundancies between independent frames in a video
sequence. ME and MC look for a pattern indicating how the block movement occurs,
obtaining a Motion Vector (MV). Both mechanisms make up the module known as inter
prediction and can be identified in the block diagram of a generic H.264/AVC encoder
(Figure 2.3). However, only the MC module can be identified in the block diagram of a
generic H.264/AVC decoder (Figure 2.4).

Each block, into which a frame can be divided, is compared with previous and future
frames (reference frames), inside a search range. This mechanism is known as ME and
obtains the MV which provides the best prediction for the current block (a region that
minimises the differences between the current block and the predicted block). ME estimates
each block by using a block located in a previous frame (P and B slices/frames), by using
a block located in a future frame (B slices/frames), or by using a combination of both (B
slices/frames) which is known as Bi-directional prediction. A graphical description of the
ME mechanism can be found in Figure 2.5, where the chosen region (which is a sub–set of
the search area) is subtracted from the current block to obtain the residual. The residual
block and the associated MV are stored or transmitted.
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Figure 2.5: Motion Estimation mechanism.

The H.264/AVC standard supports motion compensation block sizes ranging from
16x16 to 4x4, with many options available between them. This procedure is known as
the tree structured motion compensation algorithm, and it is able to search for the optimal
matching block by close prediction (where the block size is variable). These smaller blocks,
when compared with the blocks used by previous standards, are able to contain and isolate
the movement, providing greater flexibility in the MB partitions, as well as more precise
MVs.

H.264/AVC inter prediction supports motion compensation block sizes of 16x16, 16x8,
8x16, and 8x8, where each of the sub-divided blocks is an MB partition. Additionally, if
the 8x8 mode is chosen, each of the four 8x8 partitions within the MB may be further split
in four ways: 8x8, 8x4, 4x8, and 4x4, which are known as MB sub-partitions. ME is carried
out for all MB partitions and sub-partitions. Figure 2.6 shows the motion compensation
block sizes supported by the H.264/AVC standard.

Figure 2.6: H.264 MB partitions and MB sub–partitions.
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Note that an MB belonging to a slice/frame marked as inter predicted (P or B slices
/frames) may be inter predicted, intra predicted, skipped or encoded using the DIRECT
mode (only available in B slices/frames). The decision is made by analysing the encoding
cost. An MB belonging to a slice/frame marked as intra predicted may only be intra
predicted.

The mechanisms described above are applied for the luminance component, but can also
be applied for the chrominance components. Remember that the chrominance components
can be sampled using different frequencies from the ones used for the luminance component,
so the block sizes for the chrominances may vary. For example, if the 4:2:0 sampling format
is used, the block sizes for the chrominance components are 8x8, 8x4, 4x8, 4x4, 4x2, 2x4,
and 2x2.

In order to further improve compression, the H.264 /AVC standard is based on the idea
that the best match can be found in a region offset from the current MB by an integer
number of pixels, which is known as Integer Motion Estimation (IME). However, for many
MBs, a better match can be found by searching a region interpolated to sub–pixel accuracy.
This is known as sub–pixel ME or Fractional Motion Estimation (FME), and it supports
quarter–pixel accuracy.

The input frames in a video sequence are sampled at pixel level, so it is necessary to
interpolate the frames in order to obtain the frames with sub–pixel accuracy. The sub–
pixels with half–pixel accuracy are obtained by means of a 6–tap Finite Impulse Response
(FIR) filter with weights (1/32, -5/32, 5/8, 5/8, -5/32, 1/32). For example, half–pixel a in
Figure 2.7a is calculated from six horizontal integer–pixels, and half–pixel b in Figure 2.7a
is calculated from six vertical integer–pixels:

a = round((G− 5H + 20C + 20I − 5J +K)/32), (2.1)

b = round((A− 5B + 20C + 20D − 5E + F )/32), (2.2)

Note that integer–pixels are denoted in Figure 2.7 using upper case letters, half–pixels
using lower case letters, and quarter–pixels using numbers.

When all of the samples horizontally and vertically adjacent to integer–pixels have
been calculated, the remaining half–pixels are calculated using the previously calculated
half–pixels (vertically or horizontally adjacent). For example, half–pixel c in Figure 2.7a
is calculated from six horizontal half–pixels:

c = round((aa− 5bb+ 20b+ 20d− 5cc+ dd)/32), (2.3)

Once all the half–pixels are available, the sub–pixels with quarter–pixel accuracy are
obtained by linear interpolation. Quarter–pixels horizontally or vertically adjacent to half–
or integer–pixels are linearly interpolated between these adjacent pixels. For example, in
Figure 2.7b quarter–pixels 1 and 3 are calculated as:

1 = round((C + a)/2) //horizontally, (2.4)

3 = round((C + b)/2) //vertically, (2.5)
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(a) Half–pixel generation (b) Quarter–pixel gener-
ation

Figure 2.7: Interpolation of the luminance component.

Finally, the remaining quarter–pixels are linearly interpolated between a pair of diagonally
opposite half–pixels. For example, in Figure 2.7b the quarter–pixel 4 is calculated as:

4 = round((a+ b)/2), (2.6)

Figure 2.8 shows two prediction examples. In Figure 2.8a, a 4x4 block in the current
frame is predicted from a neighbouring region to the current position in the reference frame.
If the two components of the MV are integers, an integer prediction was performed, MV
(1,-1) in Figure 2.8b. If one or both components are not integers, a sub–pixel prediction
was performed, MV (0.5,-0.5) in Figure 2.8c. For each MB partition and MB sub–partition
described above, the ME process with full–pixel accuracy is applied (IME) and then, using
the best full–pixel MV obtained as a starting point, the sub–pixel ME is applied (FME).
FME can be viewed as a refinement of IME.

(a) Current block (b) MV (1, -1) (c) MV (0.5, -0.5)

Figure 2.8: 4x4 sample of integer and sub–pixel prediction.
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Encoding one MV for each MB partition can increase the number of bits required to
encode a frame, specially if small partition sizes are chosen. However, it is known that MVs
from neighbouring partitions are often highly correlated and each MV can be predicted
using the MVs of neighbouring partitions. Therefore, a Motion Vector Predictor (MVP)
can be calculated, and the differences between the MV obtained and the MVP calculated
are encoded. The MVP forming method depends on the availability of nearby MVs and
on the partition size.

Figure 2.9 shows an MB and its neighbouring MBs involved in the MVP calculation.
If there is more than one partition in the neighbouring MBs (in Figure 2.9, the left and
upper MBs are divided into more than one partition), the nearest partition to the top–left
corner of the current MB is selected in order to calculate the MVP (see A and B partitions
in Figure 2.9). The MVP is calculated as the median of the three selected partitions (A,
B, and C partitions in Figure 2.9).

Figure 2.9: Current and neighbouring partitions.

Finally, the H.264/AVC standard allows the use of more than one reference frame
per encoded frame. The number of reference frames has been considerably increased in
comparison with previous standards, namely up to 16 reference frames. This mechanism
is able to greatly reduce the number of bits required to store the information. Previous
standards require a bigger number of bits to encode the information when there is a clear
variation in the movement. By using multiple reference frames, the probability of finding
a good prediction considerably increases. This mechanism is quite useful when applied in
the following situations:

Movements that are periodically repeated.

Interpretation of movements and obstructions.

Switching between different camera angles.



2.1 H.264/AVC 17

The following subsections show how to find the best MV and the cost metrics most
commonly used for this. The best MV is the one with the lowest cost, i.e. the MV which
requires less bits to encode both the MV and the residual block.

Cost metrics

The main objective of the MC mechanism is to minimize the energy of the residual
transformed coefficients after quantization (see the block diagram of a generic H.264/AVC
encoder in Figure 2.3), which depends on the energy in the residual block before being
transformed. Moreover, ME aims at finding the best match which obtains the lowest cost,
i.e. the MV which minimizes the energy in the residual block. Therefore, ME evaluates
the residual energy using different offsets (MVs).

There are different metrics to evaluate the energy in the residual block. These metrics
affect the computational complexity and the accuracy of the ME algorithm. The most
common are the Mean Square Error (MSE) metric, the Mean of Absolute Errors (MAE)
metric, and the Sum of Absolute Errors (SAE) metric. Equations 2.7, 2.8, and 2.9 describe
the three energy measurements, where the block size is N x N; and C and R are the current
and reference blocks, respectively.

MSE =
1

N2

N−1
∑

i=0

N−1
∑

j=0

(Cij −Rij)
2, (2.7)

MAE =
1

N2

N−1
∑

i=0

N−1
∑

j=0

|Cij −Rij|, (2.8)

SAE =
N−1
∑

i=0

N−1
∑

j=0

|Cij −Rij|, (2.9)

Probably, the most commonly used metric is SAE, since it gives good results and it is
the least complex. The SAE metric is usually implemented as depicted in Equation 2.9, and
it is also known as the Sum of Absolute Differences (SAD) metric. However, this metric can
also be implemented as the Sum of Absolute Differences of the Transformed residual data
(SADT). The transformed residual increases the computational complexity but improves
the accuracy of the energy measurement. Usually, a multiplication–free transform is used,
and the extra computational cost is not excessive. Hadamard transforms are examples of
these multiplication–free transforms.

ME algorithms

This subsection provides a review of several well–known ME algorithms, which represent
the most computationally expensive task of an H.264/AVC encoder. More details can be
found in [Richardson 04].
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Full Search (FS) is the most straightforward search algorithm, and involves evaluating
the cost metric at every point inside a search area. The search area is defined as
±S samples surrounding the current MB location, in the reference frame. This
algorithm always finds the minimum cost since it evaluates all possible positions
within the search area. However, it is very computationally intensive because the
cost is calculated at every one of the (2S + 1)2 positions.

Fortunately, the computation of the FS algorithm can be simplified by applying what
it is known as early-out termination. If before completing the evaluation of a specific
search area position, the accumulated cost is higher than the best cost previously
obtained for another position, this position can be skipped. However, even with
early termination, FS is too computationally expensive and it is not suitable for
many applications. Therefore, in the literature it is possible to find some search
algorithms which are aimed at reducing the computational cost and only evaluate a
subset of the locations within the search area. These algorithms are known as fast
search algorithms.

Three Step Search (TSS), sometimes described as N–Step Search, is depicted in Fig-
ure 2.10a. First, the cost metric is calculated in the center of the search area, and at
eight locations whose distance to the center of the search area is half of the search
range (⌈searchrange/2⌉). In Figure 2.10a, the search range is 7, the search distance
is 4, and the nine locations are labelled as 1. In the second step, the position that
gives the smallest cost becomes the center of the search area, the search distance is
halved, and a further eight locations are searched (these locations are labelled as 2
in the figure). The algorithm is repeated until the search distance cannot be further
divided.

Nearest Neighbour Search (NNS) is a low complexity ME algorithm which closely
approaches the performance of FS in MPEG–4 using the Simple profile. In NNS,
a predictor vector is calculated based on the MVs of surrounding blocks (similar to
the MVP calculation). The cost metric is evaluated in the center of the search area
(labelled as 0 in Figure 2.10b). Then, the center of the search area is moved to
the predicted position, and surrounding positions in a diamond shape are evaluated
(labelled as 1 in Figure 2.10b). Further algorithm steps depend on the location of
the minimum cost. If the minimum cost is located in the center of the diamond, the
algorithm finishes, otherwise an extra iteration is performed.

Diamond–Based Search (DBS) uses two diamond shaped search patterns, a large
diamond with nine points for coarse grain search, and a small diamond with five
points for fine grain search. The algorithm starts by locating the large diamond at
the center of the search area, and the point with the lowest cost becomes the new
center of the search area (labelled as 1 in Figure 2.10c). Then, if the new center of the
search area is located at a diamond vertex, five additional points are used to perform
a new coarse grain search (labelled as 2 in Figure 2.10c). If the new center of the
search area is located at a diamond face, three additional points are used to perform
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(a) TSS (b) NNS

(c) DBS (d) HBS

Figure 2.10: Motion estimation search algorithms.

a new coarse grain search (labelled as 3 in Figure 2.10c). Finally, if the center of the
search area is located at the diamond’s center, four additional points are checked.
The small diamond is used to perform the final fine grain search (labelled as 4 in
Figure 2.10c).

Hexagon–Based Search (HBS) is similar to DBS, but checks less search area points
before finishing, so it is less complex. HBS uses two hexagon shaped search patterns, a
large hexagon with seven checking points for coarse grain search, and a small hexagon
with five points for fine grain search. The algorithm first performs the coarse grain
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search by locating the large diamond at the center of the search area (labelled as 1
in Figure 2.10d). Then, if the best matching point is located at a hexagon vertex,
three additional points are checked to perform the next coarse grain search (labelled
as 2 in Figure 2.10d). If the best matching point is located at the hexagon’s center,
the fine grain search is performed by adding four new checking points (labelled as 3
in Figure 2.10d).

2.1.3. Intra Prediction

In some situations, the inter prediction mechanism is not able to efficiently remove
the redundancies which may exist inside a frame, since no movement has occurred at a
certain time instant. Therefore, the inter prediction mechanism is useless and a different
mechanism should be carried out. This mechanism is intra prediction, which is responsible
for eliminating the spatial redundancies inside a frame. An intra prediction module can
be identified in both the H.264/AVC encoder (Figure 2.3) and the H.264/AVC decoder
(Figure 2.4), but its purpose is different in each case. In the encoder, its purpose is to
eliminate the spatial redundancies within the frame, while in the decoder it is to reconstruct
the encoded frames. Intra prediction is carried out in I slices, but is also carried out in P
or B slices where no motion has occurred.

The intra prediction module is carried out at MB level, and tries to predict the current
block by using neighbouring sample values that have been already processed, following a
set of predefined directions. The H.264/AVC standard uses three different block sizes for
intra prediction (16x16, 8x8 and 4x4), which are known as intra prediction modes. For each
component (YUV) within an MB, one intra prediction mode and one prediction direction
have to be obtained.

The luminance component (Y) can be intra predicted using the 16x16 intra mode,
the 8x8 intra mode, and the 4x4 intra mode. The chrominance components (UV) can
be intra predicted using only the 8x8 intra mode. Both chrominance components should
select the same direction, but it is not necessary for there to be any relation between
the direction selected for the luminance component and the direction selected for the
chrominance components.

The H.264/AVC encoder typically selects the prediction mode for each block that mini-
mizes the differences between the current block and neighbouring pixels. The best direction
is selected based on a cost metric similar to the ones explained in the inter prediction sec-
tion. In fact, the most commonly used is the SAE metric.

There are four possible directions for the 16x16 intra mode: vertical, horizontal, DC and
plane. Table 2.2 explains the operations needed to calculate the cost metric and Figure 2.11
shows the available 16x16 prediction directions. H and V are the neighbouring samples
that are set as references, which have been previously encoded and reconstructed (these
samples in the encoder will be exactly the same as those a decoder will form when decoding
the video sequence), and the shaded samples are the samples to be predicted. This mode
is useful to eliminate the spatial redundancies of homogeneous areas in an image.
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Table 2.2: 16x16 intra directions.

Direction Description

0 (vertical) Extrapolation from upper samples (H values).

1 (horizontal) Extrapolation from left samples (V values.)

2 (DC) Mean of upper and left samples (H + V values.)

3 (Plane) A linear “plane” function is fitted to the upper and left samples.

Figure 2.11: 16x16 intra directions.

For the 4x4 intra mode, there are nine possible directions. The first three directions
(vertical, horizontal and DC) are the same as those used in the 16x16 intra mode. However,
new prediction directions are introduced in this mode. Table 2.3 explains the operations
needed to calculate the cost metric and Figure 2.12 shows the available 4x4 prediction
directions. Note that the top–left sub–figure in Figure 2.12 is not a prediction direction, it
shows the sample’s distribution involved in the cost calculation of the 4x4 intra mode. A
to M are the neighbouring samples that are set as references, which have been previously
encoded and reconstructed (these samples in the encoder will be exactly the same as those
a decoder will form when decoding the video sequence), and a to p are the samples to be
predicted.

Figure 2.12: 4x4 intra directions.
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Table 2.3: 4x4 intra directions.

Direction Description

0 (vertical)
The upper samples A, B, C, and D are extrapolated verti-
cally.

1 (horizontal) The left samples I, J, K, and L are extrapolated horizontally.

2 (DC)
All samples (a to p) are predicted by the mean of samples
A, B, C, D, I, J, K, and L.

3 (Diagonal down–left)
The samples are interpolated at a 45◦ angle between lower–
left and upper–right.

4 (Diagonal down–right)
The samples are interpolated at a 45◦ angle down and to the
right.

5 (vertical–right)
Extrapolation at an angle of approximately 26.6◦ to the left
of vertical (width/height = 1/2).

6 (horizontal–down)
Extrapolation at an angle of approximately 26.6◦ below hor-
izontal.

7 (vertical–left)
Extrapolation (or interpolation) at an angle of approxi-
mately 26.6◦ to the right of vertical.

8 (horizontal–up)
Extrapolation at an angle of approximately 26.6◦ above hor-
izontal.

Finally, the 8x8 intra mode is different depending on whether it is applied to the lumi-
nance component or to the chrominance components. The 8x8 luminance intra prediction
is only available in the High profiles, and it is carried out using nine prediction modes which
are very similar to the nine modes previously described for 4x4 intra prediction, except
that each 8x8 luminance block is filtered (using a low–pass filter) to improve prediction
performance. The 8x8 chrominance intra prediction uses four prediction modes which are
very similar to the four modes previously described for 16x16 intra prediction, except that
the numbering of these four modes is different. The modes are 0 (DC), 1 (horizontal), 2
(vertical) and 3 (plane).

2.1.4. Transform

After applying the inter and intra prediction mechanisms, the H.264/AVC standard
defines a transform module. The main aim of this module is to minimize the spatial
redundancies of the predicted residual. The H.264/AVC standard defines two kinds of
transforms:

A direct transform, which is used to encode the video sequence and can be found in
the block diagram of a generic H.264/AVC encoder (Figure 2.3).
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An inverse transform, which is used to decode the video sequence and can be found
both in the block diagram of a generic H.264/AVC decoder (Figure 2.4) as well as
in the reconstructed path of the block diagram of a generic H.264/AVC encoder
(Figure 2.3).

H.264/AVC uses different multiplication–free transform algorithms in this module, de-
pending on which residual is being applied. The first version of the standard defined the
following transforms:

4x4 Hadamard Transform (HDT) for the luminance DC coefficients in MBs coded in
intra 16x16 mode.

2x2 HDT for the chrominance DC coefficients in any MB.

4x4 integer Discrete Cosine Transform (DCT) for all other blocks.

Additionally to the transforms mentioned above, a later extension of the standard
defined an 8x8 integer DCT similar to the one defined for 4x4 blocks. This newly defined
transform is available in High profiles for MBs that are coded using the 8x8 intra prediction
mode or any inter prediction mode. Note that previous standards, such as MPEG–2 and
MPEG–4, defined 8x8 DCT algorithms, but these were floating–point–based transforms
[Haskell et al. 96].

An important feature of this module is that the transforms are multiplication–free, i.e.
only integer operations are used, reducing the number and complexity of the mathematical
operations used (only additions and shifts are performed), and avoiding drift errors which
can occur when performing floating–point operations.

2.1.5. Quantization

Quantization removes irrelevant information from the transformed blocks and is carried
out by a scalar quantiser, known as the Quantization Parameter (QP). As in the case of
the transform module, there are two kinds of quantization. A direct quantization which
is used to encode the video sequence (encoder only) and an inverse quantization which is
used to decode the video sequence (encoder and decoder).

The H.264/AVC defines a total of 52 values for the QP, from 0 to 51. The quantization
module divides each transformed coefficient by the selected QP. Usually, a different QP
value is configured for the different slice types (I, P and B) available in a video sequence.
Additionally, hierarchical GOP patterns may vary the QP depending on the hierarchical
level on which the current frame is located. The quantization step is doubled in size for
every increment of 6 in QP.

The large number of QPs available makes it possible to control the bit rate and quality
of the encoded video sequence. In general, a high QP produces lower bit rates and quality
than a low QP, since the quantization step is reduced or increased, respectively.
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2.1.6. De–blocking filter

After quantization, the H.264/AVC standard defines a homogenization module, which
is known as the de–blocking filter. This filter operates at MB level, as well as on each of
the sixteen 4x4 blocks into which an MB can be further divided. The de–blocking filter
can be found in the block diagram of a generic H.264/AVC decoder (Figure 2.4), and in
the reconstructed path of the block diagram of a generic H.264/AVC encoder (Figure 2.3).

Most of the mechanisms defined by the H.264/AVC standard are block–based and can
lead to visible artefacts. The aim of this module is to reduce the visibility of these undesired
artefacts (blocking artefacts). At the MB level, the de–blocking filter tries to eliminate the
visible artefacts produced by the different predictions which may occur between adjacent
blocks. At the 4x4 block level, the de–blocking filter tries to eliminate the visible artefacts
produced by the different predictions, which may occur between adjacent blocks, as well
as the artefacts produced by the transform and quantization processes.

The de–blocking filter usually modifies up to two bordering pixels of the MB/4x4 block
on which it is being applied, by using a non–linear adaptive filter. This filter is able to
increase the image sharpness, and to avoid the formation of undesired objects which might
damage the subjective image quality. All in all, this filter prevents the blocking effect that
may occur due to the fragmentation of the image into blocks for processing.

2.1.7. Entropy coding/decoding

The entropy coding and decoding modules use fixed– or variable–length binary codes
to encode/decode the video stream. The entropy encoder can be found in the generic block
diagram of an H.264/AVC encoder (Figure 2.3), while the entropy decoder can be found
in the generic block diagram of an H.264/AVC decoder (Figure 2.4).

The H.264/AVC standard specifies several methods for coding the output of the quan-
tization module. These methods are as follows:

Fixed length code. An element is converted into a binary code with a specific length
(n bits).

Exponential–Golomb Variable Length Code (VLC). An element is represented using
a Golomb codeword with a variable number of bits. Usually, the symbols which occur
most frequently use the shortest codewords.

Context–Adaptive Variable Length Coding (CAVLC). It is a method designed to code
transformed coefficients in which different VLCs use context–adaptation. The vari-
able length codes are chosen depending on the statistics of recently–coded coefficients.

Context–Adaptive Binary Arithmetic Coding (CABAC). It is an arithmetic coding
method in which probability models are updated based on previous coding statistics.
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VLCs, such as Exponential–Golomb, may be used as a solution to encode data with
varying probabilities. Frequent symbols are assigned to short codewords and less common
symbols are assigned to long codewords.

CAVLC is used to encode residual blocks, scan ordered blocks, or transformed coeffi-
cients, and it is available in all profiles. Entropy coding is applied using 4x4 blocks (if the
8x8 DCT is used, entropy coding is performed by dividing the block into four 4x4 blocks),
which are scanned using a zigzag or a field scan and converted into a series of VLCs, based
on VLC tables which depend on already encoded elements. Moreover, it is designed to
take advantage of certain characteristics of the quantized blocks:

After quantization, blocks often contain mostly zeros.

The highest non–zero coefficients after the block scan are often sequences of ±1.

The number of non–zero coefficients in neighbouring blocks is correlated.

The level or magnitude of non–zero coefficients tends to be larger at the start of the
scanned array, near the DC coefficient, and smaller towards the higher frequencies.

CABAC is an optional entropy coding mode available in Main and High profiles.
CABAC achieves good compression by selecting probability models for each syntax ele-
ment according to the element’s context, by adapting probability estimations based on
local statistics and by using arithmetic coding rather than VLC. Coding an element in-
volves the following steps:

Binarization. Each element is converted into a binary code. It is similar to the
process of converting a data element into a VLC. However, the following stages are
repeated for each bit of the binarized elements.

Context model selection. A context model is a probability model for one or more
bits of the binarized element and it is chosen from a selection of available models
depending on the statistics of recently–coded data elements.

An arithmetic coder encodes each bit according to the selected probability model.

The selected context model is updated.

CABAC can provide improved coding efficiency compared with CAVLC at the expense
of greater computational complexity.

2.1.8. Other mechanisms/tools

The modules described above provide great flexibility to the different applications which
make use of the H.264/AVC standard. However, this standard also improves the coding
efficiency of previous standards, such as MPEG–2 [Wiegand et al. 03]. In the following
lines, other mechanisms/tools which contribute to the coding efficiency and robustness of
the H.264/AVC standard are briefly mentioned:
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The standard defines a Network Abstraction Layer (NAL) which provides mechanisms
(header information for transportation) to keep the video syntax, regardless of the
network type on which it is being transmitted or the media storage used.

The standard supports Flexible Macroblock Ordering (FMO) inside a frame, which is
aimed at minimizing the impact of the errors which may occur during transmission.

The standard makes it possible to divide the data into different packets which are
handled depending on their importance.

The standard makes it possible to include redundant frames to mitigate errors in the
reconstruction process.

2.1.9. Profiles and levels

The main purpose of the H.264/AVC standard is to offer a good quality standard that
is able to considerably reduce the output bit rate of the encoded video sequences, compared
with previous standards. Moreover, it was designed with a view to being applied in a wide
variety of applications such as DVD, video–streaming, HDTV, etcetera. Therefore, if it was
designed to be applied in a wide variety of applications, that means that it was designed
to satisfy the different requirements of these applications. For example, the requirements
of DVD are completely different from those of a video streaming application.

In this context, the concept of profile was introduced. A profile is a set of coding tools
defined to satisfy the requirements of a set of applications, defining what is required on both
the encoder and decoder sides. In 2003, the H.264/AVC standard was originally defined
with three profiles (Baseline, Main and Extended). Later, in 2004, with the definition of
FRExt, four new profiles were added (High, High10, High4:2:2, and High4:4:4). Finally, in
2009, with the last standard update, five new profiles were added (Constrained Baseline,
High10 Intra, High4:2:2 Intra, High4:4:4 Intra and CAVLC4:4:4 Intra). Roughly, these
twelve profiles can be grouped into four main profiles: Baseline, Main, Extended and High.
Moreover, the MVC and SVC extensions, added in 2009, introduce their own profiles.

Figure 2.13 shows a schematic view of the tools/modules available in the most common
profiles defined by the H.264/AVC standard. In the center of the figure some tools that
are available in all profiles can be identified. In the later standard update, these common
tools were grouped to form the Constrained Baseline profile. These common tools are:

I slices. 16x16 and 4x4 intra predictions are available in all profiles, 8x8 intra predic-
tion is only available in the High profiles.

P slices. Inter prediction using previous reference frames is available in all profiles.

De–blocking filter.

CAVLC as entropy encoder/decoder is available in all profiles.
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Figure 2.13: H.264/AVC profiles.

The Baseline profile was designed for low–complexity applications which demand real–
time encoding and decoding, such as video telephony, video conferencing, wireless appli-
cations, and mobile applications. This profile includes the common tools, as well as the
following ones:

Arbitrary Slice Order (ASO). The slices within a frame may follow any order.

FMO aimed at minimizing the impact of the errors which may occur during trans-
mission.

Redundant frames/slices can be used to avoid errors during transmission or storage.
The redundant frames/slices can be a complete frame or a part of it.

The Main profile was designed for broadcasting applications, such as DTV and video
storage. This profile includes the common tools, as well as the following ones:

B slices. This profile supports inter prediction using previous frames, future frames
or a combination of both as reference frames. This slice type improves the coding
efficiency of I and P slices, but it also increases the computational cost.

Field coding/interlaced video. This profile makes it possible to sample the video
sequence as a sequence of interlaced fields. In an interlaced video sequence, half of
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the data in a frame belongs to a field (odd lines within a frame) and the other half
of the data to a different field (even lines within a frame), each representing half of
the information of a complete frame, doubling the perceived frame rate.

Weighted prediction. This mechanism makes it possible to modify the prediction
data in P or B slices. This mechanism penalizes frames which are far away from the
current frame and benefits frames which are close to the current frame.

CABAC as entropy encoder/decoder is available.

The Extended profile was designed for multimedia streaming applications, i.e. appli-
cations that require high compression and high reliability. This profile includes the tools
available in the Baseline and in the Main profiles (except that CABAC is not supported
as entropy encoder/decoder), as well as the following tools:

SP and SI slices, which are special slice types that allow efficient switching between
video streams and efficient random access for video decoders.

Data partitioning. The encoded data may be split into different partitions to improve
the robustness of the video stream transmission.

Finally, the High profile (and all profiles whose name begins with High) was designed
for professional applications, such as HD broadcast and disc storage (HD DVD and Blu–
ray disc), video acquisition and edition, and ultra high quality broadcast applications that
demand lossless video. This profile includes the tools available in the Main profile, as well
as the following ones:

8x8 intra prediction.

8x8 transform.

Quantization scaling matrices to improve the subjective quality of the video sequence.
Different scales are used according to specific frequencies associated with the trans-
formed coefficients.

More than 8 bits per sample to obtain a more accurate video representation (10 bits
are supported in the High10 and High4:2:2 profiles, and 12 bits in the High4:4:4
profile).

Extra sampling formats (YUV 4:2:2 is supported in the High4:2:2 profile and YUV
4:4:4 is supported in the High4:4:4 profile) and color spaces (RGB).

An H.264/AVC level specifies an upper limit on the frame size, processing rate (number
of frames or blocks which can be decoded per second) and working memory required to
decode a video sequence. A particular decoder can only decode H.264/AVC bit streams
up to a certain combination of profile and level.
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Table 2.4 shows the upper limits of the different levels defined in the H.264/AVC stan-
dard. The decoding speed column shows the maximum number of MBs that can be decoded
per second; the frame size column shows the maximum number of MBs within a frame; the
bit rate column shows the maximum bit rate supported for non High profiles (note that
the maximum bit rate for the High profile is 1.25 times that of the Baseline, Extended and
Main profiles; 3 times for the High10 profile; and 4 times for the other High profiles); and
finally the last main column shows the maximum resolution allowed and its correspond-
ing frame rate taking into account the previous limits. For example, level 1 supports up
to 99 MBs per frame, and a 176x144 video sequence is composed of 99 MBs (176/16 =
11 MBs, 144/16 = 9 MBs and 11x9=99 MBs), the frame rate for the highest resolution
supported is calculated dividing the decoding speed and the frame size (1,485/99 = 15).
Lower resolutions, than the maximum, for a specific level allow higher frame rates.

Table 2.4: H.264/AVC levels.

Level
Decoding speed

(MBs/s)
Frame size
(MBs)

Bit rate (Kbits/s)
Non High profiles

High resolution @
frame rate

1 1,485 99 64 176x144 @ 15.0

1b 1,485 99 128 176x144 @ 15.0

1.1 3,000 396 192 352x288 @ 7.5

1.2 6,000 396 384 352x288 @ 15.2

1.3 11,880 396 768 352x288 @ 30.0

2 11,880 396 2,000 352x288 @ 30.0

2.1 19,800 792 4,000 352x576 @ 25.0

2.2 20,250 1,620 4,000 720x576 @ 12.5

3 40,500 1,620 10,000 720x576 @ 25.0

3.1 108,000 3,600 14,000 1,280x720 @ 30.0

3.2 216,000 5,120 20,000 1,280x1,024 @ 42.2

4 245,760 8,192 20,000 2,048x1,024 @ 30.0

4.1 245,760 8,192 50,000 2,048x1,024 @ 30.0

4.2 522,240 8,704 50,000 2,048x1,080 @ 60.0

5 589,824 22,080 135,000 3,672x1,536 @ 26.7

5.1 983,040 36,864 240,000 4,096x2,304 @ 26.7

5.2 2,073,600 36,864 240,000 4,096x2,304 @ 56.3
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2.2. Multi View Coding (MVC)

MVC [ITU–T and ISO/IEC 09] is a compression standard which provides a compact
representation for multiple views of a video scene, using a single bit stream. It was de-
veloped as an extension of the H.264/AVC standard (Annex H) and, like the H.264/AVC
standard, was jointly developed by the ISO/IEC MPEG and the ITU–T VCEG. The first
draft was released in 2008, while the final draft came out in November 2009.

The MVC extension enables inter–view prediction to improve coding efficiency, and
supports traditional temporal (inter) and spatial (intra) predictions. This extension is
backward compatible with H.264/AVC, so legacy devices are able to decode MVC bit
streams by discarding the information which does not belong to the base view (a further
description of the base view can be found in the following sections). MVC applications
include 3D television, advanced surveillance systems, immersive teleconferencing and gam-
ing.

In the literature some potential implementations of MVC can be found, and these
include:

Stereoscopic video. A stereo pair of views of the visual scene are combined. This
combination can be achieved by using data glasses or an autostereoscopic display,
thus giving the 3D sensation. Unfortunately, this 3D visualization has a limited
viewing angle (Figure 2.14a).

3D video. Multiple real or rendered views of the visual scene are combined and
presented to the viewer. This combination can be carried out by using virtual reality
glasses or an advanced autostereoscopic display. In this scenario, the viewer has the
feeling of immersion in the 3D scene (Figure 2.14b).

Free viewpoint video. Some views of the scene are available and the viewer may select
an arbitrary viewing angle. If the selected viewing angle does not exist, it is rendered
or created from other existing views (Figure 2.14c). Examples of this representation
include multiple cameras at a sports game or multiple surveillance cameras.

(a) Stereoscopic view (b) 3D view

(c) Free viewpoint / rendered view

Figure 2.14: Multi–view video: view examples.
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In a similar way to the H.264/AVC standard, MVC has inherent redundancy (tem-
poral and spatial), but it adds a new kind of redundancy which is known as inter–view
redundancy. The purpose of MVC is to take advantage of this redundancy and efficiently
encode the scene. Figure 2.15 shows a multi–view scene composed of three views. Each
view can be encoded as a separate H.264/AVC bit stream. However, the inter–view cor-
relation/redundancy can be exploited by using a single MVC bit stream offering better
coding efficiency. If the cameras are close together, frame 0 of view 0 may be strongly
correlated to frame 0 of view 1 and frame 0 of view 1 may be strongly correlated to frame
0 of view 2, etcetera. In fact, this correlation may appear in all the frames of a multi–view
video.

Figure 2.15: MVC, Views and frames.

The MVC extension modifies the basic H.264/AVC syntax to support multi–view coding
as follows:

Parameters set.

The Reference Picture List is modified to support prediction from different views.

NAL Units are modified to include extra information about the base view (a legacy
H.264/AVC decoder must be able to discard secondary views by checking the extra
information provided by the MVC encoder).

Picture numbering and reference index are modified to support multiple views.



32 Chapter 2 Technical Background

2.2.1. Inter–view prediction

The redundancies in a multi–view scene can be exploited by introducing predictions
between views, and this is commonly known as inter–view prediction. This inter–view
prediction is the main contribution of the MVC extension to the H.264/AVC standard.

Figure 2.16 shows an example of inter–view prediction. Each view is predicted using
a hierarchical GOP pattern [Schwarz et al. 06], which is composed of a key frame (I or P
frame) followed by seven B frames (the predictions for view 1 are not shown for clarity),
where the B frames are encoded using a hierarchical structure, i.e. the 4th frame is predicted
using the key frames, the 2nd and 6th frames are predicted using a key frame and the 4th

frame, and so on. Note that view 0 is predicted using conventional H.264/AVC tools and
no frames are predicted using frames from a different view, which means that this view
can be decoded by any H.264/AVC decoder or by an MVC decoder, and is considered as
the base view.

Figure 2.16: Inter–view prediction of key frames.

A more complex prediction structure can be defined including inter–view predictions
for all B frames (except for the B frames included in the base view). More details about
different inter -view prediction structures can be found in [Vetro et al. 11], in [Richardson
10] and in [Merkle et al. 07].
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MVC inherits many video coding techniques from H.264/AVC, such as variable block–
size matching ME. However, in the case of MVC, when the ME process is applied using a
reference frame from a different view (inter–view prediction), it is more commonly known as
Disparity Estimation (DE) since it estimates the differences between adjacent viewpoints/-
cameras. As with ME, variable block-size DE is carried out using eight inter prediction
modes (SKIP, Inter 16x16, Inter 16x8, Inter 8x16, Inter 8x8, Inter 8x4, Inter 4x8, and Inter
4x4), which are depicted in Figure 2.6.

2.2.2. Profiles and Levels

As with H.264/AVC, a profile determines the subset of coding tools that must be
supported by conforming encoder/decoders. The MVC extension added two new profiles
based on the H.264/AVC standard. These profiles are:

Multi–View High profile, which provides support for an arbitrary number of views.

Stereo High profile, which provides support for two-view stereoscopic video. This
profile was selected by the Blu–Ray Disc Association [Blu 05] as the coding format
for 3D video with HD resolution.

As mentioned at the beginning of this section, this standard is backward compatible,
so legacy devices must be able to decode at least one view (the base view). In order to
facilitate this compatibility, the base view must be encoded following the High profile or
the Constrained Baseline profile.

Figure 2.17 shows a schematic view of the tools available in the profiles defined in the
MVC extension. In general, the Stereo High profile may be viewed as a superset of the
High profile, but adding support for inter–view predictions using two views. The Multi–
View High profile may be viewed as a generalization of the Stereo High profile adding
support for more than 2 views. However, the Multi–View High profile does not support
field coding/interlaced video, and therefore it does not support the Macroblock Adaptive
Frame Field Coding (MBAFF) mode. Note that the base view cannot use field coding and
MBAFF since it is not supported in the Constrained Baseline profile to ensure compatibility
with previous devices. It is possible to obtain an encoded bit stream that satisfies both
profiles when using two views and not using interlaced coding tools in the secondary view.

The levels defined in MVC are very similar to the ones defined for the H.264/AVC
standard (see Table 2.4 ). Some limits have not been modified, such as the maximum bit
rate, and other limits have been multiplied by a factor of 2, such as the decoding speed.
This scale factor makes it possible to decode a stereo view sequence using the same level
as specified for single–view video sequences, at the same resolution. However, this factor
does not scale with the number of views used. To decode a higher number of views (more
than 2), one would use a higher level, and/or reduce the video sequence resolution, and/or
reduce the frame rate.
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Figure 2.17: MVC profiles.

2.3. Graphic Processing Units (GPUs)

Since the beginning of modern computing, most computer programs have been written
using a serial programming model. However, the availability of new, cheap and more pow-
erful parallel platforms has meant that the serial programming model has suffered from
certain limitations in performance terms when compared with the parallel programming
model. These parallel platforms include supercomputers, clusters and many–core proces-
sors. Therefore, migrating sequential algorithms to parallel platforms is becoming very
common.

In the past few years, new heterogeneous architectures have been introduced in high
performance computing [Feng and Manocha 07]. Examples of this type of architectures are
GPU–based platforms, Cell Broadband Engine (Cell BE), and Field Programmable Gate
Array (FPGA)–based platforms. Modern desktop (or server) graphics cards include a
many–core processor chip, which is known as a GPU. This processor chip is built following
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the Single Instruction Multiple Data (SIMD) architecture model and it is able to perform
arbitrary and programmable operations on data sent to it.

Recently, there has been a marked increase in the performance and capabilities of GPUs,
such that they have attracted a lot of attention. Modern GPUs are able to achieve up to
3 TFLOPS, working in simple precision mode, and up to 190 GB/s of memory transfer
rate. The GPU’s performance increase has been much higher than the CPU’s performance
increase. In fact, over the last ten years, the performance of GPUs has doubled every six
months, while the performance of CPUs has doubled every eighteen months.

Although GPUs were originally designed for multimedia and computer or console gam-
ing, the rapid increase in the GPU’s performance has spawned a research community that
has successfully mapped a wide range of complex applications for them. In this way, a new
trend has recently appeared in the GPU community focusing on general purpose tasks,
leading to what is referred to as the GPGPU [GPGPU 07]. It is because of these im-
provements that more and more people use GPUs for everything and not just for graphics.
General–purpose applications development for GPUs has recently gained momentum as
a cost–effective approach for accelerating data– and compute–intensive applications, and
this has been driven by the introduction of C–based programming environments. This
emerging world of highly parallel systems requires a programming model that scales from
one generation of parallel architectures to the next.

Nowadays, parallel processing on multi-core processors is one of the biggest software
challenges in the industry. In recent years, some approaches to parallel processing have
appeared in the industry. Examples of these parallel platforms are the RapidMind multi-
core development platforms, as parallel processing for the x86 technology [Monteyne 08];
the PeakStream math libraries for graphics processors [Papakipos 07]; the Fujitsu remote
procedure calls [Koeda 07]; the Ambric development-driven CPU architecture [Ambric 06];
and the Tilera tiled mesh network [Tilera 08]. In the near future, all Personal Computer
(PC) processors and game consoles will include graphics cores, and therefore graphics
processors will be integrated in the consumer market.

The GPU philosophy differs so much from the philosophy of mono–core CPUs, multi–
core CPUs or even superscalar CPUs, which may route the instruction stream through
multiple pipelines. In a GPU there is only one instruction stream. Fortunately, the main
GPU manufacturers (NVIDIA and ATI/AMD) have developed their own tools for trans-
parent programming, proposing new languages or even extensions for the most common
high level programming languages. In this respect, NVIDIA proposes Compute Unified
Device Architecture (CUDA) [NVidia 12], which is a software/hardware platform for mas-
sively parallel high-performance computing on their company’s powerful GPUs. CUDA is
steadily winning customers in scientific and engineering fields.

2.3.1. Programming model

CUDA was introduced in 2006 by NVIDIA, and is a general purpose parallel computing
architecture that makes it possible to solve many complex computational problems by
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using the parallel engine available on NVIDIA GPUs. CUDA C is a C–based high level
programming language designed to maintain a low learning curve for programmers familiar
with standard C. Additionally, NVIDIA GPUs can also be programmed using other high
level programming languages, such as CUDA FORTRAN, OpenGL, OpenCL, OpenAcc,
or DirectCompute.

CUDA C includes C/C++ software development tools, function libraries, and a hard-
ware abstraction mechanism that hides the GPU hardware from developers, like an Appli-
cation Programming Interface (API). Moreover, this also has the advantage of being able
to be extended from one generation to the next. Although CUDA requires programmers
to write special code for parallel processing, it does not require them to explicitly manage
threads in the conventional sense, which greatly simplifies the programming model. CUDA
development tools work alongside a conventional C/C++ compiler, so programmers can
mix GPU code with general purpose code for the host CPU. At this point, the program-
mers do not explicitly manage threaded code, as a hardware thread manager handles the
threads automatically, which is an important feature of CUDA.

In CUDA, the calculations are distributed in a grid of thread blocks, where each thread
block has the same size (number of threads). These threads execute the GPU code, known
as the kernel. All the threads within a thread block execute the same GPU code over
different data (SIMD philosophy). Figure 2.18 shows this organization for two GPU kernels
(labelled as Kernel 1 and Kernel 2), where each GPU kernel is composed of a grid of thread
blocks and each thread block is composed of a constant number of threads. The grid

Figure 2.18: Thread organization in a GPU.
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dimensions and the number of threads within each thread block must be carefully chosen
in order to obtain the best performance, and this depends on the algorithm to be executed.

The compute capability of a computing device says to which core architecture a device
belongs, and this is very important because the availability of some of the GPU features
depends on it. The compute capability is defined by a major revision number and a
minor revision number. The major revision number for devices belonging to the Kepler
architecture is 3, the major revision number for devices belonging to the Fermi architecture
is 2 (2.x), previous devices are all of compute capability 1.x. The minor revision number
corresponds to certain improvements in the core architecture. A list containing all CUDA–
enabled devices and their compute capability can be found in [NVidia 12].

In CUDA C, GPU Kernels are C functions that are executed N ·M times, by N ·M
different threads, where N is the number of thread blocks configured and M is the number
of threads within each thread block. A kernel is defined using the global specifier and it
is invoked specifying the number of threads that will execute that kernel. Each thread has
its own ID which is accessible through built–in variables. The following code is an example
of how to declare and call a kernel.

//Kernel d e f i n i t i o n
g l o b a l void Function ( int∗ a ){

. . .
}
int main ( ) {

. . .
//Kernel invoca t ion , where
//N i s the number o f thread b lock s , and
//M i s the number o f th reads w i th in the thread b l o c k
Function<<<N,M>>>(a ) ;
. . .

}

The number of thread blocks and the number of threads within a thread block can be
defined by using an integer or a 3–dimensional vector. However, there are some limits to
both of them, because the available resources in a GPU are limited. Table 2.5 summarizes
these limits. The maximum number of threads per thread block is limited to 1024, but
fortunately the limit in the number of thread blocks is considerably higher, allowing the
programmers to configure some billion of concurrent threads in a GPU kernel.

In general, the GPU can be viewed as a logical grid, each thread block as a multi–core
processor, and each thread as a processing element. Each multi–processor executes a set
of thread blocks in time slots, but a specific thread block is always executed on the same
multi–processor. Furthermore, the threads within the thread block are further divided into
warps, where each warp executes the same instruction over different data at a time stamp.
The warp is the scheduling unit used by the hardware scheduling manager. Usually, the



38 Chapter 2 Technical Background

Table 2.5: Kernel limits.

Technical limit
Compute capability

1.0 1.1 1.2 1.3 2.0 2.1 3.0

Maximum dimensionality of a
grid of thread blocks

2 3

Maximum x-dimension of a
grid of thread blocks

65535 231 − 1

Maximum y–, or z–dimension
of a grid of thread blocks

65535

Maximum dimensionality of a
thread block

3

Maximum x- or y-dimension of
a thread block

512 1024

Maximum z-dimension of a
thread block

64

Maximum number of threads
per thread block

512 1024

number of threads within each thread block is higher than the warp size, so a thread block
is split into multiple scheduling units.

Threads within a thread block can share data through on–chip memory (fast access
memory) and can synchronize their execution in order to coordinate memory accesses.
However, threads of different thread blocks can only communicate through off–chip memory
(DRAM).

In a system composed of multiple CUDA–enabled devices, all of them are accessible as
independent devices. However, there are some restrictions when the system is in Scalable
Link Interface (SLI) mode. Some instructions must be provided in order to select the
device used by the application.

The CUDA programming model assumes a system composed of a host (CPU) and
a device (GPU). The device is a coprocessor that executes the CUDA kernels and the
host executes a C program. Usually, the host and device codes are executed concurrently.
However, in order to facilitate concurrency, some function calls are asynchronous. These
are:

Kernel launches.

Device to device memory copies.

Host to or from device memory copies with a maximum size of 64 kBytes.

Memory copies performed by functions ended with the suffix Async.

Memory set function calls.
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Concurrency can be globally disabled through an environment variable. This feature is
provided for debugging purposes and should never be used for released software. CUDA
debuggers and profilers automatically disable concurrency and all launches are synchronous.

2.3.2. Hardware model

This section describes the most relevant hardware specifications of NVIDIA GPUs.
More information regarding this topic can be found in [NVidia 12].

GPU architecture is based on having a large quantity of processing elements, or cores,
integrated on a single chip at the expense of a significant reduction in cache memory
(see Figure 2.19). Therefore, there are more transistors for data processing than for data
caching and flow control. In fact, GPUs were originally designed for compute–intensive
and highly parallel computations (graphic rendering).

Figure 2.19: Comparison between a 4 core CPU and a generic GPU architecture.

The GPU architecture is determined by the graphics applications for which they were
originally designed, which are completely different from the applications of a traditional
CPU. More specifically, the GPU is designed to address problems expressed as data–parallel
computations with high arithmetic intensity (the same operation is executed on many data
elements, and the number of arithmetic operations is higher than the number of memory
transactions). In this scenario, a sophisticated flow control and big data caches are not
necessary since the same operation is executed for each data element and the memory
latency can be hidden with arithmetic operations. GPU architecture is highly segmented
and follows the SIMD programming model.

Modern graphics cards are composed of a GPU chip and an external DRAM memory.
The GPU and the DRAM memory are connected via a high speed I/O interface (typi-
cally Peripheral Component Interconnect (PCI) Express). Figure 2.19 shows a schematic
comparison between a 4-core CPU architecture and a generic GPU architecture.
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Figure 2.20 shows the main components of any NVIDIA GPU, which is composed of a
set of SIMD multi–processors known as Stream Processors (SPs). Each SP is composed of a
set of Processing Elements (PEs) or cores, which execute the same instruction on different
data, on every clock cycle. The number of SIMD multi–processors and the number of PEs
within the SIMD multi–processors depends on the compute capability of the device, as well
as on the commercial model of the graphics card. Moreover, each SP has a set of resources
shared by all PEs within the SP:

32–bit registers.

A high speed local memory shared by all PEs within each SP. Note that this memory
can be used as an L1 global memory cache for devices of compute capability 2.0 and
above.

A read only constant memory cache. The constant cache memory working set per
SP is 8 kB.

A read only texture memory cache. The texture cache memory working set per SP
is device dependent, between 6 kB and 8 kB.

Figure 2.20: Basic hardware model of a GPU.



2.3 Graphic Processing Units (GPUs) 41

Floating–point units. Single–precision floating–point arithmetic operations are sup-
ported by all devices, but double–precision floating–point arithmetic operations are
only supported by devices of compute capability 1.3 and above.

Warp schedulers.

The number and size of most of these resources depends on the compute capability of
the device, and are summarized in Table 2.6.

Table 2.6: SP technical specifications per compute capability.

Technical Specification
Compute capability

1.0 1.1 1.2 1.3 2.0 2.1 3.0

# of cores per SP 8 32 48 192

# of 32–bit registers per SP 8k 16k 32k 64k

Maximun amount of shared memory per SP 16 kB 48 kB

# of shared memory banks 16 32

Maximun amount of local memory per thread 16 kB 512 kB

# of floating–point units 2 4 8 32

Warp scheduler 1 2 4

On the other hand, the number of threads that can be in execution/scheduling within
each SP, on every clock cycle, can vary. The SP creates, manages, schedules, and executes
threads in groups of 32 parallel threads called warps, which are the minimum execution
unit. A thread block is divided into warps in order to schedule thread execution. When
a kernel begins its execution, a warp is marked as active and its execution starts. More
warps are marked as active when an SP is idle (memory transactions, synchronization
instructions, or the active warps have finished their execution). However, the maximum
number of active warps depends on the compute capability of the device and the main
restrictions are summarized in Table 2.7. Moreover, a warp can be marked as active if and
only if there are resources available for its execution (registers and shared memory).

Table 2.7: Thread specifications per compute capability.

Technical Specification
Compute capability

1.0 1.1 1.2 1.3 2.0 2.1 3.0

Warp size 32

Maximun # of active thread blocks per SP 8

Maximun # of active warps per SP 24 32 48 64

Maximun # of active threads per SP 768 1024 1536 2048
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For devices of compute capability 1.x, in order to execute one instruction on all threads
of a warp, the warp scheduler issues the instruction over:

4 clock cycles for integer and single–precision floating–point instructions.

16 clock cycles for single–precision floating–point transcendental instructions.

32 clock cycles for double–precision floating–point instructions.

For devices of compute capability 2.0 at every instruction issue time, each scheduler
issues one instruction, while for devices of compute capability 2.1 and 3.0, each scheduler
issues two instructions. Active warps are distributed among the available warp schedulers
before being planned for their first execution.

Finally, the external device memory is implemented using a Double Data Rate (DDR)3
or a DDR5 DRAM memory. More details about this memory and its access modes can be
found in the next section.

2.3.3. Memory Hierarchy

The CUDA programming model assumes a system composed of a host (CPU) and a
device (GPU), both of them with their separate memory spaces. Allocation, deallocation,
and memory transactions between both memory spaces must be explicitly performed by
using CUDA runtime functions. Device memory can be allocated by using linear memory
or by using CUDA arrays.

Device memory can be classified depending on its access mode: global memory, local
memory, constant memory, texture memory, or shared memory. All threads have a private
local memory and access to the global memory. Constant and texture memory are read–
only cached memory spaces and can be accessed by all threads. Global, texture, and
constant memory are optimized for different memory usages. Shared memory can be
accessed by all threads within each thread block.

The lifetime of global, constant, and texture memory is the lifetime of the application,
whereas the lifetime of local and shared memory is the lifetime of the thread and the
lifetime of the thread block, respectively. Therefore, global, constant, and texture memory
are persistent across kernel launches. Local, and shared memory are not. The Memory
hierarchy of an NVIDIA GPU is depicted in Figure 2.21.

The memory throughput varies considerably depending on the memory access pattern
used and on the memory type. The memory transactions between the host and the device
are slower than the memory transactions between the device memory and the device, so re–
using data is very important. Moreover, the memory transactions between off–chip memory
(global memory, constant memory, and texture memory) and the device are slower than
the memory transactions between on–chip memory (shared memory and caches) and the
device.
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Figure 2.21: Memory hierarchy.

Shared memory

Shared memory is located on the GPU chip itself, so accessing this memory space is
faster than accessing all other memory spaces, which are located in the external DRAM
with the exception of cache memories, which are also located on the GPU chip.

Shared memory is organized in memory modules, called banks, which can be accessed
simultaneously. For devices of compute capability 2.1 and below, the memory banks have
a bandwidth of 4–bytes per two clock cycles; for devices of compute capability 3.0 the
memory banks have a bandwidth of 8–bytes per clock cycle. The number of memory
banks depends on the compute capability of the device, and are shown in Table 2.6.

Accessing this memory space is as fast as a register access, when no bank conflicts
occur. If two or more threads within a warp attempt to access the same memory bank
at the same time, the accesses are serialized, and hence the effective memory bandwidth
decreases.

Global memory

Global memory resides in device memory and is accessed using 32–, 64–, or 128–byte
memory transactions. However, global memory instructions read and write using words
of 1, 2, 4, 8, or 16 bytes. When a warp of threads accesses global memory, these memory
instructions coalesce into one or more memory transactions depending on the size of the
words accessed and the distribution of memory accesses across the threads. Note that
the first address of each memory transaction is a multiple of its size (32–, 64–, or 128–
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byte), i.e. the memory transactions are aligned to the DRAM size. In general, the more
memory transactions generated by a read or write instruction, the more unused words are
transferred to the device, decreasing the instruction throughput.

The global memory coalescing requirements depend on the compute capability of the
device used. The requirements for devices of compute capability 1.0 and 1.1 are stricter
than the requirements for devices of higher compute capability. When the memory coa-
lescing conditions are satisfied, a global memory request is split into two memory requests,
one for each half–warp, and they coalesce into one or more memory transactions. If the
coalescing conditions are not satisfied, 16 independent 32–byte memory transactions are
performed. The coalescing conditions for devices of compute capability 1.0 and 1.1 are
listed below:

The size of the word must be 4, 8, or 16 bytes.

If the word size is:

• 4, the 16 words must lie in the same 64–byte segment.

• 8, the 16 words must lie in the same 128–byte segment.

• 16, the first 8 words must lie in the same 128–byte segment, and the last 8 words
in the following 128–byte segment.

The Kth thread must access the Kth word, i.e. the accesses must be in order.

For devices of compute capability 1.2 and above the coalescing conditions are less strict:
the accesses do not have to be in order, or be in the same memory segment.

Additionally, the global memory for devices of compute capability 2.0 and above is
cached, so locality can be exploited to reduce the impact on instruction throughput. The
memory cache can be configured at compile time, using L1 and L2 cache levels (by default
this option is used), or using L2 only. Physically, L1 cache and shared memory are the
same on–chip memory. Therefore, if L1 cache is not used, the amount of shared memory
available is 48 kB (see Table 2.6), otherwise the amount of shared memory available is 16
kB and the memory cache size is 32 kB. Global memory accesses using L1 and L2 are issued
using 128–byte memory transactions, but are issued using 32–byte memory transactions if
only L2 is used.

Local memory

Local memory is used for automatic variables, and is located in device memory. Local
memory is subject to the same coalescing requirements described for global memory. As
with global memory, local memory is cached for devices of compute capability 2.0 and
above. The compiler uses this memory space automatically for the following variables:

Kernels that use more registers than those available.
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Large arrays that would consume too many registers.

Arrays which are not indexed with constant values.

Constant, Texture and Surface memory

Constant and texture memory spaces are located in device memory, and are cached for
all devices. Surface memory space is also located in device memory, but is not cached. The
GPU provides specific texturing hardware, which the GPU uses for graphics, to access the
texture and the surface memory spaces. Therefore, accessing these memory spaces instead
of global memory can have performance benefits.

Constant and texture memory spaces are read–only, and therefore there is no coherency
mechanism between the device memory and its cache. An access to these memory spaces
only reads from device memory on a cache miss, otherwise the word is read from its
cache. Surface memory can be read and written. Texture and surface memory use the
same texturing hardware for their memory transactions, but the texture cache is not kept
coherent with respect to surface memory writes.

Texture memory is accessed using device functions called texture fetches, and fetches
over objects called texture references. A texture reference is bound to a region of device
memory called texture. Surface memory is accessed using device functions called surface
fetches, and fetches over objects called surface references. A surface reference is bound to
a region of device memory called surface.

A texture and a surface can be addressed using linear memory or CUDA arrays, but the
latter are optimized for texture and surface fetching. The dimensionality, which specifies
whether the texture and surface are addressed, can be one–, two–, or three–dimensional.

Page–locked memory

CUDA runtime allows the programmers to allocate and free page–locked host memory,
instead of regular pageable host memory. The benefits of using page–locked host memory
are:

Copies between page–locked host memory and device memory can be overlapped
with kernel execution.

Page–locked host memory can be mapped into the device memory space, avoiding
memory copies between both memory spaces.

The memory bandwidth between host and device memory can be higher on systems
with a front–side bus.

This type of memory must be used carefully, as allocating too much page–locked mem-
ory reduces overall system performance because it reduces the amount of physical memory
that the operating system can use.
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Chapter3
Related Work

IN the H.264/AVC standard, inter prediction is the most computationally expensive
task [Wiegand et al. 03]. Inter prediction is carried out in two complex steps: ME and

MC. In the literature, many approaches have been proposed in order to accelerate these
processes. But, up to now, there have not been many solutions making use of GPUs, which
is the major focus of this thesis: to exploit the powerful GPU architecture to accelerate
traditional video coding algorithms, such as H.264/AVC inter prediction, by using CUDA.

In order to describe the state of the art developed in the framework of fast H.264/AVC
inter prediction algorithms, this chapter is divided into different sections: Section 3.1
reviews some inter prediction proposals developed for H.264/AVC itself; Section 3.2 reviews
some proposals presented for MVC; Section 3.3 reviews the most important approaches that
make use of GPUs to accelerate the H.264/AVC inter prediction algorithm; and Section
3.4 reviews some proposals that make use of parallel architectures.

Furthermore, in recent years, the computer’s power and energy consumption has at-
tracted a lot of attention. Developers are increasingly aware of the energy and power
consumption of their solutions. Section 3.5 reviews the most relevant proposals that try
to model and/or reduce energy consumption in the framework of parallel processing and
GPU computing.

In a nutshell, there are not many approaches focusing on H.264/AVC implementation
on GPUs using CUDA, and most of them fail to give Rate Distortion (RD) performance
(quality and bit rate of the encoded video sequence). Time reduction or speed–up is a very
important feature that can be achieved by using GPUs. However, all approaches must
keep the RD as close as possible to the sequential approach. Moreover, there are some
approaches that do not focus on video coding standards and only try to parallelize a part
of them, such as the ME module. In the H.264/AVC video coding standard, the ME is
only a part of the whole encoding algorithm, and therefore all the approaches should try
to combine all of the encoding tools in order to show how this affects the other modules.

47
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3.1. Faster H.264/AVC Inter Prediction algorithms -

Soft–Computing techniques

In the literature, many approaches have been presented to accelerate the H.264/AVC
inter prediction algorithm. Most of them are based on estimating data by using faster
algorithms, determining which MB partition or partitions are not suitable to be selected
(based on certain features), or determining stopping criteria for some algorithms. The
H.264/AVC standard was standardized in 2003, so the proposals that involve this standard
begin in 2003 and are organized by the year of publication.

In 2003:

Lim et al. [Lim et al. 03] proposed a fast mode decision algorithm based on the in-
formation supplied by the intra prediction and an edge map. However, due to the small
probability of intra modes in inter frames, they suggest that this practice may have a
certain limit in reducing the computational complexity of the H.264/AVC inter prediction.

Lee and Jeon in [Lee and Jeon 03] proposed a pruned mode decision algorithm capable
of early selecting some coding modes, which can be discarded from being checked. This
method reduces the computational complexity of the inter prediction algorithm by skipping
the RD cost calculation of the discarded modes, while maintaining the coding efficiency.
Experimental results report a computational complexity reduction of up to 75% in the RD
cost calculation.

Yin et al. in [Yin et al. 03] proposed a scheme to jointly optimize the ME and the mode
decision. The authors define some thresholds to determine which is the most suitable mode
to be selected, and use a fast ME algorithm which is based on the well-known Enhanced
Predictive Zonal Search (EPZS) ME algorithm [Tourapis 02]. Experimental results report
up to a 90% reduction in the computational complexity of the RD cost calculation and a
bit rate increment of up to 3%, when compared with the reference ME algorithm.

In 2004:

Kim et al. in [Kim et al. 04], based on the properties of an all-zero coefficient blocks that
are produced by quantisation, proposed a fast mode decision able to effectively eliminate
unnecessary modes. However, in this method, there are several threshold values that
should be predefined. Furthermore, the transform coefficients must be available to make
a fast decision (see the basic block diagram of a generic H.264/AVC encoder in Chapter
2). Experimental results show that this algorithm is two times faster than the complete
mode decision of the JM 7.2 reference encoder, with negligible coding loss. This article
also includes a comparison against the proposals presented in [Lim et al. 03] and [Lee and
Jeon 03], outperforming both proposals in terms of execution time and coding efficiency.

Yu in [Yu 04] proposed a fast block size selection algorithm for inter frame coding.
The algorithm relies on two predictive factors: the intrinsic complexity of the MB and
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the knowledge of the mode decision carried out for already encoded frames. The first P
frame within each GOP is not coded using the proposed algorithm since it requires the
mode decision resulting from the previous frame, which is not available (intra frame). This
algorithm can save up to 31% of the total encoding time, when compared with the JM 6.1
reference encoder.

Lee and Jeon in [Lee and Jeon 04] proposed two techniques in order to reduce encoder
complexity, with small coding loss. The first one is an early SKIP mode decision, which
makes it possible to omit all the remaining RD calculations, motion estimations and intra
predictions. The second one is a selective intra mode decision which avoids the need to
calculate all the inter frame modes when there is a correlation between surrounding pixels
in the spatial direction. The first technique obtains a time reduction of 14% of the total
encoding time, the second one a time reduction of 20%, and the combination of both
techniques obtains a time reduction of 29% when compared with the JM 6.1 reference
encoder.

Chang et al. in [Chang et al. 04] proposed a method to speed up the mode decision
carried out for P frames. It exploits the inter and intra correlations between neighbouring
blocks. This method requires the computation of two thresholds for measuring the goodness
of the prediction. Simulation results show that this method can achieve a time reduction of
between 33% and 59% depending on the video sequence, with negligible bit rate increments.

In 2005:

Wu et al. in [Wu et al. 05], using the spatial homogeneity of a video object’s textures
and the temporal stationary characteristics inherent in video sequences, proposed a fast
inter mode decision algorithm for H.264/AVC able to decide the best mode in inter frame
coding (P and B frames). However, this method suffers from a drawback, since it requires
an edge image for texture information and a different image for the temporal stationary
characteristics. This proposal is able to obtain on average a time reduction of 30%, when
compared with the JM 5.0 reference encoder.

Grecos and Yang in [Grecos and Yang 05] presented a fast inter mode decision algorithm
for P slices, which exploits spatio–temporal neighbourhood information jointly with a set
of SKIP mode conditions for an enhanced SKIP mode selection. In a first step, they select
some MBs to be coded as SKIP using spatio–temporal information. The idea of using
spatio-temporal neighbourhood information is based on the observation that the areas of
a picture that consist of MBs encoded using SKIP mode slowly change over time. In a
second step, they use the conditions presented in [Lee and Jeon 03] in order to identify more
MBs suitable to be coded using the SKIP mode. Finally, for the remaining MBs, they try
to predict their respective modes while trying to avoid as much computation as possible.
Experimental results achieve a 35–58% reduction in execution time, when compared with
the JM 8.2 reference encoder.
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In 2006:

Kuo and Lu in [Kuo and Lu 06] presented a SKIP mode decision algorithm, which is able
to reduce the huge complexity resulting from the variable block size ME algorithm. This
algorithm decides the SKIP mode based on the MVs of 8x8 blocks, which are calculated
in advance. In contrast with previous proposals, this algorithm does not need predefined
thresholds. On average, this algorithm is able to obtain a time reduction of 27%, when
compared with the JM 9.2 reference encoder.

Nieto et al. in [Nieto et al. 06] presented a fast mode decision algorithm based on Peak
Signal Noise Ratio (PSNR) predictions. First of all, the algorithm performs the SKIP and
DIRECT modes, and then decides if more modes are needed. The decision is based on the
generation of predictions of the expected PSNR of the current frame, which are calculated
using the distortion costs obtained for SKIP and DIRECT modes, and the distortion costs
obtained for previous frames. On average, this proposal obtains a time reduction of 36%,
when compared with the JM 10.1 reference encoder. A bit rate increment of 1.78% and a
PSNR decrement of 0.140 dB are also reported.

Ri and Ostermann in [Ri and Ostermann 06a] proposed a method to predict the best
coding mode of an MB by using the best mode and the RD cost of neighbouring MBs
(in time and space). The algorithm is based on the correlation of neighbouring MBs. In
order to mitigate error propagation, an exhaustive mode decision is periodically carried
out. This method can save up to 53% of the total encoding time, when compared with
the JM 10.1 reference encoder. This paper shows a comparison with [Chang et al. 04],
outperforming its results in terms of time savings and RD distortion.

Ri and Ostermann in [Ri and Ostermann 06b] proposed an improvement to the algo-
rithm previously presented in [Ri and Ostermann 06a]. They improved the algorithm in
order to take into account when the optimal mode for a concrete MB is different from the
best mode of its neighbours. This method outperforms the previously presented method
in execution time (i.e. can save up to 57%), but not in coding efficiency.

Kuo and Chan in [Kuo and Chan 06] proposed a method which determines a suitable
inter prediction mode according to the motion field distribution and to the correlation
inside an MB. The motion field distribution is obtained after applying a DBS over the
sixteen 4x4 partitions into which an MB can be divided. The algorithm, by analysing the
correlation between the sixteen MVs obtained, is able to carry out the mode decision. The
algorithm is tested against the Fast FS algorithm implemented in JM 9.8 and the total
execution time is 2.33 times shorter (time reduction of 57%), while, on average, it obtains
a bit rate increment of 1%.

In 2007:

Lin et al. in [Lin et al. 07] presented an algorithm which discards some inter and intra
modes by using a threshold. The algorithm exploits the correlation of co–located MBs
in previously coded frames. In contrast with previous proposals, this proposal uses an
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adaptive threshold based on the statistical dependency of co–located MBs. This algorithm
does not exploit the correlation of MBs located in the same frame. The algorithm is
tested against the well–known EPZS algorithm [Tourapis 02] implemented in JM 11, and
it obtains a time reduction of 43%, while on average obtaining a bit rate increment of 1.5%.

Wang et al. in [Wang et al. 07] proposed a fast mode decision algorithm, when the
RD optimization is turned on, by using the MB motion characteristics. First of all, the
residual of the MB is obtained by applying the ME algorithm, then the residual is carefully
analysed in order to obtain the MB motion characteristics. The residual is obtained and
analysed using 8x8, 4x4, and 2x2 blocks. This division into blocks aims at extracting
the edge directions within the MB. The proposal is tested against the Fast FS algorithm
implemented in JM 8.6. Experimental results achieve a 40–63% reduction in execution
time, with a bit rate increment of up to 6.7%.

Zhan et al. [Zhan et al. 07] presented a fast mode decision algorithm based on the
correlation between MBs. The algorithm dynamically defines a set of candidate modes
depending on the correlation of co–located MBs in the reference frame. This method
can save up to 65% of the total encoding time when compared with the FS algorithm
implemented in JM 10.1.

In 2008:

Bystrom et al. [Bystrom et al. 08] proposed a method to early detect the SKIP mode
by using Bayesian networks. The Bayesian network requires some thresholds to determine
the most suitable mode classification. These thresholds depend on the QP used and on the
activity factor, which can be easily obtained. This approach obtains the best results for
low–motion video sequences, since the probability of SKIP mode is high. The evaluation
reports time savings ranging from 5% to 80% when compared with the FS algorithm
implemented in JM 9.0, with a bit rate increment of up to 1%.

Zhan et al. in [Zhan et al. 08] presented a novel fast intra and inter mode decision algo-
rithm for H.264/AVC. The proposed algorithm reduces the number of calculations carried
out in both intra and inter predictions. First, the authors analyse the correlation between
MBs, and define the mode decision depending on the distance between the current MB
and the neighbouring MBs. Finally, the algorithm performs an MV adjustment in order
to detect and properly encode objects which are in movement. This paper includes a
comparison against [Grecos and Yang 05], outperforming its results with the same encod-
ing conditions. The evaluation reports time savings of 50% when compared with the FS
algorithm implemented in JM 10.1.

In 2009:

Cai et al. [Cai et al. 09] presented a fast ME algorithm. First, the algorithm selects
some inter prediction modes which are not suitable to be used in homogeneous regions.
Then, a hierarchical block matching scheme and a spatial neighbour searching scheme
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are used to find the best MV with full–pixel accuracy. Finally, a direction–based rule is
used to reduce the number of candidate positions with sub–pixel accuracy. However, this
algorithm uses seven thresholds, one for each of the seven MB inter prediction modes,
which are empirically obtained using the sequences used in the performance evaluation
(the algorithm is trained for these sequences). Experimental results show a time reduction
of up to 88% in the ME time, when compared with the JM 10.2 reference encoder. It also
reports a bit rate increment of up to 0.5%.

Liu et al. in [Liu et al. 09] proposed an inter mode decision algorithm based on the
motion homogeneity evaluated on a normalized MV field, which is generated using the
MVs from the 4x4 partition. Three directional motion homogeneity measurements derived
from the MV field are used to determine the candidate modes. Experimental results show
a time reduction of up to 40% when compared with the JM 9.4 reference encoder. It also
reports a bit rate increment of up to 2.7%. This article also includes a comparison against
the proposal presented in [Wu et al. 05], outperforming its results in terms of execution
time but not in terms of coding efficiency.

In 2010:

Hsia and Hung in [Hsia and Hung 10] proposed a fast ME algorithm for multiple
reference frames. The algorithm is based on combining some well–known search algorithms
such as FS, TSS and DBS. A control flow is proposed to select the search algorithm
depending on video features. Moreover, it defines an adaptive search area adjustment to
cover the motion displacement to achieve higher accuracy. The evaluation reports speed–
ups ranging from 6x to 15x when compared with the FS algorithm implemented in JM 8.6,
using 5 reference frames.

In 2011:

Husemann et al. in [Husemann et al. 11] presented an optimized high performance
small diamond topology zonal search motion prediction algorithm. The algorithm is an
adaptation of the DBS on which only three new checking positions are added on each
algorithm iteration. Moreover, the SAD calculation is based on internal orthogonal 64-bit
vector operations called Linear Vectors, which are particularly useful for Intel and AMD
PC platforms. The proposed algorithm has worse coding efficiency than the Unsymmetrical
Multi-Hexagon Search (UMHexagonS) algorithm implemented in JM16.2 (up to 0.3 dB),
but on average is 5 times faster.

In 2012:

Hilmi et al. in [Hilmi et al. 12] proposed a method that reduces the number of candidate
modes using direct information from co–located MBs. The proposed algorithm tries to
detect moving objects. Depending on a previously performed motion complexity analysis,
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the authors divide the available modes into three categories: SKIP mode; 16x16, 16x8
and 8x16 modes; 8x8, 8x4, 4x8 and 4x4 modes. As a consequence the algorithm does not
completely evaluate all inter prediction modes. Experimental results show a time reduction
of up to 78%, while reporting bit rate increments of up to 1%.

3.2. Faster Inter Prediction algorithms for the MVC

Extension of H.264/AVC - Soft–Computing tech-

niques

The MVC extension of the H.264/AVC standard was completely finalized in November
2009. Therefore, the proposals related to the MVC extension are recent. In fact, the
MPEG issued the call for proposals in October 2005. The major focus of all of them was
how to deal with the inter–view dependencies and how to remove the redundancies between
adjacent views.

In 2006:

Merkle et al. in [Merkle et al. 06] presented a coding scheme aimed at improving
the quality of multi–view video sequences by using H.264/AVC codecs. First of all, the
authors analysed the temporal and inter–view dependencies. Then, by exploiting the
spatio–temporal correlations obtained in the analysis, they defined the coding scheme.
The proposed scheme is based on hierarchical B frames to exploit both temporal and
inter–view dependencies. Experimental results report PSNR gains of up to 3.2 dB when
compared with simulcast.

Lai and Ortega in [Lai and Ortega 06] proposed a fast predictive search algorithm to
reduce the complexity in MVC. The authors proposed to predict the ME using the DE
or vice versa. In this way, the algorithm obtains good candidate vectors to perform the
estimation on the other field with very low complexity. Then, the algorithm carries out
a reduced estimation using a search window with up to 9x9 candidate positions. Simula-
tion results show that ME generally provides better block matching estimation than DE,
therefore the best option is to predict the DE using the ME.

In 2007:

Lu et al. in [Lu et al. 07] proposed a DE technique to accelerate the disparity search
by using epipolar geometry. Epipolar geometry has been widely studied in computer
vision [Hartley and Zisserman 04] and is the only geometry constraint between a stereo
pair of images of a single scene. The proposed epipolar–geometry–based DE can greatly
reduce the search region and effectively track large and irregular disparity, which is very
common in multi–view scenarios. Experimental results show a speed–up of up to 12x when
compared with the fast full search DE algorithm and a speed–up of up to 3x when compared
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with the UMHexagonS DE algorithm [Rahman and Badawy 05] (both algorithms available
in JM 10.1), while reporting a bit rate increment of up to 1.6%.

Li et al. in [Li et al. 07] presented a fast inter prediction algorithm for both ME and
DE. First, the prediction type is selected depending on the reference frames, as regions
with fast motion are best handled with inter–view predictions (DE). On the other hand,
homogeneous and stationary regions are best handled with temporal predictions (ME).
The reason is that regions with fast motion may be predicted using small block sizes and
large MVs, which decreases coding efficiency. Then, some unuseful search regions in the
view direction are discarded from being analysed, based on the displacement of the cameras
which recorded the 3D scene. Finally, a fast mode decision algorithm is performed based
on the previously determined prediction type, applying the ME or DE processes only to a
subset of the available inter prediction modes. Experimental results show a time reduction
of up to 69% for the total encoding time, while reporting a bit rate increment of up to
4.2%.

In 2008:

Ding et al. in [Ding et al. 08] proposed a content–aware prediction algorithm for the
inter–view mode decisions. The proposed algorithm is able to save unnecessary compu-
tation by exploiting the correlation between the different views in MVC. The ME modes
and their corresponding MVs are predicted by using the DE and the coding information
of neighbouring views. Therefore, ME computational complexity can be greatly reduced,
since some MBs may be early identified as SKIP, INTRA or DE modes. Experimental
results show a time reduction of over 98% for the ME time, with a quality loss of up to
0.06 dB.

Han and lee in [Han and Lee 08] presented a fast mode decision algorithm for MVC.
The proposed algorithm uses a global disparity vector and a frame segmentation algorithm
to identify the changes among the different viewpoints (cameras). The available modes
in MVC are divided into two categories: the first category is composed of the ME and
DE modes, and the second one is composed of the remaining modes (INTRA, SKIP and
DIRECT). The mode decision algorithm selects and carries out one of these two categories.
Experimental results report on average a time reduction of 40% with a PSNR degradation
of about 0.05 dB.

In 2009:

Huo et al. in [Huo et al. 09] presented a scalable prediction structure for MVC in which
the inter–view prediction may be disabled if the inter–view redundancy can be almost
eliminated by temporal and intra prediction. In this way, the time employed for DE may
be saved by reducing encoder complexity. The authors use a hierarchical GOP pattern
and propose not to carry out the DE in one or more of the highest temporal layers of the
hierarchical GOP pattern, since they observed that the percentage of temporal predictions
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increases with an increment in the temporal layer index. Experimental results report on
average a time reduction of 30.60% and a bit rate increment of 1.55, when not performing
the DE in the highest level in a GOP pattern of five levels (GOP 16).

Shen et al. in [Shen et al. 09] proposed a fast DE and ME algorithm based on the
correlation between the inter prediction modes and motion homogeneity. MBs with homo-
geneous motion usually select temporal predictions with large block sizes, and MBs with
complex motion usually select inter–view predictions or temporal predictions with small
block sizes. The proposal uses the spatial properties of the motion field, which is gener-
ated by obtaining the motion information of the 4x4 inter prediction mode. On average,
experimental results show a time reduction of 63% and a bit rate increment of up to 2%.

In 2010:

Deng et al. in [Deng et al. 10] proposed a fast ME and DE algorithm, which exploits
the correlation between temporal and inter–view reference frames. First, the algorithm
obtains a predictor by taking into account the correlation of motion and disparity vectors
of neighbouring MBs. Then, an iterative search algorithm is run to find the optimal motion
and disparity vectors. The iterative search algorithm is performed using small window
sizes of 5x5, which is sufficient for maintaining the coding efficiency. The algorithm is only
implemented for the 16x16 inter prediction mode. Therefore, it does not support variable
block size ME and DE. Simulation results show that the overall average encoding time
saving is 86%, while reporting a bit rate increment of up to 6%.

Zeng et al. in [Zeng et al. 10] presented a fast mode decision algorithm called Mode–
correlation–based early Termination (MET). First, for each MB the SKIP mode is evalu-
ated. Then, if the encoding cost of the SKIP mode is below an adaptive threshold, the
other modes may be discarded from being checked. The threshold is based on the mode
correlation of adjacent MBs in the current view and in neighbouring views. Experimental
results report a reduction in computational complexity of about 65%, while on average
reporting bit rate increments of 1%.

In 2011:

Zhang et al. in [Zhang et al. 11] proposed a Fast Multi–reference Frame Selection
Algorithm (FMFSA) for hierarchical bi–directional prediction in MVC. Due to the corre-
lations within an MB, there is a high probability that the different inter prediction modes
available in MVC select the same reference frame and direction as the 16x16 mode would
select. Therefore, this algorithm carries out the 16x16 mode, and then only evaluates a
sub–set of the reference frames (typically 1), thus saving computation. Experimental re-
sults report a reduction in computational complexity ranging from 68% to 79%, while on
average reporting bit rate increments of 0.5%.

Shen et al. in [Shen et al. 11] presented a low complexity mode decision algorithm
to reduce the complexity of ME and DE in MVC. The proposed algorithm is based on
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four decision techniques: early SKIP mode decision, adaptive early–out termination, fast
mode size decision, and selective intra coding in inter frames. The authors evaluate each
technique separately, and as a final step evaluate the results of the overall algorithm. On
average, the experimental results report a reduction in computational complexity of about
76%, while on average reporting bit rate increments of 1.3%.

In 2012:

Deng et al. in [Deng et al. 12] proposed an iterative search strategy designed to speed
up the uni–directional prediction and a selective bi–directional prediction algorithm. The
uni–directional prediction algorithm is carried out in some iterations, the best vectors of
each MB partition from one iteration become the base vectors for the next one (similar to
an MVP). Then, by extracting some motion information from the uni–directional MVs and
disparity vectors, the bi–directional prediction algorithm is executed. Simulation results
show that the speed of the proposed algorithm on average is 88 times above that of the FS
algorithm in JMVC, while reporting bit rate increments of up to 2%.

Liu et al. in [Liu et al. 12] presented a high-speed mode decision algorithm for the
inter–view predictions of multi-view video sequences. Some candidate modes are discarded
from being checked to reduce the encoding cost calculations and an early stop mode de-
cision is made by using multiple parameters related to the estimation of the final optimal
mode. These parameters are: the MB residual and the temporal, spatial and inter–view
correlations. On average, the experimental results report a reduction in computational
complexity of about 92%, while reporting bit rate increments of up to 2.5%.

3.3. GPU–based H.264/AVC Inter Prediction algo-

rithms

As mentioned in Chapter 2, in the last decade the processing power of GPUs has grown
faster than the processing power of contemporary CPUs. Therefore, GPUs have attracted
a lot of attention. In 2003, Ian Buck in a presentation at Graphics Hardware 2003 and
in [Buck et al. 04] estimated that the peak performance of the Nvidia GeForce FX 5900
was nearly 20 Gflops, which was equivalent to a 10-GHz Pentium 4 processor. This was
the starting point at which GPUs started moving from being exclusively used for graphics
applications to being used for high performance computing.

In the framework of video processing using GPUs, there are not many solutions available
in the literature. Some of them use graphic APIs for programming the GPU, such as
OpenGL or Microsoft Direct X. However, with the emergence of Nvidia CUDA in 2006, a
new door was opened for high performance computing using GPUs. The related proposals
are organized by the year of publication.
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In 2004:

Kelly and Kokaram in [Kelly and Kokaram 04] proposed the use of computer graphics
hardware for fast image interpolation. Basically, the authors, by using the OpenGL API,
implemented a bilinear interpolation algorithm needed to obtain sub–pixel accurate MVs.
However, the GPU does not produce identical images to those produced on the CPU. These
errors appear due to round–off problems and precision issues of the GPU texturing units.
Moreover, the GPU used in this work uses a PCI bus, which becomes the bottleneck of the
system. The results show a speed–up of up to fourfold, when sub–pixel ME is performed.
The authors do not include the algorithm in any H.264/AVC encoder.

In 2006:

Ho et al. in [Ho et al. 06] presented an H.264/AVC ME algorithm using programmable
graphics hardware. The algorithm is run at MB–level to overcome the dependencies be-
tween adjacent MBs (MVPs), and is implemented using the OpenGL API. The MBs are
transferred to the GPU when they are going to be encoded, dividing them into sixteen 4x4
blocks. The reference frame is transferred to the GPU texture units at the beginning of
coding each frame. Then, the FS ME algorithm is executed for all inter prediction modes
in parallel. The authors also provide a mechanism to adjust the arithmetic intensity of
the algorithm depending on the processing capabilities of the GPU used. Experimental
results show that the proposal is 10 times faster that an optimized SIMD implementation,
which they also developed. The authors do not include the algorithm in any H.264/AVC
encoder.

In 2007:

Lee et al. in [Lee et al. 07] proposed a multi-pass and frame parallel algorithm to
accelerate some ME tools available in an H.264/AVC encoder, by using the OpenGL API.
They unroll and rearrange the multiple nested loops of the ME algorithm using a multi-
pass method; IME is implemented using a two–pass method; FME is implemented using
a six–pass method; and ME using multiple reference frames is implemented using a two–
pass method. The algorithm is implemented using a multi–pass method because the total
number of instructions is higher than the GPU instruction limit. However, the algorithm
does not support variable block size ME and it is not integrated into any H.264/AVC
encoder. Experimental results show that the proposed GPU–based ME algorithm achieves
a speed–up of up to 56x, when using a search range of 16 and 3 reference frames.

In 2008:

Ryoo et al. in [Ryoo et al. 08] presented one of the pioneering approaches that make use
of CUDA to accelerate general purpose applications. They presented certain optimization
principles of multi–threaded GPUs using CUDA, for a wide variety of applications. They
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tackle the challenge of striking the optimum balance between resource utilization and
the number of simultaneous active threads, but also try to reorder the memory accesses
to combine them into adjacent memory transactions (coalescing accesses). One of the
applications used in this work is the H.264ref benchmark from the Standard Performance
Evaluation Corporation (SPEC) CPU2006 [SPEC 06], obtaining a speed–up of 20x for
the parallelized part of the H.264/AVC encoder, which means a speed–up of 1.5x for the
complete encoder.

Chen and Hang in [Chen and Hang 08] proposed an implementation of the H.264/AVC
ME algorithm using CUDA. The algorithm is based on an efficient block-level parallel al-
gorithm for the variable block size ME in H.264/AVC, supporting IME and FME. They
decompose the H.264/AVC ME algorithm into 5 steps, so they can achieve highly parallel
computation. However, they use many sequential kernels, thus reducing the parallel com-
putations and increasing the memory transfers between the GPU and its DRAM memory.
Moreover, the algorithm is not included in any H.264/AVC encoder, so it is not possible to
show any result concerning RD performance. The proposal does not deal with the problem
of MVPs in H.264/AVC, so the cost metric cannot be accurate. Experimental results show
a speed–up of up to 12x for the ME module implemented in this work.

Kung et al. in [Kung et al. 08], by using the OpenGL API, proposed a GPU–based ME
for H.264/AVC rearranging the encoding order of 4x4 blocks. Unlike previous works, this
proposal deals with the dependencies between adjacent MBs (MVP) and can be applied
to FS ME and to other fast ME algorithms, such as TSS. The algorithm, instead of using
the raster scan order to code the 4x4 blocks, uses a complete 4x4 diagonal block list from
top–left to bottom–right, so the parallelism depends on the video sequence resolution. The
proposal does not support variable block size ME, and is only implemented for the 4x4
mode. Experimental results show that this proposal is 45 times faster than their CPU
implementation using FS, and is 15 times faster when compared with the TSS algorithm.

In 2009:

Schwalb et al. in [Schwalb et al. 09] presented a GPU–based ME approach for the
purpose of H.264/AVC video coding using the DirectX 9 API. To exploit the available
parallel computing power and memory bandwidth of modern GPUs, a small diamond search
is adapted to their programming model. The authors cannot obtain the maximum expected
performance because this algorithm uses irregular/random memory access patterns and
the unavailability of real while loops inhibits the possibility of an early–out termination
strategy, which means that unnecessary operations and memory transactions are carried
out. Experimental results show a speed–up factor ranging from 1.5 to 3 when compared
with UMHexagonS [Rahman and Badawy 05] implemented in JM 9.0. The authors do not
provide a proper RD performance analysis.

Momcilovic and Sousa in [Momcilovic and Sousa 09] proposed a scalable parallelization
approach for H.264/AVC ME on multi–core CPUs, and its implementation on GPUs using
CUDA. The algorithm obtains the MVs by applying data reusing techniques and exploiting
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the computing capabilities of GPUs. The proposal assumes no dependencies between
adjacent MBs, which is not true for H.264/AVC ME. The MV (0,0) is used as MVP, i.e.
the proposal does not use MVPs. Therefore, the RD performance can be considerably
affected. Each frame is divided into an equal–size number of MBs depending on the
number of SPs available in the GPU, and the MBs are assigned to a specific SP. The
MBs mapped to each SP are sequentially estimated since the proposal copies the MB itself
and its associated search area candidates to the SP shared memory, which is a limited
resource. Moreover, this procedure limits the maximum dimensions of the search area.
Experimental results show that this proposal can achieve real–time ME when using 4-CIF
sequences, 5 reference frames and 8 as search range. The authors do not provide a proper
RD performance analysis.

Pieters et al. in [Pieters et al. 09] presented a motion search architecture, capable of
executing H.264/AVC ME, supporting variable size ME for multiple GPUs using CUDA.
The motion search architecture processes MBs serially in the CPU threads (one CPU thread
is generated per slice within a frame), but uses previously calculated data in parallel on
the GPU. The motion search algorithm iterates from fast, but inaccurate MVs, to slow but
accurate MVs, depending on the available time. The algorithm uses a spiral search pattern,
dividing the complete search area into multiple iterations. These iterations make it possible
to implement an early–out termination behaviour based on the MVs obtained in previous
iterations, and to deal with the dependencies between adjacent MBs because approximate
MVPs can be calculated using the best MVs of previous iterations. Experimental results
show that real-time ME for 720p sequences (1280x720 pixels) is achieved using a search
range of 16 running on a system with four GPUs. However, the algorithm is not integrated
into any H.264/AVC encoder so the RD performance is not evaluated and some drift errors
are introduced. It does not use real MVPs, and uses a predefined threshold value for the
early–out termination mechanism.

In 2010:

Cheung et al. in [Cheung et al. 10] proposed a GPU–based version of the Simplified
Unsymmetrical Multi-Hexagon Search (smpUMHexagonS) ME algorithm [Yi et al. 05],
implemented in JM 14.2 using CUDA. This algorithm uses several techniques in order to
save computation, including MVPs, different search patterns (cross, hexagon and diamond)
and an early–out termination mechanism. The authors divide the current frame into
multiple tiles, such that each tile is processed by a single GPU thread and different tiles
are processed by different independent threads concurrently on the GPU. The number of
tiles used affects the algorithm’s performance, both in terms of execution time and in terms
of RD performance. The more tiles used, the faster the algorithm as greater parallelism
can be achieved. However, RD performance is worse because less MBs are predicted using
real MVPs. The authors evaluate the algorithm using different numbers of tiles, ranging
from 3 to 3600 tiles. Experimental results show that the algorithm is up to 3 times faster
than the reference algorithm when coding 720p video sequences (1280x720 pixels), while



60 Chapter 3 Related Work

it reports significant bit rate increments of up to 12% with a penalty in quality of up to
0.4dB depending on the sequence and the tile length.

In 2011:

Lu and Hang in [Lu and Hang 11] presented a GPU–based inter prediction algorithm
for MVC. The algorithm is implemented using integer precision; no sub–pixel ME or DE
is carried out using the GPU. The algorithm is based on the Parallel Hierarchical One-
Dimensional Search (PHODS) proposed by Chen et al. in [Chen et al. 91], which is a fast
ME algorithm designed to reduce the number of sequence steps and search points. The
proposed algorithm is adapted to have a regular flow control and a fixed number of instruc-
tions for each iterative process. In this way, each iterative process can be independently
executed by independent GPU threads. Experimental results show that the proposed algo-
rithm can obtain a speed–up of 9–20x for integer ME and DE algorithms when compared
with the reference EPZS [Tourapis 02] algorithm implemented in JMVC, while reporting
a coding quality loss of up to 0.026 dB.

Massanes et al. in [Massanes et al. 11] proposed a fast implementation of the block-
matching ME algorithm for multiple GPUs using CUDA. The authors proposed a very
simple ME algorithm aimed at real–time encoding which does not support variable block–
size ME. A GPU thread is generated for each search position for each block in a frame,
and each of them computes the encoding costs as the SAD. The block and search area sizes
are set depending on the sequence resolution. This proposal aims at real–time encoding
and does not take RD performance into account. The authors do not use MVPs and do
not analyse the RD performance of the encoded video sequences. Experimental results
report a speed–up of about 200x when compared with a custom FS algorithm (no early–
out termination mechanism implemented), and report real–time ME at 30 fps for 720x480
format when using 2 Tesla C1060 GPUs, the blocks and the search area are set to 5% and
10% of the image size, respectively.

Monteiro et al. in [Monteiro et al. 11] presented a way to partition the steps of the FS
block matching algorithm in the CUDA architecture. The proposed scheme uses a library
called Thrust [Thrust 11] for data manipulation between the CPU and the GPU, and the
algorithm is divided into two steps: SAD values calculation and SAD comparison. The
algorithm is developed for 4x4 blocks as the basic unit for block matching, using search
areas ranging from 24x24 to 256x256 pixels. The algorithm is not integrated into any
H.264/AVC encoder and as a consequence no RD performance is evaluated. Experimental
results report a speed–up of about 200x when compared with a custom FS algorithm (no
early–out termination mechanism implemented) when using a search area of 64x64 pixels.

In 2012:

Pieters et al. [Pieters et al. 12] presented a multi–view encoding framework for high
quality video game remote rendering. The key–aspect is that most video games make use
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of a 3D engine, which is typically accelerated on a GPU, containing information on the
composition of the 3D scene and its objects as well as their motion. This paper shows how
to analyse and extract that information, aiming to exploit it in order to successfully offload
the most time consuming tasks of an MVC encoder. They propose two approaches: the
first one completely eliminates motion search from the encoding process and is called the
forced version; and a second one on which a refinement search process is carried out, and
this one is called the forced+refinement version. Experimental results show that the forced
version reports a speed–up of 11x when compared with FS and the forced+refinement
version reports a speed–up of 3.2x (the maximum search area used is four times smaller
than the one used by FS). On the other hand, the algorithms report PSNR decrements
ranging from 0.5 dB to 1.0 dB.

3.4. H.264/AVC Inter Prediction algorithms for other

parallel architectures

Other proposals for other parallel and/or heterogeneous architectures can be found in
the literature. These architectures include multi–core processors, FPGA prototypes and
Very Large Scale Integration (VLSI) prototypes.

In 2004:

Chen et al. in [Chen et al. 04] presented a multi–level parallelization of an H.264/AVC
encoder for the Intel Hyper–threading architecture. The authors parallelize the H.264/AVC
encoder using the OpenMP programming model, which makes it possible to leverage the ad-
vanced compiler technologies in the Intel C++ compiler. First of all, the authors present
the design considerations, and then two multi–level data partitioning methods. Experi-
mental results show speed–ups ranging from 3.7x to 4.5x. The quality and bit rate of the
encoded video sequence is the same as the reference implementation. However, the frames
are divided into multiple slices in order to obtain as much data parallelism as possible,
which means that the dependencies between MBs are broken, increasing the bit rate by a
factor of up to 1.5.

In 2005:

Tseng et al. in [Tseng et al. 05] presented an FPGA prototype which supports variable–
block–size ME for multiple reference frames. It supports P and B slices, quarter–pixel
accuracy using a 6–tap filter for interpolation, and weighted bi–directional prediction. The
algorithm pays special attention to the memory system design in order to optimize memory
usage and bandwidth.
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In 2008:

Zheng et al. in [Zheng et al. 08] presented a VLSI architecture of MC for multiple stan-
dards including MPEG–2 [ISO/IEC 99], H.264/AVC, and the Chinese Audio Video Stan-
dard (AVS) [AVS-Group 05]. The proposed design has an MB–level pipelined structure
which consists of an MVP calculation unit, a cache-based fetch, and a pixel interpolation
unit. The proposed architecture exploits the parallelism in the MC algorithm to accel-
erate the processing speed, and uses the dedicated design to optimize memory accesses.
The MVP unit can cover all prediction for the three standards with a small error; the
cache–based fetch can save up to 25% of the required memory bandwidth; and the pixel
interpolation unit is designed to avoid redundant calculations. Experimental results show
that real time is achieved when decoding HDTV 1080i (1920x1080 pixels) video sequences.

In 2011:

Ruiz and Michell in [Ruiz and Michell 11] presented an H.264/AVC VLSI processor chip
for IME. The proposal is based on the FS block matching algorithm and uses a 2D array
to obtain a high data reuse of the search area. A three–directional scan is supported in the
2D array, reducing memory accesses, and thus saving clock cycles. The algorithm obtains
the motion information for the smallest MB partitions (4x4), and using this information it
obtains the motion information of other higher partitions. The authors do not deal with
MVPs in order to remove the dependencies between adjacent MBs. Finally, a custom mode
decision is carried out taking into account the estimated cost of each MB partition. The
proposed VLSI processor chip has enough processing capacity for 1080p (1920x1080 pixels)
real–time IME with a search range of 16.

Kalva et al. in [Kalva et al. 11] presented an overview of parallel programming. More
specifically, languages and tools for parallel programming are introduced within the scope
of multimedia applications. First of all, the computing capabilities of modern general
purpose processors are analysed keeping in mind the special requirements of multimedia
applications. Multimedia applications are the kind of applications that can benefit from
parallel implementations and are expected to drive the demand for multi–core processors
and parallel implementations. Then, the parallelism in multimedia applications is analysed.
Finally, some languages and tools for parallel programming are presented as a solution for
speeding up multimedia applications. The most common tools are the OpenMP API, the
SIMD programming model, the CUDA GPU programming model and the usage of cloud
computing for multimedia applications.

In 2012:

Atitallah et al. [Atitallah et al. 12] proposed an FPGA–based implementation of the
Line Diamond Parallel Search (LDPS) algorithm [Werda et al. 07], with variable block
size ME. The FPGA prototype is based on two modules: the loading module and the
search module. The first one is used to load the MB and the search area. The second
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one finds the suitable MV according to the LDPS algorithm. The proposed algorithm is
implemented to support variable block size ME, but does not support all the modes defined
by the H.264/AVC standard. The proposed FPGA processor chip has enough processing
capacity for 1080p (1920x1080 pixels) real–time ME with a search range of 8.

3.5. Power and Energy consumption

In recent years, research efforts have not been exclusively focused on performance
(speed–up) and on the migration from the sequential programming model to the parallel
programming model. Studies that deal with power and energy consumption are becoming
very common, which is a new requirement from processor manufacturers.

In 2005:

Feng et al. in [Feng et al. 05] presented a prototype for direct and automatic profiling
of power consumption for non–interactive scientific applications on high–performance dis-
tributed systems. The prototype, for each available node of the distributed system, profiles
all components in the system (CPU, memory, disk, and interconnection network). Exper-
imental results indicate that the profiling is often regular, depending on the application’s
characteristics and on the problem sizes. If the number of nodes increases, the energy
consumption increases too, but the performance does not always improve. This aspect
suggests smart schedulers could be used to optimize the energy consumption while main-
taining performance. The prototype is limited by the sampling frequency of the hardware
and by its scalability. It cannot be used for profiling large parallel systems.

In 2008:

Rofouei et al. in [Rofouei et al. 08] presented an experimental investigation into the
power and energy cost of GPU operations, and a cost/performance comparison against a
CPU-only system. The investigation was carried out using a platform called LEAP–Server,
which is a novel architecture that incorporates standard server functionalities with high
fidelity real–time energy monitoring of the system components, such as the CPU, GPU,
motherboard and Random Access Memory (RAM). Simulation results show that using a
GPU results in energy savings if the performance gains are above a threshold.

In 2009:

Huang et al. in [Huang et al. 09] presented an empirical study of the performance,
power, and energy characteristics of GPUs for scientific computing. The authors migrate a
sequential CPU code to a hybrid CPU+GPU environment. The sequential code is a widely-
used biological application, called GEM. It calculates the electrostatic potential generated
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inside a macromolecule, and is based on numerical solutions of the Poisson-Boltzman equa-
tion. First, a multi–threaded version of the code is implemented, and then a GPU version
is implemented. The study shows the impact of changing the number of thread blocks
and the number of threads within each thread block of the GPU implementation. Experi-
mental results show that the GPU implementation delivers an energy-delay product that
is multiple orders of magnitude better than the CPU implementation. The analysis also
shows that the GPU implementation is more efficient as many thread blocks and threads
within each thread block are configured in both execution time and energy consumption.

Ma et al. in [Ma et al. 09] presented a statistical power consumption analysis of a GPU-
based framework. The authors recorded the GPU power consumption and the workload of
different test programs, and developed the power consumption model. Then, by using the
generated model, they can predict the energy consumption for a specific GPU program.
However, this model cannot accurately predict energy consumption peaks, and the authors
cannot find an explanation.

In 2010:

Nagasaka et al. in [Nagasaka et al. 10] proposed another statistical approach for
estimating the power consumption of GPU kernels. The authors use performance counters,
which can be easily obtained in CUDA applications. The counters used are: the number
and size of global memory transactions, the number of local memory transactions, the
number of divergent and non–divergent branches, the number of instructions used and the
number of shared memory bank conflicts. The evaluation is carried out using 49 testing
programs available in the CUDA Software Development Kit (SDK) and in the Rodinia suite,
obtaining an average error ratio lower than 5%. However, this model fails when running
GPU programs which use texture memory accesses because of the lack of performance
counters for monitoring texture accesses.

In 2011:

In 2011, Anzt et al. in [Anzt et al. 11] presented an analysis and optimizations of power
consumption for the iterative solution of sparse linear systems on multi–core and many–
core platforms. First of all, the authors analyse the computational and power consumption
requirements of some iterative linear solvers applied to sparse systems. Then, they evaluate
the gains yield by modifying the voltage and frequency of the CPU (Dynamic Voltage and
Frequency Scaling (DVFS) method). DVFS potentially lowers the energy consumption
when the GPU is in execution (CPU is idle) and the total execution time does not vary.
However, the CPU continues in a highly–inefficient busy–wait status, as the CPU executes
a polling algorithm in order to know when the GPU has finished its execution. Finally,
they propose to set the CPU to sleep when the GPU is working, so they avoid the execution
of the polling algorithm. Experimental results show that the DVFS technique can obtain
an energy consumption reduction of up to 5%, and using both techniques jointly they can
obtain an energy consumption reduction of up to 25%.



Chapter4
P frame Inter Prediction

IN this chapter, the proposal developed for P frames is presented. First of all, a brief
introduction to the proposed and the reference inter prediction algorithms is given.

Then, the proposal is described in detail. Finally, it is evaluated, including a comparison
with the most recent and prominent related proposals.

4.1. Introduction

ME sequentially obtains the motion information (encoding costs) for all available MB
partitions and sub-partitions, for all MBs in a frame. For each MB partition and sub-
partition, a search area is defined and a search algorithm is executed. The search algorithm
looks for a region that minimizes the differences between the current partition or sub-
partition and the chosen region.

The main challenge of this approach is to efficiently support the tree-structured MC
algorithm executed in the H.264/AVC JM 17.2 reference software encoder [JVT 11] for
P frames. The idea is to concurrently obtain the motion information for all MBs at the
beginning of coding each P frame. Additionally, in order to work with a GPU, some data
must be explicitly allocated to its DRAM in advance, since the CPU and the GPU have
their own independent memory spaces.

4.2. Proposed algorithm

As was mentioned in Section 2.3.3, in a GPU there are several kinds of memory, and
each kind of memory is suitable for different kinds of memory accesses. The data which
does not change during the complete encoder execution is transferred once per sequence
and is allocated to the GPU constant memory: frame dimensions, search range, search area
distribution, QPs. On the other hand, before coding each frame, the frame to be encoded
and the reference frame(s) are transferred to the GPU texture memory. Texture memory
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is selected since it is bigger than constant memory, and there is a sufficient amount of
memory to allocate the frames; both kinds of memory have associated read-only memory
caches. Finally, some structures, which should be filled in by the proposed algorithm, are
allocated to GPU global memory: namely encoding costs and MVs.

Figure 4.1 shows the activity diagram of the proposed algorithm, which is executed
once per frame. The MVs for all MB partitions and sub–partitions in a frame are obtained
in parallel. Then, the MC mechanism is sequentially executed for all MB partitions and
sub–partitions available in a complete frame. The algorithm is divided into three main
parts: MVP calculation, IME and FME.

Figure 4.1: Activity diagram of the proposed encoder.

As a starting point, the FS algorithm is considered, since it is the one which provides
the best coding efficiency. The reference FS algorithm evaluates all search area positions
following a spiral pattern, as described in Figure 4.2a. This search area distribution starts
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checking the positions close to the center of the search area and ends with the ones which
are further away. This distribution is appropriate for exploiting the early–out termination
mechanism implemented in the H.264/AVC JM 17.2 reference encoder, since it is more
likely to find the best prediction near the center of the search area than near the search
area borders. However, this distribution does not have locality in the memory accesses,
which is very important for an efficient GPU execution.

The proposed algorithm does not implement the early–out termination mechanism,
since a complete frame is going to be concurrently evaluated on the GPU, such that each
search area position is going to be evaluated by a different GPU thread. Therefore, a
new search area distribution must be defined. Figure 4.2b shows the proposed search area
distribution, which follows a raster scan order; position 0 corresponds to the top-left corner
of the search area, and the positions are distributed in rows. The position values shown in
Figure 4.2 are an example, and they depend on the search range used.

(a) Spiral pattern (b) Proposed pattern

Figure 4.2: Search area distribution.

4.2.1. MVP calculation

As was described in Section 2.1.2, it is known that encoding one MV for each MB
partition can increase the number of bits required to encode a frame, especially if small
partition sizes are chosen. However, it is also known that MVs from neighbouring partitions
are often highly correlated and each MV can be predicted using the MVs of neighbouring
partitions. Therefore, an MVP can be calculated, and the differences between the MV
obtained and the MVP calculated are encoded.
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The reference FS algorithm calculates one MVP for each MB partition and sub–
partition of each MB in a frame, the encoding costs of all of them using Equation 4.1,
and then encodes the differences between the MV obtained and the MVP calculated. The
encoding costs are obtained as follows:

Cost = SAD + λ ·R, (4.1)

where SAD is the metric used to calculate the differences (see Section 2.1.2 for more details),
λ is an encoder parameter which depends on the QP used and R is the number of bits
required to encode the MV minus the MVP. However, when the GPU is in execution it is
not possible to calculate the MVP for a given partition because the MVs of neighbouring
partitions are being calculated concurrently.

In the literature, a solution to solve the problem of the MVP calculation can be found.
[Pieters et al. 09] proposed carrying out the ME in a number of steps, and after each
step the MVPs are updated. This solution requires extra synchronization points and the
execution time may be affected. However, the proposed algorithm uses two different MVPs
and is executed in one iteration: one MVP to obtain the best MV of each MB partition
and sub–partition, and one MVP to encode the best MV obtained.

At the beginning of coding each P frame, the MVPs for all MBs in a frame are calculated
and transferred to the GPU global memory. The MVPs are calculated using the motion
information from the previously encoded frame, unlike in the sequential execution in which
the motion information of neighbouring MBs can be used. The proposal uses as MVP the
16x16 MV of the MB located in the same position in the previously encoded frame. This
MVP is used to calculate the encoding costs (Equation 4.1). Moreover, a common search
is defined for each MB, i.e. all MB partitions and sub–partitions of a given MB use the
same MVP to locate its search area (in the reference algorithm different search areas may
be used) and to calculate the encoding costs.

On the other hand, when the MC mechanism is carried out the real MVPs can be
calculated (MC is sequentially carried out on the CPU, and the MVs of neighbouring MBs
are available). Therefore, the encoding costs of the best MVs obtained for all MB partitions
and sub–partitions are recalculated, taking into account the real MVP. As a consequence
the encoding costs are more accurate and a better mode decision can be carried out.

Note that, despite these real MVPs, the final encoding costs may be different from the
ones calculated by the reference algorithm because the best MVs obtained may be different
(the best MV is selected by using a non real MVP). Finally, if the best MV obtained differs,
the MVP calculated for other MBs will also differ, and the differences will propagate.

4.2.2. Integer Motion Estimation

Once all the required data is allocated and transferred to the GPU memory, the IME
is carried out. As depicted in Figure 4.1, IME is divided into three steps which need
to be executed sequentially following a highly–parallel procedure by using the GPU: to



4.2 Proposed algorithm 69

calculate 4x4 SAD costs, to build the structured motion tree and to perform a reduction to
obtain the best MV for all MB partitions and sub–partitions with integer–pixel accuracy.
Moreover, IME is carried out using two GPU kernels. Each thread block of the first GPU
kernel obtains and reduces the motion information of 256 adjacent search area positions of
a given MB; if more than 256 search area positions are defined in the search area, a second
kernel performs a final reduction.

4x4 SAD costs

In order to execute the first GPU kernel, a GPU thread is generated for each search
area position (there are (2 ·Search Range)2 search area positions per MB) and 256 threads
are grouped into a thread block. At the beginning of executing each thread block of the
first GPU kernel, all threads cooperate to allocate to the GPU shared memory the MB
which is going to be estimated and the portion of the search area needed to estimate the
MB. Figure 4.3 shows an example of the search area allocated to shared memory, when the
Search Range is set to 32. The horizontal width of the search area is 2·Search Range = 64,
and as a consequence, 256/64 = 4 complete search area rows are going to be evaluated by
each thread block. However, fifteen horizontal and vertical extra pixels must be allocated
to the GPU shared memory in order to have all the required data. The pixels are stored
on the GPU shared memory using a 4–byte data structure, since the GPU shared memory
can be simultaneously accessed using 4–byte memory transactions when no bank conflicts
occur (see Section 2.3.3).

Figure 4.3: Example of the search area allocated to shared memory.

The search area is located using the MVPs calculated before executing this first GPU
kernel. This allocation is possible due to the redistribution of the search area presented
above (Figure 4.2b), otherwise correlative positions would not be adjacent in memory.

The SAD calculation is carried out in 4x4 blocks, as is depicted in Figure 4.4. Each GPU
thread obtains the SAD costs of the 16 4x4 blocks into which an MB can be divided (b0 to
b15 in Figure 4.4). Contiguous threads are mapped to contiguous search area positions (P0

to P255 in Figure 4.4). Note that Figure 4.4 is a graphical description of the calculation
for the complete MB, which is carried out by a number of thread blocks. Therefore, each
column of the matrix shown in Figure 4.4 corresponds to one position checked inside the
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search area, which is calculated by the same GPU thread. Intermediate results of this step
are stored in GPU registers for faster memory access in the next step.

Figure 4.4: Obtaining 4x4 SAD costs.

This step calculates the SAD costs of the 4x4 sub–partitions, it does not calculate their
encoding costs.

Structured motion tree

The second step uses the information previously obtained in the first step to obtain the
encoding costs of all MB partitions and sub–partitions. It is executed by the same GPU
kernel as in the first step, so each thread block will obtain the motion information of 256
adjacent search area positions.

Figure 4.5 shows how to obtain the SAD costs of a given position (Pst) for the different
MB partitions and sub-partitions, starting with the 4x4 SAD costs. This procedure is
possible because the proposed algorithm uses a common search area for all MB partitions
and sub–partitions within a frame. In order to obtain the motion information for the eight
4x8 and for the eight 8x4 sub–partitions, it is only necessary to add two 4x4 SAD costs for
each of them, e.g. by adding #0 and #2 SAD costs from the 4x4 sub–partition, the #0

Figure 4.5: SAD cost building for different MB partitions.
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SAD cost for the 8x4 sub–partition is obtained (see shaded boxes); to obtain the four 8x8
partitions it is only necessary to add two 4x8 SAD costs, and so on.

Before storing the motion information, the final encoding costs are calculated. The
encoding cost calculation is based on Equation 4.1. Therefore, the encoding costs to store
the MVs (λ ·R) are added to the previously calculated SAD costs.

The encoding costs are stored on the GPU shared memory using a 4–byte data structure.
This structure uses two unsigned short data containing the encoding cost and its associated
position (2 bytes each). This allocation is chosen to avoid shared memory bank conflicts.

Reduction

Finally, the last step performs a reduction to obtain the best MV of each MB partition
and sub–partition. This step is typically carried out using two GPU kernels. The same
GPU kernel which carried out the previous steps performs a reduction by a factor of 256.
That is, the GPU kernel returns the best MV of each MB partition and sub–partition of
the 256 search area positions evaluated by each thread block configured. Additionally, an
independent GPU kernel performs the final reduction, if needed.

Figure 4.6 shows one iteration of the reduction procedure. After the second step, there
are 256 positions per MB partition and sub–partition, which is the initial size (S) of the
reduction procedure. In order to reduce the information, m comparisons are needed for
each row used in shared memory (b0 to bN−1). Note thatm is half of the remaining positions
in any of the eight iterations needed to reduce from 256 positions to 1. As a result, on each

Figure 4.6: Binary reduction scheme.
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algorithm iteration m · N comparisons are carried out. These comparisons are uniformly
distributed on the available threads.

In order to complete the reduction process, eight iterations are needed, starting with
256 (28) encoding costs per partition and sub–partition, and finishing with one encoding
cost, where the size (S) is reduced by half in each iteration. These reductions are performed
with S = 256, 128, 64, 32, 16, 8, 4, and 2 using T strides, such that T=S/2. These strides,
jointly with the threads distribution, are chosen to avoid shared memory bank conflicts.
The code for the eight iterations is unrolled to avoid unnecessary loop climbs. Intermediate
results are allocated to shared memory, updating the shared memory, while final results
are allocated to global memory for the final reduction procedure.

Additionally, if there are more than 256 positions inside the search area of each MB, an
independent GPU kernel is carried out, applying the same reduction procedure described
above. This second kernel starts with (2 · Search Range)2/256 positions and finishes with
the best MV with integer accuracy for each MB partition and sub–partition for each MB
in a frame.

4.2.3. Fractional Motion Estimation

Once IME has finalized its execution, FME is carried out. FME can be viewed as a
refinement of IME. However, before starting the FME algorithm the reference frame must
be sub–sampled to quarter–pixel accuracy. That is, each pixel is converted into sixteen
sub–pixels, which means that the image size is multiplied by four in each dimension (see
Figure 4.7). These sixteen sub-pixels are classified into full-pixel, sub-pixels with half-pixel
accuracy and sub-pixels with quarter-pixel accuracy.

Figure 4.7: Sub-pixel generation.

Experimental results show that it is faster to obtain the sub–pixels by using GPU kernels
than transferring the images with sub–pixel accuracy from CPU memory (the images are
sixteen times bigger). As was explained in Section 2.1.2, half–pixels are obtained by means
of a six–tap FIR filter and quarter–pixels by means of a bilinear filter. Remember that
there are dependencies in the sub–pixel generation procedure and three GPU kernels are



4.2 Proposed algorithm 73

used to obtain all sub–pixels. The half–pixel located in the middle of Figure 4.7 is obtained
using other half–pixels and the quarter–pixels are obtained using half–pixels. One GPU
thread per pixel in the original frame is generated.

FME is carried out in two steps: half–pixel refinement and quarter–pixel refinement.
The algorithm for both steps is the same but applied over different pixels. The best full-
pixel MV (obtained by the IME algorithm) is used as the starting point for the half–pixel
refinement and the algorithm searches over half–pixels to obtain the best MV with half–
pixel accuracy. The best half-pixel MV (obtained by the half–pixel refinement) is used
as the starting point for the quarter–pixel refinement and the algorithm searches over
quarter–pixels to obtain the best MV with quarter–pixel accuracy. A graphical description
can be found in Figure 4.8. The best MV with quarter–pixel accuracy of each partition
and sub–partition is the required output of the proposed algorithm. Each step is carried
out using one GPU kernel.

Figure 4.8: Sub-pixel MV refinement.

FME is carried out using 4x4 blocks like IME, but in this case the number of search
area positions is considerably smaller, and each thread only calculates the cost of one 4x4
block. If we pay attention to Figure 4.8, eight half–pixels surround each full–pixel and eight
quarter–pixels surround each half–pixel. Therefore, nine search area positions are defined
for FME. The encoding cost of the starting point must be recalculated since the QP may
vary, and as a consequence, the final encoding cost may also vary. The encoding costs are
calculated using Equation 4.1, but the SADT metric using Hadamard transforms is used
instead of SAD. The SADT metric is more complex than the SAD metric, but provides
greater coding efficiency. By default, the H.264/AVC JM 17.2 reference encoder uses the
SAD metric for IME and the SADT metric for FME.

The MB is divided into sixteen 4x4 blocks and each one takes as a starting point
the appropriate MV. For the 16x16 partitions all blocks within an MB take the same
MV, while for the 4x4 sub–partitions all blocks within an MB may take different MVs.
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As a consequence of this divergence, the proposed algorithm cannot reuse the motion
information of the smallest partition to obtain the encoding costs of the higher partitions,
and the reference pixels cannot be allocated to shared memory (the texture memory is
used). Each partition has different starting points (full-pixel MV or half-pixel MV), the
costs must be recalculated for each partition and sub–partition and are merged using GPU
atomic operations allocating the resulting encoding costs to shared memory. No merging
is necessary for the 4x4 sub–partitions and the costs of all 4x4 blocks are added for the
16x16 partitions. The same reduction procedure used for IME is used to obtain the final
MV.

4.3. Performance evaluation

In this section, the results of applying the proposal described in this chapter are pre-
sented. First of all, the encoding conditions and the metrics used to evaluate the proposal
are shown. Then, the evaluation is carried out, including a comparison with related pro-
posals.

4.3.1. Encoding conditions

In order to evaluate the proposed inter prediction algorithm developed for P frames,
it has been integrated into the H.264/AVC JM 17.2 reference encoder [JVT 11]. The
H.264/AVC encoding parameters used for the evaluation are those included in the Baseline
profile of the mentioned reference encoder. However, some parameters are changed in the
configuration file and these are described below:

The number of reference frames is set to 1 in order to keep the complexity as low
as possible. An analysis using more reference frames is possible, since the algorithm
can iterate over multiple reference frames. The conclusions obtained will be the same
regardless of the number of reference frames configured. At the end of this chapter,
a comparison with related proposals which uses multiple reference frames is shown.

RD–Optimization is disabled for the same reason as the number of reference frames.
However, in Appendix A the algorithms proposed in this thesis are evaluated enabling
this option.

The GOP pattern configured is 1 I frame followed by 11 P frames (I11P).

The tests are carried out with popular sequences in QCIF (176x144 pixels), CIF
(352x288 pixels), VGA format (640x480 pixels), 720p format (HD, 1280x720 pixels)
and 1080p format (full-HD, 1920x1080 pixels). The first frame of the sequences used
in the evaluation is shown in Figure 4.9, in Figure 4.10 and in Figure 4.11, and these
sequences have different characteristics (content and movement features). Note that
the sequences used for the evaluation of QCIF, CIF and VGA format are the same.
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(a) Canoe (b) Fast food

(c) Football (d) M. calendar

(e) Racing (f) Scrolltext

(g) Skyline (h) Softfootball

Figure 4.9: QCIF, CIF and VGA sequences used to evaluate the proposal.
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(a) City (b) Crew

(c) Dolphins (d) Harbour

(e) Mobcal (f) Night

(g) Park run (h) Shields

Figure 4.10: 720p sequences used to evaluate the proposal.
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(a) Crowd (b) Ducks

(c) Into tree (d) Old town

(e) Park joy (f) Pedestrian

(g) Riverbed (h) Tractor

Figure 4.11: 1080p sequences used to evaluate the proposal.
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The frame rate parameter is set to 30 for QCIF, CIF and VGA format (30 Hz), and
it is set to 50 for 720p and 1080p format (50 Hz).

The QP is varied between 28, 32, 36 and 40 according to [Bjontegaard 01], [Sullivan
and Bjontegaard 01] and [JVT Test Model Ad Hoc Group 03].

The search range is set to 16, which means 1024 positions inside the search area of
each MB partition, when encoding QCIF and CIF video sequences. For the other
formats, the search range is set to 32, which means 4096 positions inside the search
area of each MB partition.

The proposed inter prediction algorithm is tested against two search algorithms im-
plemented in the H.264/AVC JM 17.2 reference encoder: FS [Richardson 10] and
UMHexagonS [Rahman and Badawy 05].

In order to make a proper comparison, an unmodified H.264/AVC JM 17.2 reference
encoder is run on the same machine as the H.264/AVC JM using the proposed algorithms,
with the same encoding configuration and with no calls to the GPU.

The following development environment is used to test the proposed inter prediction
algorithm: the host machine used is an Intel Core i7 running at 2.80 GHz with 6GB of
DDR3 memory. The GPU used is an NVIDIA GTX480 with an NVIDIA driver with
CUDA support (260.19). The operating system for this scheme is Linux Ubuntu 10.4 x64
with GCC 4.4. Finally, Table 4.1 shows the main GPU features.

Table 4.1: GTX480 features.

Characteristic Value

Compute capability 2.0

Global memory 1.5 GB

Number of multiprocessors 15

Number of cores 480

Constant memory 64 kB

Shared memory per block 48 kB

Registers per block 32,768

Max. active threads per multiprocessor 1,536

Clock rate 1.40 Ghz
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4.3.2. Metrics

Different metrics have been used to evaluate the proposal. These metrics are the Time
Reduction (TR) and speed–up, RD function, ∆PSNR and ∆bit rate, mode decisions, and
power and energy consumption. These metrics are defined below.

Time reduction and speed–up

In order to evaluate the time saved by the proposed inter prediction algorithm, two
metrics are going to be used. The TR metric shows the percentage of time saved by the
proposal and is based on Equation 4.2. The speed–up metric shows how many times the
proposed algorithm is faster than the reference algorithms and is based on Equation 4.3.

TR(%) =
TJM − TP

TJM

· 100, (4.2)

speed− up =
TJM

TP

, (4.3)

where TJM denotes the coding time used by the H.264/AVC JM 17.2 reference encoder,
and TP is the time taken by the JM 17.2 encoder using the proposed algorithm. TP

also includes all the computational costs for the operations needed in order to prepare
the information required by our proposal, including memory allocations on the GPU and
memory transferences from/to GPU memory.

In the evaluation, these two metrics are applied at different levels. The first one shows
the TR and speed–up for the complete H.264/AVC encoder, while the second one shows
them for the time spent exclusively by the functions where the proposal is applied.

RD function

RD provides the theoretical bounds on the compression rates that can be achieved using
different methods. In RD theory, the rate is usually understood as the number of bits per
data sample to be stored or transmitted. The notion of distortion is subject to on–going
discussion. In the simplest case, and the one actually used in most cases, the distortion
can be simply defined as the mean squared error of the difference between the input and
the output signals. In the definition of the RD function, the PSNR is the distortion for a
given bit rate. The average global PSNR is based on Equation 4.4.

PSNR =
4 · PSNRY + PSNRU + PSNRV

6
(4.4)

The Luminance PSNRY is multiplied by four, since the YUV input files are sampled
using the 4:2:0 sampling format, which is composed of four 8x8 blocks for the luminance
component and of only one 8x8 block for each chrominance component.
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∆PSNR and ∆bit rate

The experiments are carried out on the test sequences using four quantization param-
eters, namely, QP = 28, 32, 36 and 40. The detailed procedures for calculating bit rate
and PSNR differences can be found in the work by Bjøntegaard [Bjontegaard 01], and
make use of Bjøntegaard and Sullivan’s common test rule [Sullivan and Bjontegaard 01].
These procedures have been recommended by the JVT Test Model Ad Hoc Group [JVT
Test Model Ad Hoc Group 03]. The YUV files used for comparing the PSNR results are
the original YUV file at the input of the H.264/AVC JM 17.2 reference encoder and the
one obtained after decoding the H.264/AVC video stream using the H.264/AVC JM 17.2
reference decoder.

A positive ∆bit rate means that the number of bits required to encode the video se-
quence has increased, and vice versa. A negative ∆PSNR means that the quality of the
encoded video sequence has decreased, and vice versa.

Mode decisions

Another way to analyse how the proposed algorithm works is by showing the MB
mode decision image generated. The MB modes generated by the H.264/AVC JM 17.2
reference encoder and by the H.264/AVC JM 17.2 encoder using the proposed algorithm
are compared in order to measure the accuracy of the MB mode classification tree. A
grid image showing the MB modes overlaid on a corresponding frame is used to visually
compare the MB mode classification.

Power and energy consumption

With the objective of sampling the current consumed at a given time by the whole
test computer including the Power Supply Unit (PSU), we developed a data logger device
capable of transmitting this data in a reliable and easy way to a different computer. The
principle of this device is based on the analysis of the magnetic field produced by an
electric current flowing through a straight conductor and it is capable of sampling and
reconstructing the resulting wave, whatever its form, and processing it in order to obtain
an average value.

We use a sensor capable of translating these magnetic changes extracted from the supply
cable into a proportional voltage level to simplify the procedure. The sensor used is the
Allegro Microsystems Inc A1301, a continuous time ratio–metric linear Hall-effect sensor
with a sensitivity of 2.5 mV/G. The sensor response is given by the following equation:

v = y0 + α · I, (4.5)

where v is the voltage at the output of the sensor, y0 = 2.4610 V, α = 0.4185 V/A, and
I is the current flowing through the conductor we want to measure. The constants y0 and
α are obtained by linear regression from a test in which the output voltage of the A1301
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sensor was measured for different current values. Both output voltage and current values
were measured using high precision digital multi–meters.

The sensor output is tied to the analog-to-digital converter module of a Microchip
PIC12F683 micro–controller, which is responsible for sampling the voltage data with a
resolution of 10–bit length (4.88 mV per bit), and sending it to the user by using an RS232
interface which adjusted its data transfer rate to 115200 bauds.

In order to transfer the sampling data to the host computer we used the Future Tech-
nology Devices International Ltd FT232 chip, which makes it possible to adapt the RS232
interface to the Universal Serial Bus (USB) interface. The data is received through a
virtual Component Object Model (COM) port which is created when the installation of
the sensor device in the host computer is completed. The software used to collect the
data is the Eltima software RS232 data logger. Figure 4.12 shows the basic scheme of our
profiler system. Note that two computers were used: the first one (tested computer) is the
computer on which the H.264/AVC encoder is running and whose energy usage needs to
be measured; the second one (data computer) is used in order to collect and process the
data from the sensor device.

Figure 4.12: Profiler system scheme.

Once the voltage data is obtained, it must be processed to obtain the Root Mean
Square (RMS) or quadratic mean value for a given cycle. When working with periodic and
symmetrical waves, such as an electric wave, the RMS value must be calculated in cycles.
Our data logger device takes 2k samples per second, that is, 40 samples per cycle (1 cycle
= 20 msec). Thus, we calculate the VRMS in a cycle with Equation 4.6.



82 Chapter 4 P frame Inter Prediction
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Operating with Equation 4.5 and using the VRMS value of the voltage previously ob-
tained, the current flowing through the conductor at any cycle can be obtained as:

I =
VRMS − 2.4610

0.4185
(4.7)

Once the data for the current intensity is known, we can apply equation 4.8 to obtain
the power consumed by the whole system at any cycle, where V is equal to 230 V. Finally,
we can obtain the energy consumption applying equation 4.9, where T is the time consumed
by the H.264/AVC encoder and P is the average power consumed.

P = V · I (4.8)

E = P · T (4.9)

4.3.3. Results

This section presents the results obtained when coding different video sequences using
the proposed inter prediction algorithm developed for P frames.

Timing results

From Table 4.2 to Table 4.8 the timing results of the proposed algorithm are pre-
sented. The proposed algorithm is tested against two search algorithms implemented in
the H.264/AVC reference encoder, so the results are divided into two main parts: the com-
parison against the FS algorithm and the comparison against the UMHexagonS algorithm.
Moreover, the timing results are further divided, showing the timing results focusing ex-
clusively on the proposed algorithm (ME module column), and the timing results of the
complete H.264/AVC encoder (Complete encoder column).

Before showing the results, we would like to mention certain characteristics of each
reference algorithm used in the evaluation. The execution time of the FS algorithm is
highly dependent on the video sequences and may even double, affecting the TRs and
speed–ups obtained. The FS algorithm is implemented using an early–out termination
mechanism, which is able to discard search area positions before being completely checked,
saving computation. The execution time of the UMHexagonS algorithm is also sequence
dependent, but less than that of the FS algorithm. The UMHexagonS algorithm is carried
out in a number of steps, and the number of steps depends on the video sequence being
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Table 4.2: Timing results of the proposed encoder for QCIF sequences.

H.264/AVC JM 17.2 Baseline profile – Search range = 16

Full search UMHexagonS

ME module Complete encoder ME module Complete encoder

Sequence TR (%) speed–up TR (%) speed–up TR (%) speed–up TR (%) speed–up

Canoe 98.39 62.02 89.69 9.70 90.05 10.05 57.68 2.36

Fast food 97.88 47.07 87.00 7.70 88.14 8.43 53.51 2.15

Football 98.40 62.75 89.66 9.67 89.62 9.64 56.36 2.29

M. calendar 98.25 57.16 88.66 8.81 87.48 7.99 51.22 2.05

Racing 98.20 55.70 88.83 8.95 88.54 8.72 54.59 2.20

Scrolltext 97.58 41.38 85.50 6.90 85.82 7.05 49.02 1.96

Skyline 97.41 38.62 84.46 6.43 84.45 6.43 45.97 1.85

Softfootball 98.46 65.08 90.06 10.06 89.84 9.84 56.91 2.32

Average 98.07 51.89 87.98 8.32 87.99 8.33 53.16 2.13

Table 4.3: Timing results of the proposed encoder for CIF sequences.

H.264/AVC JM 17.2 Baseline profile – Search range = 16

Full search UMHexagonS

ME module Complete encoder ME module Complete encoder

Sequence TR (%) speed–up TR (%) speed–up TR (%) speed–up TR (%) speed–up

Canoe 98.82 84.44 90.48 10.51 93.25 14.82 62.30 2.65

Fast food 98.34 60.39 87.42 7.95 91.40 11.62 56.80 2.32

Football 98.75 80.21 90.10 10.10 92.48 13.30 59.84 2.49

M. calendar 98.64 73.48 89.14 9.21 90.37 10.38 53.17 2.14

Racing 98.85 87.31 90.84 10.91 92.66 13.62 60.46 2.53

Scrolltext 97.80 45.53 84.17 6.32 88.36 8.59 49.48 1.98

Skyline 97.92 47.99 84.85 6.60 87.69 8.12 47.83 1.92

Softfootball 98.90 91.18 91.08 11.21 93.16 14.63 61.81 2.62

Average 98.50 66.83 88.51 8.70 91.17 11.33 56.46 2.30

encoded. On the other hand, the execution time of the proposed algorithm is almost
constant, since it always evaluates all possible search area positions in parallel.

Table 4.2 and Table 4.3 show the timing results when coding the same QCIF and CIF
video sequences using 16 as search range. The results show that the proposed algorithm
outperforms both algorithms in both resolutions. When coding QCIF video sequences, the
H.264/AVC encoder using the proposed algorithm on average is 8.3x times faster than the
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H.264/AVC encoder using the FS algorithm (TR of nearly 88%), and is 2.1 times faster
than the H.264/AVC encoder using the UMHexagonS algorithm (TR of over 53%). When
coding CIF video sequences, the H.264/AVC encoder using the proposed algorithm on
average is 8.7x times faster than the H.264/AVC encoder using the FS algorithm (TR of
over 88.5%) and is 2.3 times faster than the H.264/AVC encoder using the UMHexagonS
algorithm (TR of nearly 56.5%).

Table 4.4 shows the average execution time increments of the reference algorithms (FS
and UMHexagonS) and the average execution time increments of the proposed algorithm,
when coding CIF video sequences instead of coding QCIF video sequences. The resolution
of the video sequences is incremented by four (CIF format is four times bigger than QCIF),
so a priori, the execution time should also increase by a factor of four. However, the
expected execution time increment is not obtained.

Table 4.4: ∆Time from QCIF to CIF video sequences.

H.264/AVC JM 17.2 Main profile – Search range = 16

Search algorithm ∆Time Expected ∆Time

FS 3.88

4UMHexaonS 4.09

Proposal 3.00

The ∆Time obtained when using the FS algorithm is 3.88. It is lower than 4, which
means that the early–out termination mechanism is able to save more computation when
coding CIF video sequences than when coding QCIF video sequences.

The ∆Time obtained when using the UMHexagonS algorithm is 4.09. It is greater
than 4, which means that the algorithm requires more iterations to find the best MVs
when coding CIF video sequences than when coding QCIF video sequences.

The ∆Time obtained when using the proposed algorithm is 3.00. It is considerably
lower than 4, which means that the algorithm obtains a higher instruction throughput
when coding CIF video sequences than when coding QCIF video sequences. In other
words, when coding QCIF video sequences the maximum instruction throughput that this
algorithm can obtain for the GPU used is not achieved. The instruction throughput has
increased when the GPU’s computational load has also increased.

As a final conclusion, the ∆Time obtained when using the proposed algorithm is lower
than the ∆Time obtained when using the reference algorithms. So the speed–ups obtained
are greater when coding CIF video sequences than when coding QCIF video sequences (see
Table 4.2 and Table 4.3).

Table 4.5 shows the timing results when coding the same VGA video sequences used
in the QCIF and CIF evaluation. However, in this case the search range is set to 32,
increasing the number of search area positions by a factor of 4. In comparison with the
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analysis shown above for QCIF and CIF video sequences, the GPU’s computational load
has increased not only because the sequence’s resolution has increased, but also because
the search area of each MB partition is 4 times bigger.

Table 4.5: Timing results of the proposed encoder for VGA sequences.

H.264/AVC JM 17.2 Baseline profile – Search range = 32

Full search UMHexagonS

ME module Complete encoder ME module Complete encoder

Sequence TR (%) speed–up TR (%) speed–up TR (%) speed–up TR (%) speed–up

Canoe 99.17 119.90 95.85 24.08 90.19 10.19 65.17 2.87

Fast food 98.88 89.36 94.58 18.44 86.92 7.65 58.22 2.39

Football 99.15 117.28 95.77 23.62 88.43 8.64 60.97 2.56

M. calendar 99.11 112.59 95.45 21.99 85.20 6.76 53.30 2.14

Racing 99.25 132.53 96.23 26.52 89.78 9.78 64.12 2.79

Scrolltext 98.40 62.44 92.47 13.28 80.92 5.24 47.99 1.92

Skyline 98.53 68.02 93.05 14.40 79.07 4.78 45.15 1.82

Softfootball 99.26 135.63 96.27 26.81 90.24 10.25 65.02 2.86

Average 98.97 96.88 94.96 19.83 86.34 7.32 57.49 2.35

On average, the algorithm’s speed–up is nearly 97x when compared with the FS al-
gorithm (TR of nearly 99%), which means a speed–up of nearly 20x (TR of nearly 98%)
for the complete H.264/AVC encoder. On the other hand, it obtains a speed–up of over
7x when compared with the UMHexagonS algorithm (TR of over 86%), which means a
speed–up of over 2.3x (TR of nearly 55.5%) for the complete H.264/AVC encoder.

Table 4.6 shows the average execution time increments of the reference algorithms (FS
and UMHexagonS) and the average execution time increments of the proposed algorithm,
when coding VGA video sequences instead of coding CIF video sequences. The resolution
of the video sequences is incremented by three (VGA format is three times bigger than
CIF), so a priori, the execution time should also increase by a factor of three. Moreover,
the search range is also incremented by two, which means that the search area is four times
bigger. As a result, the expected ∆Time is twelve.

The ∆Time obtained when using the FS algorithm is 8.09. It is considerably lower than
12, which means that the early–out termination mechanism is able to save considerably
more computation when coding VGA video sequences using 32 as search range than when
coding CIF video sequences using 16 as search range.

The ∆Time obtained when using the UMHexagonS algorithm is 3.55. It is only a little
greater than 3, which means that the algorithm is able to process a search area which is
four times bigger using only a few extra iterations of the algorithm. Remember that VGA
format is three times bigger than CIF.
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Table 4.6: ∆Time from CIF to VGA video sequences.

H.264/AVC JM 17.2 Main profile

Search algorithm ∆Time Expected ∆Time

FS 8.09

12UMHexaonS 3.55

Proposal 5.50

The ∆Time obtained when using the proposed algorithm is 5.50. This is considerably
lower than 12, which means that the algorithm obtains a considerably higher instruction
throughput when coding VGA video sequences than when coding CIF video sequences. In
other words, when coding CIF video sequences the maximum instruction throughput that
this algorithm can obtain for the GPU used is far from being achieved.

The ∆Time obtained when using the proposed algorithm is lower than the ∆Time
obtained when using the FS algorithm, so the speed–ups obtained are greater when cod-
ing VGA video sequences than when coding CIF video sequences. The ∆Time obtained
when using the proposed algorithm is greater than the ∆Time obtained when using the
UMHexagonS algorithm, so the speed–ups are lower (see Table 4.3 and Table 4.5).

Finally, Table 4.7 and 4.8 show the timing results when coding HD video sequences.
Note that the video sequences analysed are different from the ones used for lower resolu-
tions, so a comparison with previous results would not be fair.

Table 4.7: Timing results of the proposed encoder for 720p sequences.

H.264/AVC JM 17.2 Baseline profile – Search range = 32

Full search UMHexagonS

ME module Complete encoder ME module Complete encoder

Sequence TR (%) speed–up TR (%) speed–up TR (%) speed–up TR (%) speed–up

City 98.90 91.28 94.52 18.25 79.34 4.84 44.96 1.82

Crew 98.93 93.42 94.70 18.86 82.69 5.78 50.01 2.00

Dolphins 98.74 79.40 93.73 15.94 81.98 5.55 47.95 1.92

Harbour 98.88 89.57 94.36 17.73 78.07 4.56 42.88 1.75

Mobcal 98.98 98.03 94.85 19.42 81.55 5.42 47.40 1.90

Night 98.75 80.16 93.79 16.11 78.40 4.63 43.60 1.77

Park run 99.23 130.52 95.95 24.67 84.59 6.49 51.66 2.07

Shields 98.94 93.97 94.61 18.55 82.59 5.74 48.84 1.95

Average 98.92 92.60 94.56 18.39 81.15 5.30 47.16 1.89
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Table 4.8: Timing results of the proposed encoder for 1080p sequences.

H.264/AVC JM 17.2 Baseline profile – Search range = 32

Full search UMHexagonS

ME module Complete encoder ME module Complete encoder

Sequence TR (%) speed–up TR (%) speed–up TR (%) speed–up TR (%) speed–up

Crowd 99.15 117.21 95.37 21.61 83.27 5.98 49.04 1.96

Ducks 99.31 145.90 96.12 25.80 84.25 6.35 49.47 1.98

Into tree 99.13 114.36 95.36 21.53 80.33 5.08 44.59 1.80

Old town 98.92 92.24 94.34 17.67 77.17 4.38 40.48 1.68

Park joy 99.25 133.87 95.86 24.13 85.18 6.75 51.75 2.07

Pedestrian 98.59 70.81 92.82 13.92 79.80 4.95 44.19 1.79

Riverbed 99.33 149.19 96.37 27.51 89.06 9.14 60.46 2.53

Tractor 98.84 85.95 93.66 15.77 85.86 7.07 52.80 2.12

Average 99.06 106.81 94.99 19.95 83.11 5.92 49.10 1.96

The algorithm’s speed–ups range from 79x to 130x when compared with the FS algo-
rithm for coding 720p video sequences, and from 70x to 145x when compared with the FS
algorithm for coding 1080p video sequences. For both resolutions, the overall speed–ups
obtained for the complete H.264/AVC encoder range from 13x to 27x.

When compared with the UMHexagonS algorithm, the algorithm’s speed–ups range
from 4.5x to 6.5x for coding 720p video sequences, and from 4.3x to 9.1x for coding 1080p
video sequences. For both resolutions, the overall speed–ups obtained for the complete
H.264/AVC encoder range from 1.6x to 2.5x.

RD results

From Table 4.9 to Table 4.13 the RD results of the proposed algorithm are presented
and organized in a similar way to the previous section. The results are divided into two
main parts: the comparison against the FS algorithm and the comparison against the
UMHexagonS algorithm.

Table 4.9 and Table 4.10 show the RD results when coding the same QCIF and CIF
video sequences using 16 as search range. The results show that the proposed algorithm
obtains a slightly lower encoding efficiency than the FS algorithm (the RD degradation
is negligible if the computational savings are taken into account), but it surpasses the
encoding efficiency obtained by the UMHexagonS algorithm.

When compared with the FS algorithm for coding QCIF video sequences, the average
bit rate increment obtained is 2.73%, while it is 2.46% for coding CIF video sequences.
That is, the bit rate increments improve slightly when the resolution is increased. The bit
rate increments are similar for all video sequences, ranging from 0.78% to 4.37%.
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Table 4.9: RD results of the proposed encoder for QCIF sequences.

H.264/AVC JM 17.2 Baseline profile – Search range = 16

Full search UMHexagonS

Sequence ∆bit rate (%) ∆PSNR (dB) ∆bit rate (%) ∆PSNR (dB)

Canoe 2.39 -0.083 -0.69 0.027

Fast food 3.24 -0.114 -2.07 0.070

Football 4.37 -0.146 -0.93 0.030

M. calendar 1.25 -0.050 1.37 -0.054

Racing 4.21 -0.146 -4.63 0.157

Scrolltext 0.78 -0.031 -2.13 0.085

Skyline 2.03 -0.067 -0.43 0.013

Softfootball 3.54 -0.118 -0.71 0.022

Average 2.73 -0.094 -1.28 0.044

Table 4.10: RD results of the proposed encoder for CIF sequences.

H.264/AVC JM 17.2 Baseline profile – Search range = 16

Full search UMHexagonS

Sequence ∆bit rate (%) ∆PSNR (dB) ∆bit rate (%) ∆PSNR (dB)

Canoe 1.25 -0.044 -2.04 0.069

Fast food 3.01 -0.097 -5.20 0.166

Football 3.22 -0.103 -3.32 0.102

M. calendar 1.98 -0.078 1.45 -0.059

Racing 2.99 -0.108 -16.13 0.676

Scrolltext 1.15 -0.042 -5.72 0.217

Skyline 3.09 -0.098 -0.14 0.002

Softfootball 2.99 -0.095 -2.23 0.074

Average 2.46 -0.083 -4.17 0.156

On the other hand, when compared with the UMHexagonS algorithm for coding QCIF
video sequences, the average bit rate decrement obtained is 1.28%, while it is 4.17% for
coding CIF video sequences. That is, the bit rate decrements improve when the resolution
is increased. The bit rate decrements are more uneven than when using the FS algorithm
and range from 0.14% to 16.13%. Note that the M. calendar video sequence is a special
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case in which the proposed algorithm is not able to outperform the encoding efficiency of
the UMHexagonS algorithm.

Table 4.11 shows the RD results when coding the same VGA video sequences used
in the QCIF and CIF evaluation. However, in this case the search range is set to 32,
increasing the number of search area positions by a factor of 4. In this case, besides
increasing the resolution of the video sequences tested, the search area is also increased.
However, the behavior is similar to the one previously observed when coding QCIF and
CIF video sequences.

Table 4.11: RD results of the proposed encoder for VGA sequences.

H.264/AVC JM 17.2 Baseline profile – Search range = 32

Full search UMHexagonS

Sequence ∆bit rate (%) ∆PSNR (dB) ∆bit rate (%) ∆PSNR (dB)

Canoe 0.18 -0.003 -3.14 0.099

Fast food 2.44 -0.063 -5.70 0.159

Football 2.20 -0.059 -3.84 0.103

M. calendar 2.36 -0.082 0.49 -0.019

Racing 1.90 -0.064 -15.25 0.561

Scrolltext 1.96 -0.066 -10.25 0.391

Skyline 3.52 -0.096 -2.60 0.073

Softfootball 1.22 -0.039 -2.72 0.080

Average 1.97 -0.059 -5.38 0.181

When compared with the FS algorithm for coding VGA video sequences, the average
bit rate increment obtained is 1.97%, while the average bit rate decrement is 5.38% when
compared with the UMHexagonS algorithm.

Finally, Table 4.12 and Table 4.13 show the RD results when coding HD video se-
quences. Note that the video sequences analysed are different from the ones used for lower
resolutions, so a comparison with previous results would not be fair.

The bit rate increments, when compared with the FS algorithm, range from 0.90% to
2.59% for coding 720p video sequences, and from 1.20% to 4.49% for coding 1080p video
sequences. Note that the Riverbed video sequence in 1080p format is a special case in which
the proposed algorithm is able to slightly outperform the encoding efficiency obtained by
the FS algorithm.

On the other hand, when compared with the UMHexagonS algorithm for coding 720p
video sequences, the bit rate decrements range from 0.08% to 5.07%, and from 0.12% to
17.5% for coding 1080p video sequences. Note that Park run and Shields in 720p format,
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Table 4.12: RD results of the proposed encoder for 720p sequences.

H.264/AVC JM 17.2 Baseline profile – Search range = 32

Full search UMHexagonS

Sequence ∆bit rate (%) ∆PSNR (dB) ∆bit rate (%) ∆PSNR (dB)

City 2.29 -0.068 -0.08 -0.004

Crew 2.59 -0.059 -1.60 0.038

Dolphins 2.28 -0.065 -5.07 0.152

Harbour 0.90 -0.029 -0.90 0.028

Mobcal 1.85 -0.048 -1.94 0.053

Night 1.55 -0.046 -2.06 0.062

Park run 1.16 -0.035 0.67 -0.020

Shields 1.44 -0.040 1.29 -0.047

Average 1.76 -0.049 -1.21 0.033

Table 4.13: RD results of the proposed encoder for 1080p sequences.

H.264/AVC JM 17.2 Baseline profile – Search range = 32

Full search UMHexagonS

Sequence ∆bit rate (%) ∆PSNR (dB) ∆bit rate (%) ∆PSNR (dB)

Crowd 3.86 -0.118 -1.25 0.035

Ducks 1.20 -0.037 -0.12 -0.002

Into tree 3.66 -0.074 -1.18 0.026

Old town 2.31 -0.048 0.36 -0.017

Park joy 2.33 -0.077 -0.61 0.017

Pedestrian 2.27 -0.051 -6.79 0.168

Riverbed -0.03 0.000 -0.91 0.024

Tractor 4.49 -0.127 -17.50 0.557

Average 2.51 -0.067 -3.50 0.101

and Old town in 1080p format, are special cases in which the proposed algorithm is not
able to outperform the encoding efficiency obtained by the UMHexagonS algorithm.

From Figure 4.13 to Figure 4.17 the RD graphic results for the proposed algorithm and
for the reference algorithms are presented. The graphs represent the PSNR versus bit rate
curves from a value of 28 to 40 for QP. For clarity the RD curves of each resolution are
split into two independent graphs.
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(a) Part I (b) Part II

Figure 4.13: RD graphic results of the proposed encoder for QCIF sequences.

(a) Part I (b) Part II

Figure 4.14: RD graphic results of the proposed encoder for CIF sequences.

(a) Part I (b) Part II

Figure 4.15: RD graphic results of the proposed encoder for VGA sequences.
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(a) Part I (b) Part II

Figure 4.16: RD graphic results of the proposed encoder for 720p sequences.

(a) Part I (b) Part II

Figure 4.17: RD graphic results of the proposed encoder for 1080p sequences.

The PSNR versus bit rate obtained with the proposed H.264/AVC encoder, based on
our algorithm, deviates slightly from the results obtained when applying the sequential
reference encoder; the curves obtained by the proposed encoder are located in the middle
of the curves obtained by the other search algorithms. The curves of the proposed encoder
show that the proposed encoder obtains better bit rate results for a given PSNR than
the curves obtained by the UMHexagonS algorithm (it improves upon the results of the
UMHexagonS algorithm). The curves of the proposed encoder show that the proposed
encoder obtains slightly worse bit rate results for a given PSNR than the curves obtained
by the FS algorithm. Note that, as expected after the analysis of the RD tables, there
are some exceptions, such as the Riverbed video sequence in 1080p format, in which the
proposed algorithm outperforms the RD results when compared with the FS algorithm.
On the other hand, when encoding the M. calendar video sequence the proposed algorithm
is not able to outperform the encoding efficiency of the UMHexagonS algorithm.
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Mode decisions

Figures 4.19, 4.20, 4.21 and 4.22 show the inter prediction mode decisions for one frame
made by the H.264/AVC encoder using the FS algorithm (Figures 4.19a, 4.20a, 4.21a and
4.22a) and the inter prediction mode decisions made by our proposed algorithm (Figures
4.19b, 4.20b, 4.21b and 4.22b). The mode decisions are obtained when analysing the
previously obtained output bit streams in order to carry out the timing and RD evaluation,
with a QP value of 28.

Figure 4.19, Figure 4.20 and Figure 4.21 show the inter prediction mode decisions for
the 5th frame of the Racing video sequence in QCIF, CIF and VGA format, respectively;
Figure 4.22 shows them for the 5th frame of the Crew video sequence in 720p format. The
Racing and Crew video sequences are chosen since these video sequences are the ones which
produce one of the greatest bit rate increments in comparison with the FS algorithm; the
5th frame is selected, since it is a P frame located in the middle of the configured GOP
pattern. On the other hand, Figure 4.18 shows the different kinds of inter prediction modes
available for P frames. Note that, in order to obtain the mode decisions carried out by the
reference and proposed H.264/AVC encoders, a free-ware software is used which does not
support 1080p sequences.

Figure 4.18: Different kinds of predictions in P frames.

As is shown in the figures, different MB labels are generated by our approach, but
these partitions are close to the partitions made by the H.264/AVC encoder using the FS
algorithm. As a result, although the label partitions are not the same, our closed decisions
do not have a significant impact on the final quality performance. The bit rate impact is
due to the lack of real MVPs in the cost calculations (see Equation 4.1).
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(a) Full search (b) Proposal

Figure 4.19: Mode decisions of Racing video sequence in QCIF format.

(a) Full search (b) Proposal

Figure 4.20: Mode decisions of Racing video sequence in CIF format.

(a) Full search (b) Proposal

Figure 4.21: Mode decisions of Racing video sequence in VGA format.
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(a) Full search

(b) Proposal

Figure 4.22: Mode decisions of Crew video sequence in 720p format.
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Power and energy results

From Table 4.14 to Table 4.17 the power and energy consumption results of the proposed
algorithm are presented. These tables show the average power consumption, the execution
time and the total energy consumed when coding one GOP (12 frames) for the complete
test computer when coding the tested sequences in CIF, VGA, 720p and 1080p format.
An analysis for QCIF video sequences is not provided since the execution time of the
GPU kernels is considerably shorter than the cycles of the electric current, and the power
consumption peaks cannot be properly reconstructed, which is one of the major aims of
this analysis, along with showing the overall energy consumption of the test computer. The
power consumption peaks cannot be fully reconstructed for CIF and VGA video sequences,
but at least they can be identified in the power consumption graphic results (Figure 4.23a
and Figure 4.23b).

The first main column shows the results for the H.264/AVC encoder using the FS
algorithm, the second main column shows them for the H.264/AVC encoder using the
UMHexagonS algorithm, and the third one shows them for the H.264/AVC encoder using
the proposed algorithm. Additionally, there are two extra results for the proposed encoder,
which show the ratio between the energy consumed by the H.264/AVC encoder using the
FS algorithm and the proposed algorithm (Ratio FS column), and the ratio between the
energy consumed by the H.264/AVC encoder using the UMHexagonS algorithm and the
proposed algorithm (Ratio UMHS column).

Table 4.14: Energy consumption for coding a GOP. CIF sequences.

H.264/AVC JM 17.2 Baseline profile – Search range = 16

Full search UMHexagonS Proposal

Sequence Power Time Energy Power Time Energy Power Time Energy Ratio Ratio

(W) (s) (J) (W) (s) (J) (W) (s) (J) FS UMHS

Canoe 181.97 7.00 1,273.79 179.63 1.62 291.00 229.56 0.69 158.40 8.04 1.84

Fast food 181.29 5.63 1,020.66 180.44 1.22 220.14 221.96 0.67 148.71 6.86 1.48

Football 181.77 6.58 1,196.05 179.45 1.33 238.67 227.73 0.69 157.13 7.61 1.52

M. calendar 181.75 6.29 1,143.21 179.68 1.24 222.80 232.43 0.69 160.38 7.13 1.39

Racing 181.54 5.22 947.64 179.35 1.25 224.19 236.64 0.66 156.18 6.07 1.44

Scrolltext 180.83 3.36 607.59 179.77 0.98 176.17 229.67 0.66 151.58 4.01 1.16

Skyline 180.90 4.25 768.83 179.26 1.06 190.02 230.67 0.66 152.24 5.05 1.25

Softfootball 181.56 7.17 1,301.79 180.03 1.35 243.04 230.95 0.70 161.67 8.05 1.50

Average 181.45 5.69 1,032.45 179.70 1.26 225.75 229.95 0.68 155.79 6.60 1.45

The average power consumption for the H.264/AVC encoder using the reference algo-
rithms (FS and UMHexagonS) is very similar and ranges from 179 W to 185 W, regardless
of the video sequence resolution used. However, the execution time varies considerably,
and as a consequence the overall energy consumption varies greatly. For example, when
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Table 4.15: Energy consumption for coding a GOP. VGA sequences.

H.264/AVC JM 17.2 Baseline profile – Search range = 32

Full search UMHexagonS Proposal

Sequence Power Time Energy Power Time Energy Power Time Energy Ratio Ratio

(W) (s) (J) (W) (s) (J) (W) (s) (J) FS UMHS

Canoe 183.42 55.41 10,163.30 182.68 5.26 960.90 245.12 2.01 492.69 20.63 1.95

Fast food 184.69 50.50 9,326.85 182.23 4.17 759.90 246.18 2.03 499.75 18.66 1.52

Football 183.37 53.67 9,841.47 182.16 4.40 801.50 246.72 2.05 505.78 19.46 1.58

M. calendar 184.19 56.90 10,480.41 182.48 4.09 746.34 244.84 2.10 514.16 20.38 1.45

Racing 184.04 41.50 7,637.66 182.32 4.08 743.87 248.47 2.01 499.42 15.29 1.49

Scrolltext 183.50 25.40 4,660.90 182.41 3.03 552.70 249.07 1.92 478.21 9.75 1.16

Skyline 183.73 32.68 6,004.30 182.02 3.18 578.82 248.95 1.95 485.45 12.37 1.19

Softfootball 184.45 57.24 10,557.92 182.11 4.44 808.57 249.45 2.08 518.86 20.35 1.56

Average 183.92 46.66 8,584.10 182.30 4.08 744.08 247.35 2.02 499.29 17.11 1.49

Table 4.16: Energy consumption for coding a GOP. 720p sequences.

H.264/AVC JM 17.2 Baseline profile – Search range = 32

Full search UMHexagonS Proposal

Sequence Power Time Energy Power Time Energy Power Time Energy Ratio Ratio

(W) (s) (kJ) (W) (s) (kJ) (W) (s) (kJ) FS UMHS

City 184.00 124.85 22.97 178.91 10.92 1.95 247.32 6.04 1.49 14.42 1.31

Crew 184.93 154.92 28.65 179.36 11.49 2.06 249.43 5.86 1.46 19.62 1.41

Dolphins 185.13 125.22 23.18 179.71 12.39 2.23 250.06 5.99 1.50 15.45 1.49

Harbour 185.47 138.12 25.62 179.94 10.85 1.95 251.97 6.06 1.53 16.75 1.27

Mobcal 184.52 159.79 29.48 180.30 10.80 1.95 252.95 5.93 1.50 19.65 1.30

Night 184.40 114.17 21.05 180.61 10.67 1.93 253.45 5.93 1.50 14.03 1.29

Park run 185.37 224.09 41.54 180.94 13.85 2.51 255.27 6.25 1.60 25.96 1.57

Shields 185.53 172.36 31.98 181.56 12.88 2.34 256.46 5.89 1.51 21.18 1.55

Average 184.92 151.69 28.06 180.17 11.73 2.12 252.11 5.99 1.51 18.38 1.40

coding one GOP in 1080p format, the total energy consumption ranges from 47.66 kJ to
95.5 kJ, because the execution time ranges from 257.45 s to 516.38 s.

The average power consumption for the H.264/AVC encoder using the proposed algo-
rithm is also very similar and ranges from 246 W to 256 W when coding video sequences
in 720p and 1080p format, and is a bit less when coding CIF and VGA video sequences,
since the power consumption peaks are not fully reconstructed. However, in this case the
execution time is also very similar, and as a consequence the overall energy consumption
does not vary significantly. For example, when coding one GOP in 1080p format, the total
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Table 4.17: Energy consumption for coding a GOP. 1080p sequences.

H.264/AVC JM 17.2 Baseline profile – Search range = 32

Full search UMHexagonS Proposal

Sequence Power Time Energy Power Time Energy Power Time Energy Ratio Ratio

(W) (s) (kJ) (W) (s) (kJ) (W) (s) (kJ) FS UMHS

Crowd 185.52 389.10 72.19 182.62 25.79 4.71 246.55 14.44 3.56 20.28 1.32

Ducks 185.61 429.46 79.71 182.96 27.63 5.06 250.56 14.41 3.61 22.08 1.40

Into tree 184.23 393.30 72.46 183.02 23.39 4.28 251.67 13.60 3.42 21.19 1.25

Old town 184.61 364.80 67.35 182.78 22.42 4.10 252.87 13.46 3.40 19.81 1.21

Park joy 184.57 396.95 73.27 182.57 28.36 5.18 253.13 13.95 3.53 20.76 1.47

Pedestrian 185.11 257.45 47.66 183.17 25.67 4.70 250.22 13.41 3.36 14.18 1.40

Riverbed 184.94 516.38 95.50 182.85 35.44 6.48 250.82 14.02 3.52 27.13 1.84

Tractor 184.16 277.72 51.14 183.20 28.62 5.24 251.46 13.90 3.50 14.61 1.50

Average 184.84 378.15 69.91 182.90 27.17 4.97 250.91 13.90 3.49 20.01 1.42

energy consumption ranges from 3.36 kJ to 3.61 kJ, because the execution time ranges
from 13.41 s to 14.4 s.

On average, when coding VGA, 720p and 1080p video sequences, the energy consump-
tion for the H.264/AVC encoder using the proposed algorithm ranges from 17 to 20 times
better than for the H.264/AVC encoder using the FS algorithm; and is 6 times better when
coding CIF video sequences (remember that the search range for CIF video sequences is set
to 16, while the search range for the other resolutions is set to 32). On the other hand, for
all video formats, the energy consumption for the H.264/AVC encoder using the proposed
algorithm ranges from 1.4 to 1.5 times better than for the H.264/AVC encoder using the
UMHexagonS algorithm.

Note that there is not much difference in the average power consumption between the
H.264/AVC encoder using the reference algorithms (179 W to 185 W) and the proposed
GPU-based encoder (229 W to 252 W), and the reason is that the GPU is processing less
than 20% of the total encoding time.

Figure 4.23 shows an extract from the power consumption over time for the complete
test computer when coding one video sequence of each resolution for the H.264/AVC en-
coder using the FS algorithm and for the H.264/AVC encoder using the proposed algorithm.
Note that the power consumption over time when using the UMHexagonS algorithm is not
shown in these graphs because it is similar to the one shown when using the FS algorithm,
although the execution time is shorter (see Tables 4.14 to 4.17).

When the encoder process begins all encoders consume the same power (around 180–185
W), but when the GPU starts working the power consumption of the proposed GPU–based
encoder increases. It has a power consumption of around 325-375 W, except for CIF format
in which case the power consumption peaks are not fully reconstructed (Figure 4.23). The
configured GOP pattern is composed of 1 I frame followed by 11 P frames where the
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proposed algorithm is executed, so 11 power consumption peaks can be found on each
graph in Figure 4.23. Finally, we should mention that the power consumption for the CPU
code in the GPU–based encoder is around 235 W, which is higher than for the reference
execution (180–185 W) because the GPU is always active, waiting for new kernels.

(a) Canoe CIF (b) Canoe VGA

(c) City 720p (d) Crowd 1080p

Figure 4.23: Power consumption graphic results.

4.4. Comparison with other known results

This section compares the results reported by our proposed algorithm developed for
P frames with the ones reported in the most recent and relevant related articles, which
are described in Chapter 3. The comparison is divided into two main parts: the first part
compares against works that do not use a GPU in order to reduce the H.264/AVC encoding
time, and the second one with proposals that do.
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4.4.1. Soft-Computing H.264/AVC Inter Prediction algorithms

As mentioned in Section 3.1, the design of fast MB mode decision algorithms for the
inter frame prediction of H.264/AVC video encoders is a major area of research. In this
section, we undertake a comparative analysis of our proposal with some of the most promi-
nent ones presented for an H.264/AVC encoder scenario. Throughout our experiments,
the encoding conditions of each article have been reproduced as far as possible, and a rea-
sonably objective and fair comparison is possible by following Bjøntegaard and Sullivan’s
common test rule [Sullivan and Bjontegaard 01]. Unfortunately, there are only two articles
that make use of this test rule. The comparison metrics have been produced and tabulated
based on the TRs, ∆PSNR and ∆Bit rate differences. The video sequences used are those
used in the related publications.

Table 4.18 and Table 4.19 summarize our main findings. As seen from the tables, our
proposal significantly outperforms those previously reported in terms of TR (%) for all
video sequences. However, for some video sequences, greater PSNR decrements and bit
rate increments are reported, but this extra penalty is negligible if the time savings are
taken into account. Note that for some video sequences [Bystrom et al. 08] outperforms
or maintains the coding efficiency of the reference encoder because some sequences are the
same as those used to train the Bayesian network on which the proposal is based.

Table 4.18: Comparison against [Bystrom et al. 08]

Sequence Format Method TR (%) ∆PSNR (dB) ∆bit rate (%)

Akiyo QCIF
Proposal 91.97 -0.021 0.66

[Bystrom et al. 08] 84.42 0.010 -0.18

Container QCIF
Proposal 93.02 -0.010 0.32

[Bystrom et al. 08] 80.51 0.060 -1.42

Foreman QCIF
Proposal 94.48 -0.100 3.61

[Bystrom et al. 08] 37.57 0.000 0.23

M. calendar QCIF
Proposal 96.08 -0.090 2.23

[Bystrom et al. 08] 9.10 -0.150 2.75

News QCIF
Proposal 93.26 -0.073 2.10

[Bystrom et al. 08] 78.81 -0.020 0.28

Silent QCIF
Proposal 94.13 -0.049 1.64

[Bystrom et al. 08] 71.00 0.020 -0.49
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Table 4.19: Comparison against [Liu et al. 09]

Sequence Format Method TR (%) ∆PSNR (dB) ∆bit rate (%)

Coastguard CIF
Proposal 96.27 -0.048 1.60

[Liu et al. 09] 33.10 -0.022 0.64

Foreman CIF
Proposal 94.50 -0.061 2.40

[Liu et al. 09] 37.70 -0.049 1.48

M. calendar CIF
Proposal 95.80 -0.044 1.10

[Liu et al. 09] 28.20 -0.073 1.77

News CIF
Proposal 92.35 -0.018 0.52

[Liu et al. 09] 49.20 -0.114 2.43

Paris CIF
Proposal 93.84 -0.024 0.68

[Liu et al. 09] 41.00 -0.072 1.81

Silent CIF
Proposal 94.13 -0.014 0.51

[Liu et al. 09] 49.60 -0.036 0.91

Stefan QCIF
Proposal 95.36 -0.089 2.30

[Liu et al. 09] 33.00 -0.082 1.62

4.4.2. GPU–based H.264/AVC Inter Prediction algorithms

As with the comparison made with related works that do not use a GPU to reduce the
H.264/AVC encoding time, a comparative study with some of them is not possible because
of several reasons. Some of them are not integrated into any H.264/AVC encoder and as
a consequence do not evaluate the RD performance, some of them do not support all MB
partitions and sub–partitions available in H.264/AVC and some of them use different cost
metrics. Moreover, all the works prior to 2006 do not use CUDA since CUDA emerged in
2007. As a consequence of these reasons, a comparison with those articles would not be
fair.

Fortunately, a comparison against [Cheung et al. 10] is possible. In order to obtain
an adequate evaluation, the comparison is carried out encoding the same video sequences
(720p), using the same encoding conditions, and is achieved when comparing the results
against the smpUMHexagonS algorithm implemented in the H.264/AVC JM reference en-
coder with their results against smpUMHexagonS too. Remember that, as was explained
in Chapter 3, the encoding efficiency and the time savings reported in [Cheung et al. 10]
depend on the number of tiles in which they divide each frame, so the results for their
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proposal are divided depending on that. Their algorithm is faster the more tiles are used,
but the encoding efficiency is lower.

Table 4.20 shows the execution time for the experiments carried out and also shows
the average execution time for each configuration. Before the analysis note that the peak
performance for our GPU is 1350 GFlops and the peak performance for the GPU used
in [Cheung et al. 10] is 345.6 GFlops, which means that our GPU is 3.9 times more
powerful. For this reason, and for a fair comparison, an extra column labelled Index
has been included in Table 4.20, which shows the ratio between the average execution
time obtained by their implementation for a certain encoder configuration and the average
execution time for our implementation using the same encoder configuration. Higher values
than 3.9 for this index mean that the proposed algorithm is faster than their algorithm.

In conclusion, our algorithm is as fast as their best configuration (index of 3.85), and it
outperforms the execution time for the other configurations (higher index than 3.9). The
execution time using 3 and 12 tiles is not specified in [Cheung et al. 10]; however, higher
execution times are expected since they use less GPU threads.

Table 4.20: Execution time comparison with [Cheung et al. 10] results.

Sequences

Average GPU
time (ms)

Index
Crew City Harbour Night

Number of
tiles

GPU time
(ms)

GPU time
(ms)

GPU time
(ms)

GPU time
(ms)

3,600 835.05 927.32 1,248.95 1,688.50 1,174.95 3.85

900 959.16 1,005.55 1,341.45 1,975.95 1,320.53 4.33

225 2,169.25 2,108.71 2,763.79 4,175.44 2,804.30 9.19

90 4,373.63 4,165.28 5,318.38 6,920.73 5,194.51 17.02

12 Unknown

3 Unknown

Proposal 305.99 306.16 304.96 304.71 305.23

Table 4.21 shows the RD results for their algorithm as well as our RD results using
the same encoding conditions. [Cheung et al. 10] obtains more degradation as many tiles
are used due to the dependencies between neighbouring MBs. However, the proposed
algorithm outperforms the RD performance obtained by their fastest configurations (90 or
more tiles); our algorithm has lower bit rate increments and lower PSNR losses than their
algorithm for all video sequences.
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Table 4.21: RD comparison with [Cheung et al. 10] results.

Sequences

Crew City Harbour Night

Number of
tiles

∆bit rate
(%)

∆PSNR
(dB)

∆bit rate
(%)

∆PSNR
(dB)

∆bit rate
(%)

∆PSNR
(dB)

∆bit rate
(%)

∆PSNR
(dB)

3,600 3.14 -0.082 12.93 -0.407 5.58 -0.221 4.64 -0.170

900 3.08 -0.079 11.12 -0.352 2.39 -0.094 3.55 -0.130

225 3.12 -0.080 11.17 -0.350 2.25 -0.089 3.42 -0.125

90 3.22 -0.083 10.82 -0.339 2.21 -0.087 3.40 -0.124

12 0.63 -0.016 1.41 -0.044 0.57 -0.022 1.19 -0.043

3 0.09 -0.003 0.26 -0.008 0.07 -0.003 0.16 -0.006

Proposal 3.08 -0.071 6.68 -0.309 0.88 -0.028 1.55 -0.047

4.5. Conclusions

In order to reduce the high complexity of the H.264/AVC JM 17.2 reference encoder,
this chapter proposed a GPU–based inter prediction algorithm developed for P frames.
The proposed algorithm has been tested using different video resolutions and the most
important conclusions are summarized as follows:

The proposed algorithm for all video resolutions achieves a time reduction of over
97% when compared with the FS algorithm, and over 85% when compared with the
UMHexagonS algorithm. The TRs increase when the GPU computational load also
increases.

The proposed algorithm for all video resolutions achieves negligible RD drop penalties
if the time savings are taken into account, when compared with the FS algorithm.
On the other hand, it surpasses the coding efficiency of the UMHexagonS algorithm.

The GPU–based algorithm raises the average power consumption of the complete
system. However, as the execution time is shorter, the H.264/AVC JM 17.2 using the
proposed algorithm consumes less energy than when using the reference algorithms
(FS and UMHexagonS).

Finally, the proposal is tested against related proposals. In a first section, it is
tested against proposals that do not use a GPU to accelerate the inter prediction
module, outperforming their timing results and maintaining their coding efficiency.
On the other hand, in a second section, it is tested against one proposal that uses a
GPU to accelerate the inter prediction module, equalling its best timing results and
outperforming its coding efficiency.
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Chapter5
B frame Inter Prediction

IN this chapter, the proposal developed for B frames is presented. First, some observa-
tions about the proposed and the reference inter prediction algorithms are made. Then,

the proposal is described in detail. Finally, it is evaluated, including a comparison with
the most recent and prominent related proposals.

5.1. Introduction

As was mentioned in Chapter 4, ME sequentially obtains the motion information (en-
coding costs) for all available MB partitions and sub-partitions, for all MBs in a frame.
For each MB partition and sub-partition, a search area is defined and the search algorithm
chosen is executed. The search algorithm looks for a region that minimizes the differences
between the current partition or sub-partition and the chosen region. However, in a B
frame there are two different ways of doing this. The first one uses one frame to per-
form the prediction and is called forward and backward prediction; the second one uses
two frames to perform the prediction and is called bi–directional prediction. Moreover, the
bi–directional prediction is carried out in two steps: the first one searches in a future frame
and the second one searches in a previous frame.

The main challenge of the approach presented in this chapter is to efficiently support
the tree-structured MC algorithm executed in the H.264/AVC JM 17.2 reference software
encoder [JVT 11] for B frames. The idea is to concurrently obtain the motion information
for all MBs at the beginning of coding each B frame. Forward, backward and bi–directional
predictions are executed sequentially following a highly–parallel procedure on the GPU.

The proposed algorithm developed for B frames has the same starting point as the
one developed for P frames, i.e. the FS algorithm. As a consequence, the same memory
allocations and search area distribution are used to implement the proposed algorithm.
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5.2. Proposed algorithm

This section describes the algorithm developed for B frames. The algorithm is divided
into two main parts: forward and backward prediction, and bi–directional prediction.

5.2.1. Forward and backward prediction

The algorithm developed for forward and backward prediction is based on the one
presented for P frames in Chapter 4. In fact, the only difference is where the reference
frames are located. The algorithm developed for forward and backward prediction uses
previous or future frames to estimate the current frame, while the algorithm developed for
P frames only uses previous frames. Note that this manner of prediction means that the
frames are encoded out of order (the encoding order is different from the temporal order),
otherwise the forward prediction could not be performed because the prediction is carried
out using a previously encoded reconstructed frame (see the block diagram of a generic
H.264/AVC encoder (Figure 2.3) shown in Section 2.1).

In order to encode a B frame, all its reference frames (previous and future) are encoded
in advance, which means that the motion information for all of them is available and can
be used to calculate the MVPs of the current frame.

The MVP for backward prediction is calculated using the MV of the 16x16 partition of
the MB located in the same position, but in the temporally previous frame. The MVP for
forward prediction is calculated using the MV of the 16x16 partition of the MB located in
the same position, but in the temporally future frame.

5.2.2. Bi–directional prediction

Bi–directional prediction is carried out in two steps. The first one estimates each MB
partition and sub–partition using a block located in the temporally previous frame (the
dimensions of the block are the same as those of the MB partition or sub–partition being
estimated) and a search area located in the temporally future frame. In what follows, we
will refer to the block as the opposite block. Bi–directional prediction is performed by
searching in the future frame. In the second one, the opposite block and the search area
interchange their locations, the opposite block is located in the future frame and the search
area is located in the previous frame. Bi–directional prediction is performed by searching
in the previous frame. The output of both steps is two MVs, one referring to the previous
frame and one referring to the future frame.

As with the algorithm described for P frames in Chapter 4, the bi–directional predic-
tion algorithm is divided into three main parts: MVP calculation, IME and FME. The
description of the algorithm focuses on the first step, but an analogous description for the
second step could be provided.
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5.2.2.1. MVP calculation

The first task in order to run the proposed algorithm is to locate the opposite block
and the search area, i.e. to obtain an MVP for each of them. The H.264/AVC JM 17.2
reference encoder locates the opposite block using the MV obtained with the backward
or the forward prediction, depending on where the opposite block is located, and its di-
mensions. The search area is located using the motion information of previously encoded
neighbouring MBs using the bi–directional prediction algorithm (the same procedure used
to calculate the real MVPs in Chapter 4, and explained in Section 2.1.2). However, the mo-
tion information of neighbouring MBs is not available in parallel execution and a different
MVP calculation is needed.

Figure 5.1 shows how to locate the search area and the opposite block in the first step
of the algorithm, where MVP1 is used to locate the opposite block and MVP2 is used to
locate the search area. As MVP for the opposite block, we propose to use the MV of the
partition being encoded. If the opposite block is located in the previous frame (MVP1),
the MVP was obtained with the backward prediction; if it is located in the future frame
(MVP2), the MVP was obtained with the forward prediction. As MVP for the search area,
we propose to use the MV of the 16x16 partition of the MB located in the same position. If
the search area is located in the previous frame (MVP1), the MVP was obtained with the
backward prediction; if it is located in the future frame (MVP2), the MVP was obtained
with the forward prediction. Note that the MVP of the search area is common for all MB
partitions and sub–partitions, which means that all partitions and sub–partitions within
an MB use the same search area.

Figure 5.1: Search area and opposite block locations.

However, there is a problem in the proposed MVP calculation, as forward and backward
predictions must be completely finalized before starting the bi—directional prediction, and
with the H.264/AVC JM encoding order this does not occur. The encoding order imple-
mented in the H.264/AVC JM reference encoder is: backward prediction, bi—directional
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prediction (first step), forward prediction and bi—directional prediction (second step).
The solution is to modify the encoding order implemented: firstly backward and forward
predictions are performed, and then the bi–directional predictions are performed.

Finally, the encoding costs are calculated using Equation 5.1. Note that the main
difference in comparison with the encoding costs calculated for P frames (or calculated
for forward and backward prediction) is that the output of the bi–directional prediction
algorithm is two MVs, which are used to obtain the encoding costs.

Cost = SAD + λ ·R1 + λ ·R2, (5.1)

where SAD is the metric used to calculate the differences (see Section 2.1.2 for more
details), λ is an encoder parameter which depends on the QP used, R1 is the number of
bits required to encode MV1 minus MVP1, and R2 is the number of bits required to encode
MV2 minus MVP2.

5.2.2.2. Integer Motion Estimation

In a similar way to the algorithm developed for P frames in Chapter 4, IME is divided
into a number of steps which are executed sequentially following a highly–parallel procedure
by using the GPU. However, in the bi—directional prediction algorithm it is not possible
to calculate the encoding costs of higher MB partitions using the ones obtained for the
4x4 sub–partition. Different MVPs are used to locate the opposite block(s) of each MB
partition and sub–partition. For this algorithm the steps are: obtain the encoding costs,
and then perform a reduction to obtain the best MV.

As with the algorithm presented in Chapter 4, IME is carried out using two GPU
kernels. Each thread block of the first GPU kernel obtains and reduces the motion infor-
mation of 256 adjacent search area positions of a given MB; if more than 256 search area
positions are defined in the search area, a second kernel performs a final reduction. The
reduction procedure used to obtain the best MV for all MB partitions and sub–partitions
with integer–pixel accuracy is the same as the one described in Chapter 4, so this section
focuses on how to obtain the motion information of all MB partitions and sub–partitions.

The first GPU kernel is carried out in a number of iterations, which depends on the
number of MB partitions and sub–partitions configured. For example, if all MB partitions
and sub–partitions are enabled in the configuration file, seven iterations are needed. The
last part of each iteration is the reduction procedure.

For each algorithm iteration, the current block, the opposite block and the search area
are required. The current block and the search area are the same in all algorithm iterations,
so at the beginning of this first GPU kernel all GPU threads collaborate to allocate them to
shared memory. Note that the search area is allocated using the same structure as the one
described in Figure 4.3. On the other hand, the opposite block is filled in on each algorithm
iteration. A memory matrix is defined for that in shared memory, which is either filled in
with the 16x16 opposite block, or with the two 16x8 opposite blocks, or with the two 8x16
opposite blocks, and so on. All threads also collaborate to allocate the opposite block(s).
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On each algorithm iteration, each GPU thread obtains the SAD costs for the sixteen
4x4 blocks into which both the current block and the opposite block can be divided for a
specific position. Additionally, if the opposite block was filled in with the 16x16 partition,
the sixteen SAD costs are added in order to obtain the motion information of the 16x16
partition; if the opposite block was filled in with the two 16x8 partitions, eight SAD costs
are added in order to obtain the motion information of the upper 16x8 partition, and eight
SAD costs are added in order to obtain the motion information of the lower 16x8 partition;
and so on. When the SAD of the current partition or sub–partition is properly obtained,
the final encoding is calculated using Equation 5.1.

Finally, a pseudo–code of the proposed algorithm is presented. Note that this pseudo–
code only covers the first step of the proposed algorithm. The pseudo–code for the second
step is the same, but the search are is located using MVP1 (the algorithm searches in the
previous frame) and the opposite block(s) is(are) located using MVP2.

Algorithm Proposed IME algorithm for B frames

Bi–prediction (Step 1)
For each thread block configured – Kernel 1

Transfer current block from GPU texture memory to shared memory
Transfer search area from GPU texture memory to shared memory (MVP2)
For each MB partition and sub–partition

Transfer opposite block from GPU texture memory to shared memory (MVP1)
For each thread within the thread block

Calculate motion information (SAD cost)
Merge SAD costs + calculate encoding costs
Reduction (1 MV per MB–partition within the thread block)

Final reduction – Kernel 2 (1 MV per MB–partition)

5.2.2.3. Fractional Motion Estimation

Once the execution of IME has finalized, FME is carried out. The algorithm is based
on the one explained in Chapter 4 for FME. However, in this case, when calculating
the encoding costs, the opposite block (which is located in shared memory) is taken into
account. The current block continues in shared memory and the sub–pixel search area
continues being checked from texture memory. SADT using Hadamard transforms is the
metric used to obtain the encoding costs.

Finally, we should mention that it is not necessary to sub–sample the reference frames
because they have been previously sub–sampled when executing the forward and backward
prediction algorithms.
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5.3. Performance evaluation

In this section, the results of applying the proposal described in this chapter are pre-
sented. First of all, the encoding conditions and the metrics used to evaluate the proposal
are described. Then, the evaluation is carried out.

5.3.1. Encoding conditions

In order to evaluate the proposed inter prediction algorithm developed for B frames,
it has been integrated into the H.264/AVC JM 17.2 reference encoder [JVT 11]. The
H.264/AVC encoding parameters used for the evaluation are those included in the Main
profile of the mentioned reference encoder. However, some parameters are changed in the
configuration file and these are described below. In general, the encoding conditions are
similar to the ones used in Chapter 4, but using a different profile.

The number of reference frames is set to 4 for P frames, and to 2 in both directions
(forward and backward) for B frames. We show that the algorithms presented in this
thesis are also appropriate for using multiple reference frames

RD–Optimization is disabled in order to keep the complexity as low as possible.
However, in Appendix A the algorithms proposed in this thesis are evaluated enabling
this option.

The number of B frames inserted between each I or P frame is set to 7 and the intra
period is set to 32. Therefore, in each GOP there are 28 B frames, 3 P frames and 1
I frame. Figure 5.2 shows the first 9 frames of a GOP. In what follows we will refer
to this structure as mini GOP. Therefore, each GOP is divided into 4 mini GOPs.

The GOP pattern used is full hierarchy, and is depicted in Figure 5.2. Note that
in the figure only the reference for the closest reference frames is depicted, but as
mentioned above, multiple reference frames are used.

The QP for P and I frames is varied among 28, 32, 36, and 40, according to [Bjon-
tegaard 01], [Sullivan and Bjontegaard 01] and [JVT Test Model Ad Hoc Group 03];
the QP for B frames depends on the hierarchical level on which the B frame is located
(see Figure 5.2), and is incremented by 1 per hierarchical level in reference with the
one configured for P and I frames.

The tests are carried out with popular sequences in QCIF (176x144 pixels), CIF
(352x288 pixels), VGA format (640x480 pixels), 720p format (HD, 1280x720 pixels)
and 1080p format (full-HD, 1920x1080 pixels). These sequences are the same as those
used in the performance evaluation section in Chapter 4, which are sequences with
different characteristics (content and movement features).
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Figure 5.2: Configured GOP pattern.

The frame rate parameter is set to 30 for QCIF, CIF and VGA format (30 Hz), and
to 50 for 720p and 1080p format (50 Hz).

The search range is set to 32, which means 4096 positions inside the search area of
each MB partition.

The proposed inter prediction algorithm is tested against two search algorithms im-
plemented in the H.264/AVC JM 17.2 reference encoder: FS [Richardson 10] and
UMHexagonS [Rahman and Badawy 05].

In order to make a proper comparison, an unmodified H.264/AVC JM 17.2 reference en-
coder is run on the same machine as the H.264/AVC JM using the proposed algorithms,
with the same encoding configuration and with no calls to the GPU. The development
environment, including the GPU, is the same as the one used in the evaluation of Chapter
4.

5.3.2. Metrics

Several metrics have been used to evaluate the proposal. These metrics are the TR
and speed–up, RD function, ∆PSNR and ∆bit rate, mode decisions and power and energy
consumption. All these metrics have been previously defined in Section 4.3.2.

5.3.3. Results

This section presents the results obtained when coding different video sequences using
the proposed inter prediction algorithm developed for B frames.

Timing results

As in the study of Chapter 4, the execution time of the reference algorithms (FS and
UMHexagonS) is sequence dependent, while the execution time of the proposed algorithm
is almost constant. As a consequence, the TRs and speed–ups reported depend on that.
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From Table 5.1 to Table 5.3 the timing results of the proposed algorithm for coding
the same QCIF, CIF and VGA video sequences are presented. The results are mainly
divided depending on the reference algorithm used for testing (FS and UMHexagonS); and
are further divided showing the timing results for the complete H.264/AVC encoder and
focusing exclusively on the proposed algorithm.

Table 5.1: Timing results of the proposed encoder for QCIF sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Full search UMHexagonS

ME module Complete encoder ME module Complete encoder

Sequence TR (%) speed–up TR (%) speed–up TR (%) speed–up TR (%) speed–up

Canoe 99.04 103.86 98.24 56.79 81.82 5.50 71.54 3.51

Fast food 98.70 77.07 97.65 42.61 79.28 4.83 68.43 3.17

Football 98.97 96.68 98.12 53.11 80.57 5.15 69.99 3.33

M. calendar 98.66 74.89 97.58 41.33 75.64 4.10 63.84 2.77

Racing 98.78 82.05 97.81 45.58 78.34 4.62 67.38 3.07

Scrolltext 98.29 58.45 96.95 32.74 72.43 3.63 60.36 2.52

Skyline 97.99 49.63 96.41 27.85 68.71 3.20 56.09 2.28

Softfootball 99.05 105.08 98.26 57.31 81.89 5.52 71.59 3.52

Average 98.68 76.00 97.63 42.12 77.33 4.41 66.15 2.95

Table 5.2: Timing results of the proposed encoder for CIF sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Full search UMHexagonS

ME module Complete encoder ME module Complete encoder

Sequence TR (%) speed–up TR (%) speed–up TR (%) speed–up TR (%) speed–up

Canoe 99.12 113.91 98.35 60.51 84.58 6.48 74.88 3.98

Fast food 98.77 81.58 97.73 44.02 81.26 5.34 70.66 3.41

Football 99.01 101.01 98.16 54.21 82.41 5.68 72.10 3.58

M. calendar 98.79 82.85 97.75 44.48 78.30 4.61 66.77 3.01

Racing 99.07 107.33 98.27 57.67 82.56 5.73 72.37 3.62

Scrolltext 98.15 53.94 96.63 29.67 73.39 3.76 61.36 2.59

Skyline 98.06 51.47 96.46 28.29 70.72 3.42 58.21 2.39

Softfootball 99.15 118.26 98.41 62.93 84.54 6.47 74.89 3.98

Average 98.77 81.01 97.72 43.85 79.72 4.93 68.90 3.22
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Table 5.3: Timing results of the proposed encoder for VGA sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Full search UMHexagonS

ME module Complete encoder ME module Complete encoder

Sequence TR (%) speed–up TR (%) speed–up TR (%) speed–up TR (%) speed–up

Canoe 99.06 106.37 98.23 56.63 85.08 6.70 75.65 4.11

Fast food 98.85 86.76 97.86 46.64 82.01 5.56 71.58 3.52

Football 98.98 97.69 98.09 52.44 82.08 5.58 71.65 3.53

M. calendar 98.75 80.23 97.66 42.72 78.87 4.73 67.27 3.06

Racing 99.05 105.73 98.23 56.48 83.35 6.01 73.33 3.75

Scrolltext 98.04 51.07 96.43 27.99 73.95 3.84 61.83 2.62

Skyline 98.02 50.42 96.37 27.52 70.80 3.42 58.06 2.38

Softfootball 99.13 114.43 98.35 60.75 84.86 6.61 75.28 4.04

Average 98.73 79.02 97.65 42.60 80.13 5.03 69.33 3.26

For all of them, when compared with the FS algorithm, the speed–ups of the algorithm
range from 49x to 118x, which means that the speed–ups for the complete H.264/AVC
encoder range from 27x to 60x. When compared with the UMHexagonS algorithm, the
speed–ups of the algorithm are ranging from 3.2x to 6.7x, which means that the speed–ups
for the complete H.264/AVC encoder range from 2.2x to 4.1x.

Table 5.4 shows the average execution time increments of the reference algorithms (FS
and UMHexagonS) and the average execution time increments of the proposed algorithm,
when coding CIF video sequences instead of coding QCIF video sequences. The resolution
of the video sequences is incremented by four (CIF format is four times bigger than QCIF),
so a priori, the execution time should also increase by a factor of four. However, the
expected execution time increment is not obtained.

Table 5.4: ∆Time from QCIF to CIF video sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Search algorithm ∆Time Expected ∆Time

FS 3.92

4UMHexaonS 4.10

Proposal 3.67

The ∆Time obtained when using the FS algorithm is 3.92. It is lower than 4 due to
the fact that the early–out termination mechanism is able to save more computation when
coding CIF video sequences than when coding QCIF video sequences.
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The ∆Time obtained when using the UMHexagonS algorithm is 4.10. It is greater
than 4, which means that the algorithm requires more iterations to find the best MVs
when coding CIF video sequences than when coding QCIF video sequences.

The ∆Time obtained when using the proposed algorithm is 3.67, which means that the
algorithm obtains a higher instruction throughput when coding CIF video sequences than
when coding QCIF video sequences. In other words, when coding QCIF video sequences
the maximum instruction throughput that this algorithm can obtain for the GPU used is
not achieved.

As a final conclusion, the ∆Time obtained when using the proposed algorithm is lower
than the ∆Time obtained when using the reference algorithms, so the speed–ups obtained
are greater when coding CIF video sequences than when coding QCIF video sequences (see
Table 5.1 and Table 5.2).

Table 5.5 shows the average execution time increments of the reference algorithms (FS
and UMHexagonS) and the average execution time increments of the proposed algorithm,
when coding VGA video sequences instead of coding CIF video sequences. The resolution
of the video sequences is incremented by three (VGA format is three times bigger than
CIF), so a priori, the execution time should also increase by a factor of three. However,
the expected execution time increment is not obtained.

Table 5.5: ∆Time from CIF to VGA video sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Search algorithm ∆Time Expected ∆Time

FS 2.92

3UMHexaonS 3.03

Proposal 2.97

The conclusions for the ∆Time when using the reference algorithms are similar to the
ones obtained in the previous analysis. However, the ∆Time obtained when using the
proposed algorithm is near the expected one, which means that when coding CIF video
sequences the maximum instruction throughput is nearly obtained.

The ∆Time obtained when using the proposed algorithm is greater than the ∆Time
obtained when using the FS algorithm, so the speed–ups obtained are lower when cod-
ing VGA video sequences than when coding CIF video sequences. The ∆Time obtained
when using the proposed algorithm is lower than the ∆Time obtained when using the
UMHexagonS algorithm, so the speed–ups are greater (see Table 5.2 and Table 5.3).

Finally, Table 5.6 and Table 5.7 show the timing results when coding HD video se-
quences. Note that the video sequences analysed are different from the ones used for lower
resolutions, so a comparison with previous results would not be fair.
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Table 5.6: Timing results of the proposed encoder for 720p sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Full search UMHexagonS

ME module Complete encoder ME module Complete encoder

Sequence TR (%) speed–up TR (%) speed–up TR (%) speed–up TR (%) speed–up

City 98.58 70.20 97.32 37.31 72.78 3.67 59.93 2.50

Crew 98.60 71.67 97.40 38.39 74.54 3.93 62.12 2.64

Dolphins 98.49 66.05 97.17 35.38 74.36 3.90 61.80 2.62

Harbour 98.45 64.37 97.09 34.31 69.45 3.27 56.19 2.28

Mobcal 98.63 73.20 97.44 38.99 74.80 3.97 62.35 2.66

Night 98.34 60.33 96.92 32.42 69.72 3.30 56.69 2.31

Park run 98.99 99.27 98.07 51.83 78.54 4.66 66.51 2.99

Shields 98.65 74.17 97.46 39.40 76.68 4.29 64.57 2.82

Average 98.59 71.01 97.36 37.84 73.86 3.83 61.27 2.58

Table 5.7: Timing results of the proposed encoder for 1080p sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Full search UMHexagonS

ME module Complete encoder ME module Complete encoder

Sequence TR (%) speed–up TR (%) speed–up TR (%) speed–up TR (%) speed–up

Crowd 98.94 94.62 97.94 48.64 78.26 4.60 65.70 2.92

Ducks 99.09 110.31 98.22 56.20 78.87 4.73 66.25 2.96

Into tree 98.90 91.29 97.90 47.54 73.47 3.77 60.35 2.52

Old town 98.53 68.08 97.18 35.49 69.67 3.30 55.76 2.26

Park joy 99.10 111.11 98.22 56.21 80.28 5.07 68.04 3.13

Pedestrian 98.51 67.31 97.19 35.60 74.32 3.89 61.38 2.59

Riverbed 99.09 110.09 98.24 56.74 82.60 5.75 71.44 3.50

Tractor 98.80 83.32 97.66 42.71 79.78 4.94 67.57 3.08

Average 98.87 88.67 97.82 45.85 77.15 4.38 64.56 2.82

The algorithm’s speed–ups range from 66x to 99x when compared with the FS algorithm
for coding 720p video sequences, and from 67x to 111x for coding 1080p video sequences.
For both resolutions, the overall speed–ups obtained for the complete H.264/AVC encoder
range from 32x to 56x.

When compared with the UMHexagonS algorithm, the algorithm’s speed–ups range
from 3.2x to 4.6x for coding 720p video sequences, and from 3.3x to 5.7x for coding 1080p
video sequences. For both resolutions, the overall speed–ups obtained for the complete
H.264/AVC encoder range from 2.2x to 3.5x.
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RD results

From Table 5.8 to Table 5.12 the RD results of the proposed algorithm are pre-
sented. The proposed algorithm is tested against two search algorithms implemented in
the H.264/AVC reference encoder, so the results are divided into two main parts: the com-
parison against the FS algorithm and the comparison against the UMHexagonS algorithm.

Table 5.8, Table 5.9 and Table 5.10 show the RD results when coding the same QCIF,
CIF and VGA video sequences. In general, the results show that the proposed algorithm
obtains a slightly lower encoding efficiency than the FS algorithm (the RD degradation
is negligible if the computational savings are taken into account), but it surpasses the
encoding efficiency obtained by the UMHexagonS algorithm.

Table 5.8: RD results of the proposed encoder for QCIF sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Full search UMHexagonS

Sequence ∆bit rate (%) ∆PSNR (dB) ∆bit rate (%) ∆PSNR (dB)

Canoe 1.57 -0.052 -4.45 0.151

Fast food 2.76 -0.093 -5.31 0.173

Football 2.62 -0.084 -3.25 0.105

M. calendar 2.75 -0.094 0.14 -0.004

Racing 3.90 -0.121 -6.63 0.228

Scrolltext 2.20 -0.075 -8.24 0.337

Skyline 3.70 -0.107 -3.03 0.100

Softfootball 2.38 -0.074 -3.61 0.118

Average 2.74 -0.088 -4.30 0.151

When compared with the FS algorithm for coding QCIF and CIF video sequences, the
bit rate increments range from 1.57% to 5.43%, which is an acceptable RD degradation.
However, when coding VGA video sequences there are some cases which lead to a greater
RD degradation. These sequences have a background which is in movement, or the camera
is in movement, or both at the same time. These situations, in which real MVPs are not
available, cause certain bit rate increments (see Equation 5.1). Note that, when comparing
these sequences with the execution of the UMHexagonS algorithm, bit rate decrements
over 10% are obtained for all of them.

On the other hand, when compared with the UMHexagonS algorithm, the proposed
algorithm obtains bit rate decrements for all tested sequences, except for M. calendar in
QCIF. The bit rate decrements obtained are of up to 18.9%.
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Table 5.9: RD results of the proposed encoder for CIF sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Full search UMHexagonS

Sequence ∆bit rate (%) ∆PSNR (dB) ∆bit rate (%) ∆PSNR (dB)

Canoe 1.95 -0.068 -4.74 0.161

Fast food 3.65 -0.107 -7.57 0.253

Football 2.46 -0.076 -4.61 0.148

M. calendar 2.53 -0.093 -3.20 0.121

Racing 5.43 -0.175 -18.93 0.803

Scrolltext 4.64 -0.166 -16.37 0.697

Skyline 4.85 -0.142 -6.07 0.193

Softfootball 2.99 -0.095 -3.78 0.122

Average 3.56 -0.115 -8.16 0.312

Table 5.10: RD results of the proposed encoder for VGA sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Full search UMHexagonS

Sequence ∆bit rate (%) ∆PSNR (dB) ∆bit rate (%) ∆PSNR (dB)

Canoe 1.45 -0.044 -7.40 0.247

Fast food 3.20 -0.078 -8.31 0.224

Football 2.43 -0.063 -5.16 0.142

M. calendar 2.10 -0.072 -10.86 0.354

Racing 6.37 -0.196 -15.43 0.566

Scrolltext 11.63 -0.394 -15.84 0.622

Skyline 7.44 -0.201 -10.69 0.325

Softfootball 2.56 -0.073 -4.95 0.150

Average 4.65 -0.140 -9.83 0.329

Finally, Table 5.11 and Table 5.12 show the RD results when coding HD video se-
quences. Note that the video sequences analysed are different from the ones used for lower
resolutions, so a comparison with previous results would not be fair.

The bit rate increments range from 0.75% to 5.12% when compared with the FS algo-
rithm for coding 720p video sequences, and from 0.42% to 9.76% for coding 1080p video
sequences. Note that, as was the case when coding VGA video sequences, there is one video
sequence for which a greater ∆bit rate is reported (Tractor in 1080p format). This ∆bit
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Table 5.11: RD results of the proposed encoder for 720p sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Full search UMHexagonS

Sequence ∆bit rate (%) ∆PSNR (dB) ∆bit rate (%) ∆PSNR (dB)

City 2.30 -0.063 -10.62 0.306

Crew 4.51 -0.107 -5.71 0.136

Dolphins 3.60 -0.095 -7.24 0.207

Harbour 1.71 -0.050 -2.06 0.059

Mobcal 5.12 -0.131 -15.83 0.482

Night 1.39 -0.039 -4.99 0.147

Park run 0.75 -0.020 -4.03 0.115

Shields 3.37 -0.094 -8.70 0.248

Average 2.84 -0.075 -7.40 0.213

Table 5.12: RD results of the proposed encoder for 1080p sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Full search UMHexagonS

Sequence ∆bit rate (%) ∆PSNR (dB) ∆bit rate (%) ∆PSNR (dB)

Crowd 3.08 -0.090 -6.63 0.203

Ducks 0.42 -0.011 -1.80 0.046

Into tree 6.01 -0.119 -13.45 0.297

Old town 3.76 -0.076 -5.73 0.111

Park joy 2.53 -0.076 -6.12 0.195

Pedestrian 4.24 -0.095 -6.21 0.148

Riverbed 1.29 -0.033 -1.31 0.035

Tractor 9.76 -0.268 -22.63 0.769

Average 3.89 -0.096 -7.99 0.226

rate is obtained because this sequence has a homogeneous background and the camera is
in movement, which is not the optimal scenario for the proposed MVPs.

On the other hand, when compared with the UMHexagonS algorithm for coding 720p
video sequences, the bit rate decrements range from 2.06% to 15.83%, and from 1.31% to
22.63% for coding 1080p video sequences.
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From Figure 5.3 to Figure 5.7 the RD graphic results for the reference algorithms (FS
and UMHexagonS) and for the proposed algorithm are presented. The results are presented
for all video sequence resolutions, from a value of 28 to 40 for QP. For clarity the RD curves
of each resolution are split into two independent graphs.

(a) Part I (b) Part II

Figure 5.3: RD graphic results of the proposed encoder for QCIF sequences.

(a) Part I (b) Part II

Figure 5.4: RD graphic results of the proposed encoder for CIF sequences.

As can be seen from the figures, the PSNR versus bit rate obtained with the proposed
H.264/AVC encoder, based on our algorithm, in general slightly deviates from the results
obtained when using the FS algorithm, except in some cases in which greater bit rates
are required for a given PSNR value (e.g. the Racing and Scrolltext video sequences
for low resolutions). However, when compared with the results obtained when using the
UMHexagonS algorithm, certain differences can be appreciated, as the H.264/AVC encoder
using the proposed algorithm is able to obtain similar PSNR values while using lower bit
rates.
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(a) Part I (b) Part II

Figure 5.5: RD graphic results of the proposed encoder for VGA sequences.

(a) Part I (b) Part II

Figure 5.6: RD graphic results of the proposed encoder for 720p sequences.

(a) Part I (b) Part II

Figure 5.7: RD graphic results of the proposed encoder for 1080p sequences.
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Mode decisions

Figures 5.9 to 5.12 show the inter prediction mode decisions made for one frame by the
H.264/AVC encoder when using the FS algorithm (Figures 5.9a, 5.10a, 5.11a and 5.12a)
and for one frame made by our proposed algorithm (Figures 5.9b, 5.10b, 5.11b and 5.12b).
The mode decisions are obtained when analysing the output bit streams obtained in order
to carry out the timing and RD evaluation, with a QP value of 28.

Figure 5.8 shows the different kinds of inter prediction modes available for B frames.
The prediction modes are the same as for P frames, but adding the Direct mode. Note
that, in order to obtain the mode decisions carried out by the reference and the proposed
H.264/AVC encoders, a free-ware software is used which does not support 1080p sequences.

Figure 5.9, Figure 5.10 and Figure 5.11 show the mode decisions for the 28th frame
of the Scrolltext video sequence in QCIF, CIF and VGA format, respectively; Figure 5.12
shows them for the 5th frame of the Crew video sequence in 720p format. The Scrolltext
and Crew video sequences are chosen since these video sequences are the ones which produce
one of the greatest bit rate increments in comparison with the FS algorithm. The 5th frame
is selected since it is a B frame located in the middle of the GOP pattern configured, while
the 28th is selected because of the same reason but also because the background movement
in this sequence starts around the 20th frame. The background movement is responsible
for the bit rate increments reported by this video sequence.

Figure 5.8: Different kinds of predictions in B frames.

As is shown in the figures, different MB labels are generated by our approach, but in
general these partitions are close to the partitions made by the H.264/AVC encoder using
the FS algorithm. As a result, although the label partitions are not the same, our closed
decisions do not have a significant impact on the final quality performance. The different
decision is mainly due to the lack of real MVPs in the cost calculations. In this case
two MVs are required to calculate the encoding cost when the Bi–directional prediction is
selected (see Equation 5.1) and one when the forward or backward prediction is selected
(see Equation 4.1). Moreover, multiple reference frames also affect the mode decisions,
since more MVs are candidates to be selected and more encoding costs must be calculated.
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(a) Full search (b) Proposal

Figure 5.9: Mode decisions for Scrolltext sequence in QCIF format.

(a) Full search (b) Proposal

Figure 5.10: Mode decisions for Scrolltext sequence in CIF format.

(a) Full search (b) Proposal

Figure 5.11: Mode decisions for Scrolltext sequence in VGA format.
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(a) Full search

(b) Proposal

Figure 5.12: Mode decisions for Crew sequence in 720p format.



124 Chapter 5 B frame Inter Prediction

Power and energy results

From Table 5.13 to Table 5.16 the power and energy consumption results of the proposed
algorithm are presented. These tables show the average power consumption, the execution
time and the total energy consumed when coding onemini GOP (9 frames) for the complete
test computer when coding the tested sequences in CIF, VGA, 720p and 1080p format. As
in Chapter 4, the analysis for QCIF video sequences is not shown. All the tables are mainly
divided depending on the algorithm used to encode the video sequences and include two
columns showing by how many times the proposed algorithm consumes less energy than
the reference algorithms (FS and UMHexagonS).

Table 5.13: Energy consumption for coding a GOP. CIF sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Full search UMHexagonS Proposal

Sequence Power Time Energy Power Time Energy Power Time Energy Ratio Ratio

(W) (s) (kJ) (W) (s) (kJ) (W) (s) (kJ) FS UMHS

Canoe 182.05 79.86 14.54 182.43 4.91 0.90 271.08 1.47 0.40 36.48 2.25

Fast food 182.82 54.27 9.92 181.36 3.16 0.57 277.83 1.29 0.36 27.68 1.60

Football 183.15 68.76 12.59 181.73 3.65 0.66 272.71 1.31 0.36 35.25 1.86

M. calendar 183.38 59.55 10.92 182.01 3.23 0.59 275.10 1.30 0.36 30.54 1.64

Racing 183.35 51.62 9.46 181.55 3.42 0.62 278.60 1.27 0.35 26.75 1.75

Scrolltext 183.29 28.61 5.24 181.13 2.30 0.42 280.25 1.26 0.35 14.85 1.18

Skyline 182.84 35.29 6.45 181.73 2.51 0.46 279.34 1.27 0.35 18.19 1.29

Softfootball 183.30 78.07 14.31 181.21 3.77 0.68 274.35 1.32 0.36 39.52 1.89

Average 183.02 57.00 10.43 181.64 3.37 0.61 276.16 1.31 0.36 28.66 1.68

The average power consumption for the H.264/AVC encoder using the reference al-
gorithms (FS and UMHexagonS) is almost constant and ranges from 181 W to 187 W,
regardless of the video sequence resolution. However, the execution time considerably
varies, and as a consequence the overall energy consumption varies greatly. For example,
when coding one mini GOP in 1080p format, the total energy consumption ranges from
221.9 kJ to 334.2 kJ, because the execution time ranges from 1,201.47 s to 1,819.60 s.

The average power consumption for the H.264/AVC encoder using the proposed algo-
rithm increases slightly when the resolution is increased. The GPU’s instruction through-
put has reached its maximum, and the execution time increments for the different formats
are slightly greater than expected (this overhead is caused by the memory transference
from/to the GPU). As a consequence, the percentage of time in which the GPU is work-
ing increases slightly, raising the average power consumption. However, in this case the
execution time is very similar, and as a consequence, the overall energy consumption does
not vary significantly. For example, when coding one mini GOP in 1080p format, the total
energy consumption ranges from 7.14 kJ to 7.65 kJ, because the execution time ranges
from 24.83 s to 25.94 s.
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Table 5.14: Energy consumption for coding a GOP. VGA sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Full search UMHexagonS Proposal

Sequence Power Time Energy Power Time Energy Power Time Energy Ratio Ratio

(W) (s) (kJ) (W) (s) (kJ) (W) (s) (kJ) FS UMHS

Canoe 183.97 231.25 42.54 183.40 14.30 2.62 278.07 3.74 1.04 40.91 2.52

Fast food 185.23 176.36 32.67 182.58 9.90 1.81 279.41 3.68 1.03 31.77 1.76

Football 185.48 197.44 36.62 182.38 10.79 1.97 279.70 3.73 1.04 35.10 1.89

M. calendar 184.76 180.40 33.33 182.16 9.79 1.78 283.40 3.73 1.06 31.53 1.69

Racing 185.34 156.02 28.92 182.08 10.51 1.91 284.48 3.67 1.04 27.70 1.83

Scrolltext 185.19 86.30 15.98 181.95 7.04 1.28 286.35 3.57 1.02 15.63 1.25

Skyline 185.22 112.45 20.83 181.99 7.40 1.35 281.68 3.60 1.01 20.54 1.33

Softfootball 185.73 211.42 39.27 182.15 11.45 2.09 284.83 3.72 1.06 37.06 1.97

Average 185.12 168.96 31.27 182.34 10.15 1.85 282.24 3.68 1.04 30.03 1.78

Table 5.15: Energy consumption for coding a GOP. 720p sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Full search UMHexagonS Proposal

Sequence Power Time Energy Power Time Energy Power Time Energy Ratio Ratio

(W) (s) (kJ) (W) (s) (kJ) (W) (s) (kJ) FS UMHS

City 185.36 438.19 81.22 182.95 26.81 4.90 281.72 10.76 3.03 26.79 1.62

Crew 185.93 550.55 102.36 182.87 25.66 4.69 286.70 10.69 3.06 33.40 1.53

Dolphins 185.80 527.52 98.01 182.97 31.78 5.81 286.10 10.97 3.14 31.23 1.85

Harbour 185.77 456.68 84.84 183.41 25.17 4.62 290.11 10.94 3.17 26.73 1.45

Mobcal 185.63 654.55 121.50 183.28 26.85 4.92 292.26 10.70 3.13 38.85 1.57

Night 185.32 438.36 81.24 183.29 24.80 4.55 293.21 10.79 3.16 25.68 1.44

Park run 184.80 829.99 153.38 183.34 35.29 6.47 292.81 11.03 3.23 47.49 2.00

Shields 185.75 700.23 130.07 183.57 34.11 6.26 294.69 10.75 3.17 41.06 1.98

Average 185.55 574.51 106.58 183.21 28.81 5.28 289.70 10.83 3.14 33.90 1.68

On average, the energy consumption for the H.264/AVC encoder using the proposed
algorithm ranges from 28 to 35 times better than for the H.264/AVC encoder using the
FS algorithm. On the other hand, the energy consumption for the H.264/AVC encoder
using the proposed algorithm ranges from 1.6 to 1.7 times better than for the H.264/AVC
encoder using the UMHexagonS algorithm for all video formats.

Note that there is a certain difference in the average power consumption between the
H.264/AVC reference encoder (181 W to 187 W) and the proposed GPU–based encoder
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Table 5.16: Energy consumption for coding a GOP. 1080p sequences.

H.264/AVC JM 17.2 Main profile – Search range = 32

Full search UMHexagonS Proposal

Sequence Power Time Energy Power Time Energy Power Time Energy Ratio Ratio

(W) (s) (kJ) (W) (s) (kJ) (W) (s) (kJ) FS UMHS

Crowd 186.87 1,356.48 253.49 181.80 62.25 11.32 282.02 25.30 7.14 35.53 1.59

Ducks 187.40 1,471.55 275.77 182.19 65.89 12.00 287.82 25.55 7.35 37.50 1.63

Into tree 185.84 1,376.36 255.78 182.24 53.79 9.80 291.50 24.64 7.18 35.61 1.36

Old town 184.30 1,229.63 226.62 182.11 51.85 9.44 292.75 24.53 7.18 31.56 1.31

Park joy 183.68 1,819.60 334.22 182.29 76.12 13.88 293.71 25.36 7.45 44.87 1.86

Pedestrian 184.16 1,225.78 225.74 182.34 68.04 12.41 295.21 24.83 7.33 30.80 1.69

Riverbed 185.07 1,745.24 322.99 183.66 86.40 15.87 294.91 25.94 7.65 42.22 2.07

Tractor 184.73 1,201.47 221.95 183.49 73.01 13.40 295.96 25.36 7.51 29.57 1.78

Average 185.26 1,428.26 264.57 182.52 67.17 12.26 291.74 25.19 7.35 35.96 1.66

(276 W to 291 W), and the reason is that the GPU is processing for about 50% of the total
encoding time.

Figure 5.13 shows an extract from the power consumption over time for the complete
test computer, when coding one video sequence of each resolution for the H.264/AVC en-
coder using the FS algorithm and for the H.264/AVC encoder using the proposed algorithm.
Note that the power consumption over time when using the UMHexagonS algorithm is not
shown in these graphs because it is similar to the one shown when using the FS algorithm,
but the execution time is shorter (see Tables 5.13 to 5.16).

When the encoder process begins, all the encoders consume the same power (around
180–185 W), but when the GPU starts working the power consumption of the proposed
encoder increases. It has a power consumption of around 325-375 W, except for CIF format
in which case the power consumption peaks are not fully reconstructed (Figure 5.13). The
configured GOP pattern is composed of 1 I frame followed by 7 B frames and 1 P frame
where the proposed algorithms are executed, so 8 power consumption peaks can be found on
each graph in Figure 5.13. Note that the encoding order is different from the visualization
order, and the P frame is encoded before the B frames. The algorithm presented in Chapter
4 for P frames is less complex than the algorithm presented in this chapter for B frames.
As a consequence, the power consumption peaks generated by P frames are thinner than
the ones generated by B frames (see in Figure 5.13 the first power consumption peak in
comparison with the other peaks).

As in the previous chapter, we would like to mention that the power consumption
for the CPU code in the GPU–based encoder is around 235 W, which is higher than for
the reference execution (180–185 W) because the GPU is always active, waiting for new
kernels.
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(a) Canoe CIF (b) Canoe VGA

(c) City 720p (d) Crowd 1080p

Figure 5.13: Power consumption graphic results of the proposed encoder.

5.4. Comparison with other known results

This section compares the results reported by our proposed algorithm developed for B
frames with the ones reported in the most recent and relevant related articles. However, in
the literature there are not many works aimed at reducing the H.264/AVC encoding time
when using B frames. In fact, there is only one approach and it is not GPU–based.

The encoding conditions of [Liu et al. 09] have been reproduced as far as possible,
and a reasonably objective and fair comparison is possible by following Bjøntegaard and
Sullivan’s common test rule [Sullivan and Bjontegaard 01].The comparison metrics have
been produced and tabulated based on the TRs, ∆PSNR and ∆Bit rate differences. The
video sequences used are those used in the related publication.

Table 5.17 summarizes our main findings. As seen from the table, our proposal greatly
outperforms those previously reported in terms of TR (%) for all video sequences. However,
for some video sequences, greater PSNR decrements and bit rate increments are reported,
but this extra penalty is negligible if the time savings are taken into account.
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Table 5.17: Comparison against [Liu et al. 09]

Sequence Format Method TR (%) ∆PSNR (dB) ∆bit rate (%)

Coastguard CIF
Proposal 98.13 -0.043 1.54

[Liu et al. 09] 30.70 -0.063 1.67

Foreman CIF
Proposal 97.01 -0.107 4.14

[Liu et al. 09] 33.60 -0.068 2.08

M. calendar CIF
Proposal 98.02 -0.089 2.58

[Liu et al. 09] 28.80 -0.078 2.09

News CIF
Proposal 95.75 -0.024 0.77

[Liu et al. 09] 41.60 -0.126 2.73

Paris CIF
Proposal 96.85 -0.046 1.35

[Liu et al. 09] 39.10 -0.130 2.85

Silent CIF
Proposal 96.83 -0.025 0.89

[Liu et al. 09] 43.30 -0.034 0.90

Stefan QCIF
Proposal 97.78 -0.103 2.76

[Liu et al. 09] 35.20 -0.098 1.99

5.5. Conclusions

In order to reduce the high complexity of the H.264/AVC JM 17.2 reference encoder,
this chapter proposed a GPU–based inter prediction algorithm developed for B frames.
The proposed algorithm has been tested using different video resolutions and the most
important conclusions are similar to the ones presented in Chapter 4, but there are some
differences:

When compared with the FS algorithm, the proposed algorithm for all video resolu-
tions achieves a greater time reduction than when only using P frames (over 98%),
since the algorithm developed for B frames is more complex (the percentage of time
in which the GPU is in execution is higher) and the maximum GPU computational
load is reached for low resolutions.

The proposed algorithm for all video resolutions achieves acceptable RD drop penal-
ties if the time savings are taken into account, when compared with the FS algorithm.
However, for some video sequences ∆bit rates of up to 11% are obtained. These in-
crements occur because the proposed MVPs are not able to accurately calculate
the encoding costs when the movement takes place in the background of the video
sequences and the background is homogeneous. On the other hand, the proposed
algorithm greatly surpasses the coding efficiency of the UMHexagonS algorithm, as
average ∆bit rate values of over 7% are obtained for all video resolutions.
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The GPU–based algorithm raises the average power consumption of the complete
system, but the execution time is shorter. The average power consumption when
using B frames is higher than when only using P frames because the percentage of
time in which the GPU is in execution is higher. However, the TRs are higher and
as a consequence the energy savings are also higher.

Finally, the proposal is tested against one related proposal, which does not use a
GPU to accelerate the inter prediction module. The proposal outperforms its timing
results and equals its coding efficiency.
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Chapter6
3D Inter Prediction

IN this chapter, the proposal developed for 3D video sequences is presented. First of all,
some observations about the proposed and the reference inter prediction algorithms are

made. Then, the proposal is described in detail. Finally, it is evaluated. Note that this
chapter does not include a comparison against related proposals because all of them have
been proposed using a different reference software and the comparison would not be fair.

6.1. Introduction

As was explained in Section 2.2, when the ME algorithm is applied, in a 3D video
sequence, using a reference frame from a different view (inter–view prediction), a different
kind of redundancy can be eliminated. This prediction is more commonly known as DE,
since it estimates the differences between adjacent viewpoints/cameras, i.e. the disparity
between the different views.

ME and DE sequentially obtain the motion information (encoding costs) for all available
MB partitions and sub–partitions, for all MBs in a frame. Both algorithms search for a
region that minimizes the differences between the current block and the chosen block in a
similar manner. In fact, the H.264/AVC JM 17.2 reference source code of both algorithms
is the same.

The main challenge for the approach presented in this chapter is to efficiently support
the tree-structured MC algorithm executed in the H.264/AVC JM 17.2 reference software
encoder [JVT 11] for 3D video sequences.

6.2. Proposed algorithm

As has been mentioned above, the reference source code of the ME and DE algorithms is
identical, so the proposed algorithm for 3D video sequences will use the proposals presented

131
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in Chapters 4 and 5 for P frames and B frames, respectively. However, a new MVP
calculation is defined, since the MVP calculation is based on previously encoded frames
and the redundancies eliminated when using the ME algorithm are different from the
ones eliminated when using the DE algorithm. An inter–view predicted frame cannot be
properly estimated using an MVP obtained from a temporally predicted frame, or vice
versa.

Due to the fact that there are two different ways of applying the proposed algorithms
(ME and DE), the proposal updates the MVP in two different ways. When using a reference
frame from the same view, the MVP is calculated using the 16x16 MV of the MB located
in the same position but in the previously temporally predicted frame. When using a
reference frame from a different view, the MVP is calculated using the 16x16 MV of the
MB located in the same position but in the previously inter–view predicted frame.

Figure 6.1 shows the MVP calculation described above when using I and P frames. The
same procedure is easily extended to also using B frames.

Figure 6.1: 3D MVP calculation.

6.3. Performance evaluation

In this section, the results of applying the proposal described in this chapter are pre-
sented. First of all, the encoding conditions and the metrics used to evaluate the proposal
are described. Then, the evaluation is carried out.

6.3.1. Encoding conditions

In order to evaluate the proposed inter prediction algorithm developed for 3D sequences,
it has been integrated into the H.264/AVC JM 17.2 reference encoder [JVT 11]. The
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H.264/AVC encoding parameters used for the evaluation are those included in the Stereo
High profile of the said reference encoder. Furthermore, two different coding scenarios have
been used to test the proposal: a simple scenario in which only P frames are used (this
scenario is based on the one used in the performance evaluation section of Chapter 4) and
a more complex scenario in which P and B frames are used, as well as multiple reference
frames (this scenario is based on the one used in the performance evaluation section of
Chapter 5).

First of all, the common conditions for both scenarios are described, and after that, the
specific conditions for each of them are detailed:

RD–Optimization is disabled to keep the complexity as low as possible. However, in
Appendix A the algorithms proposed in this thesis are evaluated enabling this option.

The tests are carried out with popular stereo (2 views) video sequences in 1080p
format (full-HD, 1920x1080 pixels). The first frame of each of these sequences is
shown in Figure 6.2. These sequences have different characteristics (content and
movement features).

The frame rate parameter is set to 25 for each view (25 Hz).

The search range is set to 32, which means 4096 positions inside the search area of
each MB partition.

The proposed inter prediction algorithm is tested against two search algorithms im-
plemented in the H.264/AVC JM 17.2 reference encoder: FS [Richardson 10] and
UMHexagonS [Rahman and Badawy 05].

In order to make a proper comparison, an unmodified H.264/AVC JM 17.2 reference
encoder is run on the same machine as the H.264/AVC JM using the proposed algorithms,
with the same encoding configuration and with no calls to the GPU. The development
environment, including the GPU, is the same as that used in the evaluation of Chapter 4.

P frames scenario

The number of reference frames is set to 1 in order to keep the complexity as low as
possible. An analysis using more references is possible since the algorithm can iterate
over multiple reference frames. The conclusions obtained will be the same regardless
of the number of reference frames configured.

The QP is varied between 28, 32, 36 and 40, according to [Bjontegaard 01], [Sullivan
and Bjontegaard 01] and [JVT Test Model Ad Hoc Group 03].

The configured GOP pattern of the left view in the stereo video sequences is 1 I
frame followed by 11 P frames (I11P), while the one configured for the right view
is composed of 12 P frames. The first P frame of the right view in each GOP is
inter–view predicted using the I frame of the left view, and is shown in Figure 6.3.
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(a) Beergarden (b) Cafe

(c) Car park (d) Hall

(e) Street

Figure 6.2: Stereo 1080p sequences used to evaluate the proposal.

Figure 6.3: Configured GOP pattern. Only I and P frames.
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P and B frames scenario

The number of reference frames for P frames is set to 4 , while for B frames it is set
to 2 in each direction, giving a total of 4 frames.

The number of B frames inserted between each I or P frame is set to 7, and the intra
period is set to 32. As a consequence, for the the left view in each GOP there are 28
B frames, 3 P frames and 1 I frame, while for the right view there are 28 B frames
and 4 P frames; divided into 4 mini GOPs. Figure 6.4 shows the first 18 frames of the
GOP configured, 9 frames per view. The first P frame of the right view in each GOP
is inter–view predicted using the I frame of the left view, and is shown in Figure 6.4.

The GOP pattern used is full hierarchy, and is depicted in Figure 6.4. Note that
in the figure only the reference for the closest reference frames is depicted, but as
mentioned above, multiple reference frames are used.

The QP for P and I frames is varied among 28, 32, 36, and 40, according to [Bjon-
tegaard 01], [Sullivan and Bjontegaard 01] and [JVT Test Model Ad Hoc Group 03];
the QP for B frames depends on the hierarchical level on which the B frame is located
(see Figure 6.4) and is incremented by 1 per hierarchical level in reference with the
one configured for P and I frames.

Figure 6.4: Configured GOP pattern. I, P and B frames.



136 Chapter 6 3D Inter Prediction

6.3.2. Metrics

Different metrics have been used to evaluate the proposal. These metrics are the TR
and speed–up, RD function, ∆PSNR and ∆bit rate, and power and energy consumption.
All these metrics have been previously defined in Section 4.3.2.

6.3.3. Results

This section presents the results obtained when coding different 3D (stereo) video se-
quences using the proposed inter prediction algorithms developed for P and B frames.

6.3.3.1. P frames scenario

This section presents the results obtained when coding different 3D stereo video se-
quences using P frames.

Timing results

Table 6.1 shows the timing results of our proposed H.264/AVC encoder when coding five
3D stereo full HD video sequences. The proposed algorithm is tested against two search
algorithms, and therefore the results are divided depending on the reference algorithm
used. Moreover, the results are further divided into two parts: the timing results focusing
exclusively on the proposed algorithm (ME module column), and the timing results focusing
on the complete H.264/AVC encoder (Complete encoder column).

Table 6.1: Timing results of the proposed encoder. I and P frames.

H.264/AVC JM 17.2 Stereo High profile – Search range = 32

Full search UMHexagonS

ME module Complete encoder ME module Complete encoder

Sequence TR (%) speed–up TR (%) speed–up TR (%) speed–up TR (%) speed–up

Beergarden 98.83 85.82 93.64 15.73 77.15 4.38 39.26 1.65

Cafe 97.97 49.18 89.62 9.63 71.77 3.54 33.75 1.51

Car park 98.60 71.56 92.47 13.29 73.35 3.75 34.67 1.53

Hall 98.02 50.59 89.90 9.91 73.25 3.74 35.20 1.54

Street 98.59 70.96 92.34 13.06 74.18 3.87 35.42 1.55

Average 98.40 62.64 91.60 11.90 73.94 3.84 35.66 1.55

As expected from the analysis made in Chapter 4, the proposed algorithm outperforms
both search algorithms. When compared with the FS algorithm, the proposed algorithm
obtains a speed–up of over 62x (TR of 98.40%) on average, which means a speed–up



6.3 Performance evaluation 137

of nearly 12x (TR of 91.60%) for the complete H.264/AVC encoder. Also, the proposed
algorithm obtains a speed–up of over 3.8x (TR of 73.94%) on average, which means a speed–
up of over 1.5x (TR of 35.66%) for the complete H.264/AVC encoder, when compared with
the UMHexagonS algorithm.

RD results

Table 6.2 shows the ∆bit rate and ∆PSNR results of our proposed H.264/AVC encoder
when coding five 3D stereo full HD video sequences. As in Table 6.1, the proposed algo-
rithm is tested against the two above–mentioned search algorithms implemented by the
H.264/AVC reference encoder.

Table 6.2: RD results of the proposed encoder. I and P frames.

H.264/AVC JM 17.2 Stereo High profile – Search range = 32

Full search UMHexagonS

Sequence ∆bit rate (%) ∆PSNR (dB) ∆bit rate (%) ∆PSNR (dB)

Beergarden 1.00 -0.032 -8.10 0.276

Cafe 1.74 -0.040 -8.35 0.214

Car park 4.49 -0.108 -5.25 0.138

Hall 2.30 -0.041 -6.65 0.125

Street 1.24 -0.030 -3.82 0.088

Average 2.15 -0.050 -6.43 0.168

The proposed algorithm obtains slightly worse results when compared with the FS
algorithm and surpasses the results obtained by the UMHexagonS algorithm. The proposed
algorithm obtains, on average, a bit rate increment of 2.15% and a PSNR loss of 0.050 dB
when compared with the FS algorithm. On the other hand, the proposed algorithm obtains,
on average, a bit rate decrement of 6.43% and a PSNR gain of 0.168 dB when compared
with the UMHexagonS algorithm.

Figure 6.5 shows the RD graphic results obtained when using the reference algorithms
(FS and UMHexagonS) and when using the proposed approach, for different 3D stereo
sequences in 1080p format, from a value of 28 to 40 for QP. For clarity the RD graphs
are split into two sub–figures. As can be seen from the figure, the PSNR versus bit rate
obtained with the proposed encoder, based on our algorithm, deviates slightly from the
results obtained when applying the FS algorithm and improves upon the results when
applying the UMHexagonS algorithm, requiring lower bit rates for a given PSNR value.
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(a) Part I (b) Part II

Figure 6.5: RD graphic results of the proposed encoder. I and P frames.

Power and energy results

Table 6.3 shows the average power, time and energy consumed when coding one GOP
(24 frames, 12 frames per view) for the complete test computer when coding five 3D
stereo 1080p sequences. The first main column shows these results for the H.264/AVC
encoder using the FS algorithm, the second main column shows them for the H.264/AVC
encoder using the UMHexagonS algorithm and the third main column shows them for the
H.264/AVC encoder using the proposed algorithm. Additionally, Table 6.3 includes two
columns showing by how many times the proposed algorithm consumes less energy than
the reference algorithms (FS and UMHexagonS).

Table 6.3: Energy consumption for coding a GOP. I and P frames.

H.264/AVC JM 17.2 Stereo High profile – Search range = 32

Full search UMHexagonS Proposal

Sequence Power Time Energy Power Time Energy Power Time Energy Ratio Ratio

(W) (s) (kJ) (W) (s) (kJ) (W) (s) (kJ) FS UMHS

Beergarden 184.59 613.68 113.28 184.92 60.29 11.15 246.69 40.57 10.00 11.32 1.11

Cafe 184.13 427.17 78.65 182.30 57.44 10.47 247.04 40.63 10.04 7.84 1.04

Car park 184.65 531.32 98.11 183.93 56.32 10.36 248.66 40.98 10.19 9.63 1.02

Hall 183.82 482.67 88.72 184.77 54.81 10.13 249.83 40.30 10.07 8.81 1.01

Street 183.62 583.45 107.13 184.83 56.38 10.42 250.96 40.91 10.27 10.43 1.02

Average 184.16 527.66 97.18 184.15 57.05 10.51 248.64 40.68 10.11 9.61 1.04

On average, the energy consumption for the GPU–based encoder is 9.61 times better
than for the H.264/AVC encoder using the FS algorithm, and is almost the same as for the
H.264/AVC encoder using the UMHexagonS algorithm. This behaviour when compared
with the UMHexagonS algorithm is due to the fact that the speed–ups obtained are not
good enough to reduce energy consumption.
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Figure 6.6 shows the power consumption over time for the complete test computer, when
coding the Beergarden sequence for both the H.264/AVC encoder using the FS algorithm
and for the H.264/AVC encoder using our proposed algorithm. Note that only an extract
of the complete graph is shown in order to analyse in detail the power consumption. The
H.264/AVC encoder using the UMHexagonS algorithm is not included in the graph since
its power consumption is almost the same as the one obtained for the H.264/AVC using
the FS algorithm, but the execution time is shorter.

Figure 6.6: Power consumption graphic results of the proposed encoder. I and P frames of
Beergarden sequence.

When the encoder process begins, both encoders consume the same power (180-185
W), but when the GPU starts working the power consumption of the proposed encoder
increases, having a power consumption around 325-375 W (see power consumption peaks
in Figure 6.6). 23 power consumption peaks can be identified in Figure 6.6 since in the con-
figured GOP pattern there are one I frame, and 23 P frames where the proposed algorithm
is executed.

6.3.3.2. P and B frames scenario

This section presents the results obtained when coding different 3D stereo video se-
quences using P and B frames.
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Timing results

Table 6.4 shows the timing results of our proposed H.264/AVC encoder when coding five
3D stereo full HD video sequences. The proposed algorithm is tested against two search
algorithms, and therefore the results are divided depending on the reference algorithm
used. Moreover, the results are further divided into two parts: the timing results focusing
exclusively on the proposed algorithm (ME module column), and the timing results focusing
on the complete H.264/AVC encoder (Complete encoder column).

Table 6.4: Timing results of the proposed encoder. I, P and B frames.

H.264/AVC JM 17.2 Stereo High profile – Search range = 32

Full search UMHexagonS

ME module Complete encoder ME module Complete encoder

Sequence TR (%) speed–up TR (%) speed–up TR (%) speed–up TR (%) speed–up

Beergarden 98.37 61.43 96.73 30.61 66.82 3.01 51.42 2.06

Cafe 96.97 33.01 94.09 16.92 60.25 2.52 45.33 1.83

Car park 97.98 49.48 95.99 24.96 61.05 2.57 45.99 1.85

Hall 97.39 38.27 94.89 19.57 65.66 2.91 50.77 2.03

Street 97.97 49.16 95.97 24.79 62.80 2.69 47.61 1.91

Average 97.74 44.15 95.53 22.40 63.32 2.73 48.23 1.93

As expected from the analysis made in Chapter 5, the proposed algorithm outperforms
both search algorithms. However, the TRs and speed–ups obtained for the proposed algo-
rithm are lower than the ones obtained when using the P frames scenario. This behaviour
occurs because the reference algorithms can save computation due to the fact that there
are multiple reference frames configured. The execution time of the proposed algorithm is
almost constant (it is content independent), while the reference search algorithms are con-
tent dependent. The FS algorithm is implemented using an early–out termination which is
able to skip some search area positions based on the cost obtained for previously checked
positions, and the UMHexagonS algorithm can carry out less algorithm iterations.

On the other hand, the TRs and speed–ups obtained for the complete H.264/AVC
encoder are greater than the ones obtained when using the P frames scenario because the
percentage of time spent by the ME module is greater.

The proposed algorithm obtains a speed–up of over 44x (TR of 97.74%) on average,
which means a speed–up of over 22x (TR of 95.53%) for the complete H.264/AVC encoder,
when compared with the FS algorithm. Also, the proposed algorithm obtains a speed–up of
over 2.7x (TR of 63.32%) on average, which means a speed–up of nearly 2x (TR of 48.23%)
for the complete H.264/AVC encoder, when compared with the UMHexagonS algorithm.
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RD results

Table 6.5 shows the ∆bit rate and ∆PSNR results of our proposed H.264/AVC encoder
when coding five 3D stereo full HD video sequences. As in the previous table, the proposed
algorithm is tested against the two above–mentioned search algorithms implemented by the
H.264/AVC reference encoder.

Table 6.5: RD results of the proposed encoder. I, P and B frames.

H.264/AVC JM 17.2 Stereo High profile – Search range = 32

Full search UMHexagonS

Sequence ∆bit rate (%) ∆PSNR (dB) ∆bit rate (%) ∆PSNR (dB)

Beergarden 2.21 -0.069 -10.21 0.354

Cafe 2.64 -0.058 -9.04 0.224

Car park -0.07 0.002 -5.63 0.149

Hall 6.96 -0.125 -9.71 0.182

Street 1.55 -0.033 -7.26 0.178

Average 2.66 -0.057 -8.37 0.217

Figure 6.7 shows the RD graphic results obtained when using the reference algorithms
(FS and UMHexagonS) and when using the proposed approaches, for different 3D stereo
sequences in 1080p format, from a value of 28 to 40 for QP. For clarity the RD graphs
are split into two sub–figures. As can be seen from the figure, the PSNR versus bit rate
obtained with the proposed encoder is slightly better than the results obtained for the P
frames scenario when compared with the UMHexagonS algorithm, and slightly worse when
compared with the FS algorithm.

(a) Part I (b) Part II

Figure 6.7: RD graphic results of the proposed encoder. I, P and B frames.
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The RD analysis when using the P and B frames scenario is similar to the one obtained
when analysing the P frames scenario. However, when compared with the FS algorithm
the bit rate increments and PSNR losses are slightly greater; when compared with the
UMHexagonS algorithm the bit rate decrements and PSNR gains are also slightly greater.

Power and energy results

Table 6.6 shows the average power, time and energy consumed when coding one mini
GOP (18 frames, 9 frames per view) for the complete test computer when coding five 3D
stereo 1080p sequences. The first main column shows these results for the H.264/AVC
encoder using the FS algorithm, the second main column shows them for the H.264/AVC
encoder using the UMHexagonS algorithm and the third main column shows them for the
H.264/AVC encoder using the proposed algorithm. Additionally, Table 6.6 includes two
columns showing by how many times the proposed algorithm consumes less energy than
the reference algorithms (FS and UMHexagonS).

Table 6.6: Energy consumption for coding a GOP. I, P and B frames.

H.264/AVC JM 17.2 Stereo High profile – Search range = 32

Full search UMHexagonS Proposal

Sequence Power Time Energy Power Time Energy Power Time Energy Ratio Ratio

(W) (s) (kJ) (W) (s) (kJ) (W) (s) (kJ) FS UMHS

Beergarden 184.42 1,748.44 322.45 181.58 101.84 18.49 282.31 52.13 14.72 21.91 1.26

Cafe 185.98 1,248.06 232.11 182.54 94.21 17.20 288.99 51.32 14.83 15.65 1.16

Car park 186.18 1,508.51 280.85 182.77 90.83 16.60 293.46 51.22 15.03 18.68 1.10

Hall 185.33 1,318.38 244.34 182.78 89.88 16.43 294.30 50.83 14.96 16.33 1.10

Street 184.69 1,671.97 308.80 182.52 91.76 16.75 295.46 51.38 15.18 20.34 1.10

Average 185.32 1,499.07 277.71 182.44 93.70 17.09 290.90 51.38 14.94 18.58 1.14

On average, the energy consumption for the GPU–based encoder is 18.58 times better
than for the H.264/AVC encoder using the FS algorithm, and is 1.14 times better than for
the H.264/AVC encoder using the UMHexagonS algorithm. In comparison with the results
obtained when using the P frames scenario, the energy savings are greater. This behaviour
is due to the fact that the speed–ups obtained for the complete H.264/AVC encoder are
bigger than the ones obtained when using the P frames scenario because the percentage
of time spent by the ME module is greater. Note that there is a bit more difference in the
average power consumption between the reference encoder (180-185 W) and the proposed
GPU–based encoder (290 W), and the reason is that the GPU is in execution about 50%
of the total encoding time.

Figure 6.8 shows the power consumption over time for the complete test computer when
coding the Beergarden sequence for both the H.264/AVC encoder using the FS algorithm
and for the H.264/AVC encoder using our proposed algorithm. Note that only an extract



6.3 Performance evaluation 143

of the complete graph is shown in order to analyse in detail the power consumption. The
H.264/AVC encoder using the UMHexagonS algorithm is not included in the graph since
its power consumption is almost the same as the one obtained for the H.264/AVC using
the FS algorithm, but the execution time is shorter.

Figure 6.8: Power consumption graphic results of the proposed encoder. I, P and B frames
of Beergarden sequence.

When the encoder process begins, both encoders consume the same power (180-185
W), but when the GPU starts working the power consumption of the proposed encoder
increases, having a power consumption of around 325-375 W (see power consumption peaks
in Figure 6.6). 17 power consumption peaks can be identified in Figure 6.8 since in the
configured GOP pattern there are 1 I frame, and 17 P and B frames where the proposed
algorithm is executed. The first 3 power consumption peaks correspond to the execution of
P frames and are thinner than the others, which correspond to the execution of B frames.
The execution time of the algorithm developed for P frames is considerably shorter than
the one developed for B frames.
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6.4. Conclusions

In order to reduce the high complexity of the H.264/AVC JM 17.2 reference encoder,
this chapter proposed a GPU–based inter prediction algorithm developed for 3D video
sequences. The proposed algorithm uses the algorithms presented in previous chapters,
but a new MVP calculation is needed.

The aim of this chapter has been to obtain as much coding efficiency as possible when
encoding 3D video sequences. For this purpose, two different ways of calculating the MVPs
are presented, since the proposed algorithms eliminate two different kinds of redundancies
(temporal and inter–view).

The conclusions regarding TR, RD performance and energy savings are similar to the
ones presented in previous chapters.



Chapter7
Conclusions and Future Work

THIS chapter concludes the thesis. Firstly, we will present the main conclusions which
can be drawn from this thesis. Afterwards, we discuss which tasks could be developed

as future work. Finally, we provide the list of the publications that have been derived from
the thesis.

7.1. Conclusions

Several conclusions have been drawn in the course of this thesis. In the following, the
most relevant conclusions are stated:

First of all, different GPU architectures were analysed in detail, taking into account
different GPU manufacturers such as NVIDIA and ATI/AMD. In this thesis, NVIDIA
GPUs were chosen, since they can be programmed using CUDA C, which is a C–
based high level programming language designed to maintain a low learning curve
for programmers familiar with standard C. NVIDIA GPUs can be programmed using
other high level programming languages such as OpenCL, but CUDA is the best way
to exploit the GPU capabilities.

Once the GPU architecture has been selected, a deep analysis of the H.264/AVC
standard was made, paying special attention to the encoder side. The analysis focused
on whether the inter prediction module is the one that best fits the GPU philosophy,
obtaining a positive response. The inter prediction module has less data dependencies
than other modules such as the intra prediction module, and does not use many
divergent branch instructions. Moreover, the inter prediction module is the most
time consuming module of an H.264/AVC encoder.

In Chapter 4, an inter prediction algorithm developed for P frames is presented, im-
plementing both the IME and FME algorithms on the GPU. The IME algorithm
reuses the motion information calculated for the smallest MB sub–partition (4x4) to

145
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obtain the motion information of the other higher MB partitions and sub–partitions.
The algorithm uses data reusing techniques and is designed to exploit GPU capabil-
ities. The algorithm is evaluated using the Baseline profile of the H.264/AVC JM
17.2 reference encoder, obtaining the following main results:

• The proposed algorithm obtains for the complete encoder a time reduction of
over 84% when compared with the execution of the Full Search algorithm and
of over 40% when compared with the execution of the UMHexagonS algorithm.

• The proposed algorithm achieves negligible RD drop penalties when compared
with the Full Search algorithm, and surpasses the coding efficiency when com-
pared with the UMHexagonS algorithm.

• The complete test computer using the proposed algorithm consumes less energy
than when using the reference algorithms. The energy consumption of the GPU–
based encoder ranges from 4 to 25 times better than when compared with the
execution of the Full Search algorithm, and is around 1.4 when compared with
the execution of the UMHexagonS algorithm.

• Additionally, the proposal is tested against related proposals. In a first section,
it is tested against proposals that do not use a GPU to accelerate the inter
prediction module, outperforming their timing results and equalling their coding
efficiency. On the other hand, in a second section, it is tested against one
proposal that uses a GPU to accelerate the inter prediction module, equalling
its best timing results and outperforming its coding efficiency.

In Chapter 5, an inter prediction algorithm for B frames is presented. The algorithm
is an extension of the one previously presented for P frames, using similar data
reusing techniques. However, for bi–directional prediction it is not possible to use the
motion information of the smallest MB sub–partition to obtain that of other higher
MB partitions or sub–partitions, since the opposite blocks of each MB partition and
sub–partition may be different. The algorithm is evaluated using the Main profile of
the H.264/AVC JM 17.2 reference encoder, obtaining the following results:

• The proposed algorithm obtains for the complete encoder a time reduction of
over 96% when compared with the execution of the Full Search algorithm, and
of over 55% when compared with the execution of the UMHexagonS algorithm.

• The proposed algorithm achieves acceptable RD drop penalties when com-
pared with the Full Search algorithm, and surpasses the coding efficiency of
the UMHexagonS algorithm.

• The complete test computer using the proposed algorithm consumes less energy
than when using the reference algorithms. The energy consumption of the GPU–
based encoder is around 30 times better when compared with the execution of
the Full Search algorithm, and is around 1.7 times better when compared with
the execution of the UMHexagonS algorithm.
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• Additionally, the proposal is tested against one related proposal. It is tested
against one proposal that does not use a GPU to accelerate the inter prediction
module, outperforming its timing results and equalling its coding efficiency.

In Chapter 6, an inter prediction algorithm for 3D stereo video sequences is presented.
The algorithm presented in this chapter uses the ones presented in previous chapters,
but they are adapted to a 3D scenario. The algorithms were adapted to remove
temporal and inter–view redundancies.

The hardware of NVIDIA GPUs has been continuously evolving during the develop-
ment of this thesis. As a consequence, the proposals have evolved to exploit their po-
tential as much as possible. In an early stage of this thesis an old NVIDIA 8800GTX
was used, whose compute capability was 1.1. Later, an NVIDIA GTX285 was used,
whose compute capability was 1.3. Finally, an NVIDIA GTX480 is used to obtain
the performance results included in this thesis. GTX480 is based on the Fermi archi-
tecture, which provides some improvements in comparison with previous non–Fermi
GPUs.

7.2. Future Work

The work that we have presented in this thesis can be expanded in several ways. In
the following, we present some research lines that could be followed in the future:

To port the proposals to other high level programming languages that execute across
heterogeneous platforms. The thesis was implemented using CUDA, but as has been
mentioned above, CUDA is not the only way of programming GPUs. There are other
high level programming languages such as OpenCL, which are platform independent
and can be executed on ATI/AMD GPUs and even on the CPU. CUDA programs
can only be executed on NVIDIA GPUs.

To upgrade the GPU used. During the last few months of the development of this the-
sis, NVIDIA released a new GPU core architecture called Kepler. The Kepler archi-
tecture redesigns again the GPU hardware to provide better performance. NVIDIA
GPUs are backward compatible (the proposals can be executed on this new core
architecture), but an analysis of this new architecture is needed to obtain all its
potential.

To use multiple GPUs. The algorithms are implemented for execution on a single
GPU, so extending the algorithms for using on multiple GPUs may be a good op-
tion to further increase the time reductions obtained without affecting the encoding
efficiency.

To consider other H.264/AVC modules. At the beginning of this thesis, the ME
module was identified as the most suitable for execution on a GPU, since it is the
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most time consuming module of an H.264/AVC encoder and fits well with the GPU
philosophy. However, there are other modules that are less time consuming, but after
applying the proposals described in this thesis have become the most time consuming
modules. Examples of these modules are the intra prediction and the de–blocking
filter modules.

To consider other search algorithms. The starting point of this thesis is the Full
Search algorithm. However, in the literature other search algorithms can be found.
These algorithms include the UMHexagonS [Rahman and Badawy 05] and the EPZS
[Tourapis 02] algorithms. These algorithms are known as fast search algorithms and
do not have a regular search pattern, as Full Search has, offering new challenges for
GPU computing.

To adapt the proposals to make them work with RD–Optimization, constant bit rate
and weighted prediction. These options can be activated in the encoder configuration
file, but they have not been taken into account during the development of this thesis.
The proposals have been designed to work in SAE mode. A deeper analysis of these
mechanisms and some algorithm modifications can be made to improve the coding
efficiency of the proposed algorithms.

To adapt the proposals to make them work for other standards. The proposals of
this thesis have been developed for the H.264/AVC standard, but at the moment of
presenting this thesis a new standard is near to being finalized. This future standard
will be known as H.265/HEVC, and will have an even more complex ME module
than the one defined for the H.264/AVC standard.

7.3. Publications

The proposals described in this thesis have led to the publication of several journal
articles and participation in a number of conferences. In the following, we list all these
publications, providing a brief description of the main contributions.

7.3.1. Journals

1. H.264/AVC inter prediction for heterogeneous computing systems

Rafael Rodŕıguez Sánchez; José Luis Mart́ınez Mart́ınez; Gerardo Fernández
Escribano; José Manuel Claver Iborra; José Luis Sánchez Garćıa

Journal: The Journal of Supercomputing

Year: 2012 On–line

Impact factor: 0.578 (JRC 2011)

Ranking: 68/99 in Computer Science, Theory and Methods category



7.3 Publications 149

This paper [Rodŕıguez-Sánchez et al. 12a] presents the IME algorithm developed for
P frames and aimed at non–Fermi GPUs. It is an extension of the one presented
at the CMMSE 2011 conference, paying special attention to the power and energy
consumption of the H.264/AVC encoder.

2. Optimizing H.264/AVC interprediction on a GPU-based framework

Rafael Rodŕıguez Sánchez; José Luis Mart́ınez Mart́ınez; Gerardo Fernández
Escribano; José Luis Sánchez Garćıa; José Manuel Claver Iborra; Pedro Dı́az
Sánchez

Journal: Concurrency and Computation: Practice and Experience

Year: 2012 On–line

Impact factor: 0.636 (JRC 2011)

Ranking: 64/99 in Computer Science, Theory and Methods category

This paper [Rodŕıguez-Sánchez et al. 12e] describes the different optimizations car-
ried out to obtain the final IME algorithm developed for P frames using Fermi GPUs.
The final version described in this paper is the one presented in this thesis in Chapter
4.

3. H.264/AVC inter prediction on accelerator-based multi-core systems

Rafael Rodŕıguez Sánchez; José Luis Mart́ınez Mart́ınez; Gerardo Fernández
Escribano; José Luis Sánchez Garćıa; José Manuel Claver Iborra

Journal: Multimedia Tools and Applications

Year: 2012 On–line

Impact factor: 0.617 (JRC 2011)

Ranking: 65/99 in Computer Science, Theory and Methods category

This paper [Rodŕıguez-Sánchez et al. 12d] presents the complete inter prediction
algorithm developed for P frames focusing on the Fermi GPU, including both IME
and FME. The results of this article are a sub–set of the ones presented in Chapter
4.

7.3.2. Journals under review

1. 3D High Definition video coding on a GPU–based heterogeneous system

Rafael Rodŕıguez Sánchez; José Luis Mart́ınez Mart́ınez; Jan De Cock; Ger-
ardo Fernández Escribano; Bart Pieters; José Luis Sánchez Garćıa; José Manuel
Claver Iborra; Rik Van de Walle
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Journal: Computers and Electrical Engineering (selected at ISPA2012 confer-
ence)

Impact factor: 0.837 (JRC 2011)

Ranking: 26/50 in Computer Science, Hardware and Architecture category

This paper was selected to extend the proposal presented at the ISPA 2012 conference
for 3D video sequences. It includes a more accurate way of obtaining the encoding
costs which uses different Hadamard transforms.

2. Adapting Hierarchical Bidirectional Inter Prediction on a GPU—based
Platform for 2D and 3D H.264 Video Coding

Rafael Rodŕıguez Sánchez; José Luis Mart́ınez Mart́ınez; Jan De Cock; Ger-
ardo Fernández Escribano; Bart Pieters; José Luis Sánchez Garćıa; José Manuel
Claver Iborra; Rik Van de Walle

Journal: EURASIP Journal on Advances in Signal Processing

Impact factor: 0.811 (JRC 2011)

Ranking: 151/245 in Engineering, Electrical and Electronic category

Status: minor revisions

This paper shows the complete inter prediction algorithm developed for B frames
focusing on Fermi GPUs. The results of this article are a sub–set of the ones presented
in Chapter 5 and in Chapter 6.

7.3.3. Conferences

1. Accelerating H.264 Inter Prediction in a GPU using CUDA

Rafael Rodŕıguez Sánchez; José Luis Mart́ınez Mart́ınez; Gerardo Fernández
Escribano; José Manuel Claver Iborra; José Luis Sánchez Garćıa

Conference: IEEE International Conference on Consumer Electronics (ICCE
2010)

ISBN: 978-1-4244-4314-7

Las Vegas (EEUU), January 2010

This paper [Rodŕıguez-Sánchez et al. 10] presents the initial IME algorithm ap-
proach developed for P frames. The proposed algorithm does not deal with the MVP
calculation and was developed for a non–Fermi GPU (GTX285).

2. H.264/AVC Full-pixel Motion Estimation for GPU Platforms

Rafael Rodŕıguez Sánchez; José Luis Mart́ınez Mart́ınez; Gerardo Fernández
Escribano; José Manuel Claver Iborra; José Luis Sánchez Garćıa
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Conference: The 11th International Conference on Computational and Mathe-
matical Methods in Science and Engineering (CMMSE 2011)

ISBN: 978-84-614-6167-7

Benidorm, Alicante (Spain), June 2011

This paper [Rodŕıguez-Sánchez et al. 11a] describes the final IME algorithm devel-
oped for non–Fermi GPUs. The proposed algorithm deals with the MVP calculation
and has several optimizations in comparison with the one presented at the ICCE
2010 conference.

3. Reducing Complexity in H.264/AVC Motion Estimation by using a GPU

Rafael Rodŕıguez Sánchez; José Luis Mart́ınez Mart́ınez; Gerardo Fernández
Escribano; José Manuel Claver Iborra; José Luis Sánchez Garćıa

Conference: IEEE 13th International Workshop on Multimedia Signal Process-
ing (MMSP 2011)

ISBN: 978-1-4577-1433-7

Hangzhou (China), October 2011

This paper [Rodŕıguez-Sánchez et al. 11b] describes the initial IME approach devel-
oped for Fermi GPUs. The proposed algorithm deals with the MVP calculation and
includes an evaluation using multiple reference frames.

4. A Fast GPU-Based Motion Estimation Algorithm for H.264/AVC

Rafael Rodŕıguez Sánchez; José Luis Mart́ınez Mart́ınez; Gerardo Fernández
Escribano; José Luis Sánchez Garćıa; José Manuel Claver Iborra

Conference: The 18th International Conference in Multimedia Modeling (MMM
2012). Lecture Notes in Computer Science vol. 7131

ISBN: 978-3-642-25958-6

Klagenfurt (Austria), January 2012

This paper [Rodŕıguez-Sánchez et al. 12b] presents a complete GPU–based inter
prediction algorithm developed for P frames, including both IME and FME. The al-
gorithm is developed for Fermi GPUs and includes some optimizations in comparison
with the IME presented at the MMSP 2011 conference. This proposal is described
in Chapter 4

5. A Fast GPU-Based Motion Estimation Algorithm for HD 3D Video Cod-
ing

Rafael Rodŕıguez Sánchez; José Luis Mart́ınez Mart́ınez; Gerardo Fernández
Escribano; José Luis Sánchez Garćıa; José Manuel Claver Iborra
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Conference: The 10th IEEE International Symposium on Parallel and Dis-
tributed Processing with Applications (ISPA 2012)

ISBN: 978-0-7695-4701-5

Leganés, Madrid (Spain), July 2012

This paper [Rodŕıguez-Sánchez et al. 12c] shows the inter prediction algorithm de-
veloped for 3D video sequences described in Chapter 6. The paper explores three
different solutions to eliminate the temporal and inter–view dependencies until the
final solution is achieved.

7.3.4. Other publications

1. A GPU-Based DVC to H.264/AVC Transcoder

Alberto Corrales Garćıa; Rafael Rodŕıguez Sánchez; José Luis Mart́ınez Mart́ı-
nez; Gerardo Fernández Escribano; José Manuel Claver Iborra; José Luis Sánchez
Garćıa

Conference: International Conference on Hybrid Artificial Intelligence Systems
(HAIS 2010). Lecture Notes in Computer Science vol. 6077

ISBN: 978-3-642-13802-7

San Sebastian (Spain), June 2010

This paper [Corrales-Garćıa et al. 10] presents a GPU-based DVC to H.264/AVC
transcoder. The transcoding process is accelerated in both parts of the transcoder.
The DVC part is accelerated by using a multi–core CPU, providing some information
to the H.264/AVC encoder (MVPs). Then, by using the MVPs previously obtained
in the DVC part of the transcoder, the IME algorithm presented at the ICCE 2010
conference is carried out.



AppendixA
Additional evaluation

In this chapter, an extra evaluation of our proposals is presented. First of all, the
encoding conditions and the metrics used to evaluate the proposals are described. Then,
the evaluation is carried out. The aim of this appendix is to evaluate the proposals using
the common test conditions defined for the future H.265/HEVC standard. These common
test conditions include different tools, such as RD–Optimization and Weighted prediction,
which have not been taken into consideration when developing the algorithms presented in
this thesis.

A.1. Encoding conditions

In order to further evaluate the proposals presented in this thesis an extra scenario is
configured for testing. The H.264/AVC JM 17.2 encoder is configured to simulate, as far as
possible, the encoding conditions of the future H.265/HEVC standard. For this purpose,
the H.264/AVC JM encoder is configured using the parameters specified in [JCT-VC 12]
and an HM–like configuration file is used as the base configuration. The base configu-
ration is the one called Low–delay B – High efficiency in [JCT-VC 12], and is provided
jointly with the latest H.264/AVC JM encoder releases. No modifications are made to
the base configuration except that the search algorithms for the comparisons are the FS
and UMHexagonS algorithms. In what follows a brief description of the configuration is
provided:

High profile is used

The number of reference frames is set to 4 in both directions (forward and backward)
for B frames.

RD–Optimization is activated.

Weighted prediction is activated.
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The GOP pattern is one I frame followed by 31 B frames.

The tests are carried out with popular sequences in Quarter Wide Video Graphics
Array (QWVGA) format (416x240 pixels), in Wide Video Graphics Array (WVGA)
format (832x480 pixels) and in 720p format (HD, 1280x720 pixels). The sequences
used are the ones specified in [JCT-VC 12], which are grouped into different Classes.
QWVGA video sequences belong to class D, WVGA video sequences belong to class
C and 720p video sequences belong to class E. Note that all classes defined in the
document are not evaluated, since the evaluation made in this appendix ranges from
low to high resolutions, providing an appropriate overview of the proposed algorithms.

The search range is set to 32, which means 4096 positions inside the search area of
each MB partition.

In order to make a proper comparison, an unmodified H.264/AVC JM 17.2 reference en-
coder is run on the same machine as the H.264/AVC JM using the proposed algorithms,
with the same encoding configuration and with no calls to the GPU. The development
environment, including the GPU, is the same as that used in the evaluation of Chapter 4.

A.2. Metrics

Different metrics have been used to evaluate the proposals. These metrics are the TR
and speed–ups, which have been previously defined in Section 4.3.2. Moreover, in order to
analyse the encoding efficiency of the proposed algorithms, [JCT-VC 12] recommends two
RD cost metrics. The document is delivered jointly with an evaluation sheet on which two
RD metrics are calculated. This evaluation shows the one labelled as piecewise cubic since
the results for both metrics are quite similar.

A.3. Results

This section presents the results obtained when coding different video sequences, divided
into two main categories: timing results and RD results.

Timing results

From Table A.1 to Table A.3 the timing results of the proposed algorithms for coding
the analysed video sequences are presented. The results are mainly divided depending on
the reference algorithm used for testing (FS and UMHexagonS); and are further divided
showing the timing results for the complete H.264/AVC encoder and focusing exclusively
on the proposed algorithm.
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Table A.1: Timing results of the proposed encoder for class C.

H.264/AVC JM 17.2 High profile – Search range = 32

Full search UMHexagonS

ME module Complete encoder ME module Complete encoder

Sequence TR (%) speed–up TR (%) speed–up TR (%) speed–up TR (%) speed–up

BasketballDrill 98.94 94.57 91.34 11.55 80.08 5.02 32.09 1.47

BQMall 98.82 84.55 90.40 10.42 82.18 5.61 35.09 1.54

PartyScene 99.12 113.65 92.11 12.67 81.78 5.49 32.26 1.48

RaceHorses 99.21 126.91 93.27 14.85 86.11 7.20 41.33 1.70

Average 99.02 102.36 91.78 12.16 82.54 5.73 35.19 1.54

Table A.2: Timing results of the proposed encoder for class D.

H.264/AVC JM 17.2 High profile – Search range = 32

Full search UMHexagonS

ME module Complete encoder ME module Complete encoder

Sequence TR (%) speed–up TR (%) speed–up TR (%) speed–up TR (%) speed–up

BasketballPass 99.05 104.76 92.33 13.04 83.54 6.08 37.91 1.61

BlowingBubbles 98.99 99.23 91.36 11.58 79.82 4.96 30.35 1.44

BQSquare 98.90 90.52 90.45 10.47 78.73 4.70 29.01 1.41

RaceHorses 99.17 120.67 93.09 14.47 85.42 6.86 40.59 1.68

Average 99.03 102.68 91.81 12.21 81.88 5.52 34.46 1.53

Table A.3: Timing results of the proposed encoder for class E.

H.264/AVC JM 17.2 High profile – Search range = 32

Full search UMHexagonS

ME module Complete encoder ME module Complete encoder

Sequence TR (%) speed–up TR (%) speed–up TR (%) speed–up TR (%) speed–up

FourPeople 97.42 38.69 81.16 5.31 63.94 2.77 17.94 1.22

Johnny 97.23 36.12 80.45 5.12 62.57 2.67 17.59 1.21

KristenAndSara 97.24 36.26 80.38 5.10 63.84 2.77 18.18 1.22

Average 97.30 36.99 80.66 5.17 63.45 2.74 17.91 1.22

For classes C and D, when compared with the FS algorithm, the speed–ups of the
algorithm range from 84x to 126x, which means that the speed–ups for the complete
H.264/AVC encoder range from 10x to 14x. However, for class E they are smaller because
these sequences have low motion and the reference algorithms spend less time to encode
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them. On the other hand, for classes C and D, when compared with the UMHexagonS
algorithm, the speed–ups of the algorithm range from 4.7x to 7.2x, which means that the
speed–ups for the complete H.264/AVC encoder range from 1.4x to 1.7x. The behaviour
for class E is similar to the one shown when compared with the FS algorithm, obtaining
smaller speed–ups.

RD results

From Table A.4 to Table A.6 the RD results of the proposed algorithms for coding
the analysed video sequences are presented. Positive values mean that a higher number of
bits are required to encode each color component for a certain PSNR value, and negative
values mean that a smaller number of bits are required to encode each color component
for a certain PSNR value.

Table A.4: RD results of the proposed encoder for class C.

H.264/AVC JM 17.2 High profile – Search range = 32

Full search UMHexagonS

Sequence Y (%) U (%) V (%) Y (%) U (%) V (%)

BasketballDrill 3.9 4.2 4.1 -2.7 -3.2 -3.5

BQMall 5.8 4.9 5.5 -2.4 -2.8 -2.9

PartyScene 5.0 3.9 3.9 1.6 0.7 0.3

RaceHorses 6.9 7.2 7.3 -3.0 -3.6 -3.2

Average 5.4 5.0 5.2 -1.6 -2.2 -2.3

Table A.5: RD results of the proposed encoder for class D.

H.264/AVC JM 17.2 High profile – Search range = 32

Full search UMHexagonS

Sequence Y (%) U (%) V (%) Y (%) U (%) V (%)

BasketballPass 4.9 4.2 4.8 0.1 -1.0 -0.6

BlowingBubbles 5.9 3.5 4.2 3.1 1.6 1.7

BQSquare 4.1 2.3 3.5 1.4 1.3 1.4

RaceHorses 6.9 6.0 5.9 0.4 -0.8 -0.5

Average 5.4 4.0 4.6 1.3 0.3 0.5
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Table A.6: RD results of the proposed encoder for class E.

H.264/AVC JM 17.2 High profile – Search range = 32

Full search UMHexagonS

Sequence Y (%) U (%) V (%) Y (%) U (%) V (%)

FourPeople 2.4 1.7 2.1 0.3 -0.1 0.1

Johnny 6.3 3.3 2.6 0.7 1.6 1.4

KristenAndSara 4.5 5.8 5.3 -0.5 0.3 0.0

Average 4.4 3.6 3.3 0.2 0.6 0.5

In general, the results show that the proposed algorithms have a lower encoding effi-
ciency than the FS algorithm, reporting average values ranging from 3.3% to 5.4%; the
results also show that for some video sequences the proposed algorithms surpass the en-
coding efficiency obtained by the UMHexagonS algorithm, while not for others, reporting
average values ranging from -2.3% to 1.3%.

RD degradation, when it occurs, is negligible if the computational savings are taken
into account. Note that in the configuration file some mechanisms that are not taken into
account when developing the proposed algorithms are activated, affecting RD performance.
These mechanism are RD-optimization and weighted prediction, which are left as future
work.
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[Rodŕıguez-Sánchez et al. 12a] R. Rodŕıguez-Sánchez, J.L. Mart́ınez, G. Fernández-
Escribano, J.M. Claver, J.L. Sánchez: H. 264/AVC inter prediction for heterogeneous
computing systems. The Journal of Supercomputing, pp. 1–10, 2012.



166 BIBLIOGRAPHY
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[Rodŕıguez-Sánchez et al. 12c] R. Rodŕıguez-Sánchez, J.L. Mart́ınez, G. Fernández-
Escribano, J.L. Sánchez, J.M. Claver: A Fast GPU-Based Motion Estimation Algo-
rithm for HD 3D Video Coding. In IEEE 10th International Symposium on Parallel and
Distributed Processing with Applications (ISPA ’12), pp. 166 –173, July 2012.
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