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Abstract

The problem of calibrating computer models that produce multivariate output is considered, with a

particular emphasis on the situation where the model is computationally demanding. The proposed

methodology builds on Gaussian process-based response-surface approximations to each of the

components of the output of the computer model to produce an emulator of the multivariate

output. This emulator is then combined in a statistical model involving field observations, which is

then used to produce calibration strategies for the parameters of the computer model. The results

of applying this methodology to a simulated example and to a real application are presented.

Keywords: Computer model, validation, Gaussian process, linear model of coregionalization,

Bayesian analysis.

1. Introduction

Computer models are implementations of sophisticated mathematical models that aim at re-

producing a particular real process. Before we can run these computer models, we have to specify

a vector of inputs which typically includes calibration parameters. Scientists are thus often inter-

ested in combining data obtained in computer model runs and in physical experiments to determine

estimates of these calibration parameters which make the output of the model “match” in some

sense the real process. This is what is meant by calibration of a computer model.

When a physical experiment is conducted to obtain field data, it is sometimes the case that

several (presumably correlated) measurements are taken. In the realm of the computer model, it is

also not uncommon that the output contains in fact a wealth of information, some of which can even

be considered irrelevant for the actual calibration problem at hand. Clearly, the evaluation of a

model depends on how one intends to use it, and as part of the calibration process one must specify

which particular aspect(s) of the output are of main interest. In practice, the spirit underlying

the specification of these aspects is often a mix of genuine practical interest and the need to keep
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the analysis feasible. This paper proposes methodology to address the following situation: one is

simultaneously interested in several univariate aspects of the output, but the joint calibration of

the computer model against these aspects is perceived as too difficult to tackle. In this situation, a

simplistic strategy would consider separate calibration exercises, one per univariate component of

the output. Besides being formally incorrect, the main drawback associated with this approach is

that it potentially produces one calibration strategy for each of the components considered. This

may result in an illusory perception of the quality of the computer model as a representation of

reality, as there may be calibration strategies which accommodate for the individual discrepancies

very well, but not one that does so globally. Also, there may be too much variability — or several

sensible calibration strategies — associated with calibrating each univariate output separately,

which may render the analyses inconclusive. By combining all sources of information, one may

be able to substantially reduce the uncertainty and pin down a particular calibration strategy.

Section 2 illustrates these ideas with a motivating example.

The purpose of the present article is to propose methodology to deal with the calibration of a

computer model that produces multivariate output by building on methodology already developed

for the univariate case. The main motivation is to produce methods that are computationally not

very demanding and hence have the potential to scale-up to more complicated problems. Although

the emulator we propose is valid in complete generality, the calibration methodology that we develop

in this paper is restricted to the case where only one configuration of the vector of controllable inputs

is exercised to obtain the field data. Possible extensions of this setup are discussed in Section 8.

1.1. Background

The approach to computer model calibration that we espouse is Bayesian and has roots in

Craig et al. (1996), Kennedy and O’Hagan (2001), Kennedy et al. (2002), Higdon et al. (2004), and

most directly in Bayarri et al. (2007b). It hinges on modeling the relationship between reality and

computer model output in a Bayesian fashion introducing the notion of bias, effectively combining

model and field data to produce estimates of the calibration parameters. A key ingredient of the

methodology is the use of Gaussian processes as priors for unknown functions. This technique

dates back at least to O’Hagan (1978) although its use in the realm of the computer model world

is more recent: Sacks et al. (1989) and Currin et al. (1991). The end result is a Gaussian process

response-surface approximation to the output of the computer model, and its associated measure of

uncertainty, which is sometimes called the ‘emulator’. This is a key component of the analysis, as

frequently the models are computationally very demanding and this precludes their direct evaluation

within Markov chain Monte Carlo algorithms. The construction of this emulator and its subsequent

integration in the calibration process clearly depends on the characteristics of the output. To give

a few examples, Bayarri et al. (2007b) and Higdon et al. (2004) deal with scalar output, Bayarri

et al. (2009) with functional output that is very smooth, Bayarri et al. (2007a) with very irregular

functional output. Higdon et al. (2008) utilizes a related approach to deal with high-dimensional
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output like images. The issue of emulating a computer model that exhibits nonstationary behavior

is dealt with by means of partitioning in Gramacy and Lee (2008a) and Gramacy and Lee (2008b).

Reichert et al. (2011) have recently proposed an emulator for dynamic models with application in

hydrology.

Methodological developments to directly model multivariate aspects of a computer model’s out-

put have been addressed in several papers, including Habib et al. (2007), Rougier (2008), McFarland

et al. (2008), Higdon et al. (2008), Higdon et al. (2010), Conti and O’Hagan (2010), Fricker et al.

(2010), Bhat et al. (2010) and Wilkinson (2010). In Section 4 we describe some of these approaches

in the common framework of the linear model of coregionalization (Gelfand et al., 2004).

1.2. Overview

The remainder of this paper is organized as follows: in Section 2 we use a simple example

to illustrate the drawbacks of the simplistic strategy of independent calibration analyses, one per

dimension of the multivariate output. Section 3 precisely describes the problem we want to address

and sets up the necessary notation. In Section 4 we describe previous contributions in the literature

to produce a multivariate emulator, highlighting the fact that they can all be seen as special cases

of the linear model of coregionalization. We also describe the approach that we propose in this

paper. The problem of embedding this emulator in a calibration setting is addressed in Section

5. Section 6 describes how we propose to go about implementing our calibration methodology in

practice, and Section 7 presents the results of applying it to a real application.

2. A motivating example

In order to highlight the drawbacks that may result from performing separate analyses to handle

responses that are multivariate in nature, we introduce the following example. Additionally, we

suggest how these problems can be addressed under the combined approach we propose. We skip

technical details and formal definitions, since these will be accurately presented in the remainder

of the paper in more general scenarios.

Suppose that the real process, depending on a scalar u, is the bivariate function yR(u) =

(yR1 (u), y
R
2 (u))

′, u ∈ (0, 0.5), where yR1 (u) = exp(−1.4u − 0.05/u) cos(7πu/2) and

yR2 (u) = 0.1 exp(−1.4u − 0.05/u)

[
−1.4 +

0.05

u2
cos(7πu/2) − 7π

2
sin(7πu/2)

]
.

The function yR1 (u) has been considered by Santner et al. (2003), by Joseph (2006) and, more

recently, by Liu et al. (2009) for illustrative purposes. Although essentially irrelevant for our

intended use of yR2 (u), this function was constructed as a small distortion of the first derivative of

yR1 (u) times the factor 0.1. This factor was imposed to allow both functions to have a similar scale.

As in Santner et al. (2003), we assume that the computer model that aims at reproducing the

first component of the real response is given by yM1 (u) = exp(−1.4u) cos(7πu/2), while we consider
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Figure 1: Left: yR
1 (u) (solid line) and y

M
1 (u) (dashed line). Right: yR

2 (u) (solid line) and y
M
2 (u) (dashed line).

its first derivative, that is,

yM2 (u) = 0.1 exp(−1.4u)

[
−1.4 cos(7πu/2) − 7π

2
sin(7πu/2)

]
,

for the second component of the real process. We show in Figure 1, by components, both the real

process and the computer model characterized by the functions described above.

We will treat the computer model yM (u) = (yM1 (u), yM2 (u))′ as unknown, and hence use

throughout the calculations a response-surface approximation to its output. The information nec-

essary to construct this approximation was obtained by evaluating the computer model at the set

of equally-spaced design points {0.05, 0.15, 0.25, 0.35, 0.45}. By treating u as a calibration input,

we want to simulate field experiments that will both allow us to estimate the “true value” of u

— which we henceforth denote by u⋆ —, and to estimate all other unknowns in the statistical

model. Let u⋆ = 0.2 be the “true value” of u; in this scenario, yR(u⋆) = (−0.346,−0.649)′ . We

now consider K = 7 simulated replicates of the field experiment, yF
k (u

⋆), k = 1, . . . ,K, where

yF
k (u

⋆) ∼ N2(y
R(u⋆),ΣF ), with

ΣF =

(
1/400 0.5/400

0.5/400 1/400

)
.

Notice that, in this situation, yM1 (u) = yR1 (u
⋆) has two possible solutions, u ∈ {0.185, 0.372};

similarly, the equation yM2 (u) = yR2 (u
⋆) has two roots, u ∈ {0.050, 0.194}. Consequently, the

posterior densities of u⋆ are potentially bimodal.

Firstly, we separately apply the univariate methodology in Bayarri et al. (2007b) to each of

the components. We represent the posterior densities obtained for u⋆ in Figure 2. Due to the

multimodality of the densities, the mean and median are not very meaningful as summaries of the

distributions. The two modes of u⋆, using the first component, are {0.186, 0.369} (the second being

the global maximum). The modes of the posterior density of u⋆ using the second component are

{0.051, 0.192} (again the second being the global maximum). In a situation like this, one is then

faced with the problem of how to combine the two conflicting analyses.
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Figure 2: Posterior density of u⋆ obtained from the independent analysis of each component of the output (left panel:
first component of the output; right panel: second component)

Next, we explicitly recognize the multivariate nature of the responses and apply the methodology

introduced in the present article to these data. We now obtain only one posterior distribution for

u⋆, represented in Figure 3, which results from combining all the available information. The idea

of producing a single calibration policy for the same quantity was the main motivation for this

research. The posterior distribution of u⋆ now has three modes, located at {0.006, 0.191, 0.354},
of which two of them, 0.006 and 0.354, barely concentrate any probability mass. One way of

interpreting this result is that the spurious modes are penalized by the multivariate approach since

they provide (comparatively) unreasonable predictions for one of the components. On the other

hand, the values for the calibration parameter that result in predictions that are close to the real

value for both of the components are strengthened in the joint analysis. Notice also how the

uncertainty about the calibration parameter decreases substantially in the combined analysis. By

combining model and field data in a statistical model, we can produce estimates of reality that take

into account both sources of information — the so-called bias-corrected prediction of Bayarri et al.

(2007b). For the separate and joint analyses, these are summarized in Table 1. Again, what stands

out is the decrease in uncertainty present in the conclusions when we move from the separate to

the joint analysis.
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Figure 3: Posterior density of u⋆ obtained from the combined analysis.

ŷR
1
(u⋆) ŷR

2
(u⋆)

Approach Mean 0.95% CI Mean 95% CI
Separate -0.372 (-0.621, -0.285) -0.673 (-1.030, -0.417)
Combined -0.353 (-0.373, -0.334) -0.661 (-0.690, -0.633)

Table 1: Bias-corrected prediction (see Bayarri et al. (2007b)) of reality. Posterior mean and 95% credible interval
for the bias-corrected prediction of yR(u⋆) = (−0.346,−0.649)′.

3. Formulation of the problem

We conduct a physical experiment on a real system to obtain noisy measurements of a p-

dimensional quantity of interest yR = (yR1 , . . . , y
R
p )

′. We denote the resulting replicate observations

by yF
k = (yFk1, . . . , y

F
kp)

′, k = 1, . . . ,K. In addition, we have access to a computer implementation

of a scientific model that purports to reproduce yR. Given u, a concrete value for a vector of

unknown characteristics of the real system, the model produces an output that we denote by

yM (u) = (yM1 (u), . . . , yMp (u))′. The goal is to perform inference on the value of u which makes the

output of the computer model as close as possible, in some sense, to the quantity yR. To achieve

that goal, we model the relationship between computer model output and real response by

yR = yM (u⋆) + b

where u⋆ is the “true value” of u. The object b is defined by subtraction, and is called the bias

or model discrepancy term, a central quantity in the calibration exercise. For a recent account on
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this notion see Goldstein (2010). Field measurements of the real response process are subject to

error, so we model the K replicates of the field observation independently as

yF
k | yM (u⋆), b ∼ Np(y

M (u⋆) + b,ΣF ) , k = 1, . . . ,K , (1)

where ΣF is a p× p positive definite matrix.

To estimate the unknowns in (1) we adopt a Bayesian approach. That entails using simulation

methods that require the evaluation of the likelihood that results from (1) a very large number

of times. This is incompatible with the fact that the evaluation of yM (u), for a single u, takes,

in many instances, several minutes. A solution to this problem, when p = 1, has been to treat

the computer model as an unknown and assign it a Gaussian process prior (see, e.g., Sacks et al.

(1989), Currin et al. (1991), Kennedy and O’Hagan (2001), Higdon et al. (2004), Bayarri et al.

(2007b) among many others.) The natural extension of this approach to the p > 1 case would be

to consider a p-dimensional Gaussian process prior. The difficulties associated with this extension

include the increase in computational complexity, the specification of cross-correlation functions

that are sufficiently flexible and yet are computationally tractable, and the need to construct new

software to deal, efficiently and accurately, with this class of stochastic processes. The linear model

of coregionalization can be thought of as a constructive definition of a class of multivariate Gaussian

processes. In the next section, we describe this model and its different uses that we encounter in

the literature in the emulation of computer models. We end by describing our own proposal.

4. Coregionalization emulators

Suppose that the computer model yM (z) is exercised at a set of design pointsDM = {z1, . . . ,zN},
and denote by yM

D the p × N matrix with column i equal to the corresponding observed yM (zi).

The input vector z is q-dimensional, and, in this section, may include a vector of controllable inputs

in addition to the vector of calibration inputs u. Once a prior model has been specified for yM (·),
we consider the conditional distribution

f(yM (z⋆) | yM
D ,θM ), (2)

where z⋆ is a generic input value and θM are unknown parameters. Strategies to use (2) as an

emulator of the computer model include placing a prior distribution on θM and performing a full

Bayesian analysis or, alternatively, finding an estimate of θM and plugging-in this estimate in the

conditional posterior (2). One key ingredient in constructing the emulator is therefore the choice

of the prior model for yM (·). Most of the models that have been used in the literature to construct

emulators of multivariate computer models can be seen as particular cases of the formulation

considered in Gelfand et al. (2004) called linear model of coregionalization. In a simpler form, this

model dates back to Matheron (1982).
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4.1. Linear model of coregionalization

The linear model of coregionalization (LMC) constructs a p-variate Gaussian process yM (·)
using as building blocks r independent univariate Gaussian processes wi(·). To be more precise, it

assumes that

yM (z) = µ(z) +Aw(z) + ǫ, (3)

where A is a p× r full column rank matrix with r ≤ p. The nugget effect ǫ is independent of w(·),
and ǫ ∼ N(0,D), with D a diagonal matrix. The mean of the multivariate process is specified

through a linear model (one for each component) on a known function of the input z, that is,

µ(z) =
(
Ip ⊗ h(z)′

)
η, h(z) ∈ R

s, (4)

where η is a (p×s)-dimensional vector of unknown parameters. The components wi(z) in w(z) are

independent Gaussian processes with zero mean, precision λM
i and correlation structure cMi (z,z⋆).

One commonly used correlation function in computer models is the separable power exponential

correlation function

cMi (z,z⋆) = exp


−

q∑

j=1

βM
ij |zj − z⋆j |2−αM

ij


 , (5)

with αM
ij ∈ [0, 1] and βM

ij > 0. We denote by αM
i and βM

i the corresponding vectors.

4.2. LMC in emulators of computer models

We now review some of the multivariate emulators proposed in the literature, with a particular

emphasis on highlighting how they fit into the common framework of the LMC. The emulator

proposed by Conti and O’Hagan (2010) is not introduced in the form (3) but by directly modeling

the multivariate process. In particular, they assume for yM (z) a p-dimensional Gaussian process

with mean µ(z) as in (4) with h(z) = (1,z′)′, and separable covariance

Cov(yM (z),yM (z⋆)) = cM (z,z⋆)ΣM

with power exponential correlation function cM (·, ·) with αM
ij ≡ 0. It can be easily seen that this

formulation is equivalent to the LMC model in (3) without the nugget effect, with cMi ≡ cM and

A being any matrix such that AA′ = ΣM . Note that the separability here is between the within-

location and across-location correlation. This separability assumption is central to the way the

authors implement the emulator. By assuming the objective (improper) prior π(η,ΣM | βM ) ∝
|ΣM |−(p+1)/2 they show that (η,ΣM ) can be analytically integrated out resulting in an emulator

(2) that, conditionally on βM , has a closed-form expression in terms of a matrix-variate Student

distribution. Since ΣM is integrated out, the arbitrariness in defining the matrix A is not a

matter of concern. Unfortunately, βM cannot be integrated out analytically and has to be either

integrated out numerically or replaced by an estimate. Any of these alternatives comes with a

computational challenge (in terms of integration or optimization) for which there is not, to the best
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of our knowledge, specific software readily available. In the specific context of spatial data, Bhat

et al. (2010) implement a similar emulator, assuming the same type of separable cross-correlation

structure. Another reference following the separability assumption is Rougier (2008).

Fricker et al. (2010) generalize Conti and O’Hagan (2010) by relaxing the separability assump-

tion and making direct use of the LMC formulation. That is, they use the model in (3) but, unlike

Conti and O’Hagan (2010), do not assume that the components of w(z) are identically distributed

independent Gaussian processes. In their implementation, firstly η is analytically integrated out

with respect to the improper prior π(η) ∝ 1. The remaining parameters (i.e., ΣM , λM and βM )

are replaced by marginal maximum likelihood estimates. Although the authors do not report full

details on how they perform such optimization task, our own experience with likelihood surfaces

arising from Gaussian processes suggests that the calculation of such estimates is a delicate prob-

lem. Once ΣM is determined, one is still left with the task of determiningA (recall that any A such

that AA′ = ΣM is valid). This ambiguity is resolved by defining A = PΛ1/2 where ΣM = PΛP ′

is the spectral decomposition of ΣM . It is then proved that, with this choice, the covariance matrix

is invariant under arbitrary reordering of the outputs.

Neither Conti and O’Hagan (2010), Fricker et al. (2010) nor Rougier (2008) embed their pro-

posed emulator in a statistical framework that allows for the calibration of the underlying computer

model. This is an important difference with the work in Bhat et al. (2010) which addresses the

calibration problem in the context of spatial data; and Habib et al. (2007) and Higdon et al. (2008)

(HH in what follows) which explicitly consider calibration in multivariate computer models with

high-dimensional output, for which a reduction in dimensionality is needed.

For reasons which have to do with the reduction in dimensionality, the model in HH is introduced

in a principal components setting. Nevertheless, it can be seen that the HH emulator can be

formulated as an LMC as in (3), with A being an p × r rectangular matrix with r << p. Notice

that this is where the reduction in dimensionality takes place: the p-dimensional process yM (z) is

mapped into the (lower) r-dimensional process w(z). As a consequence, a nugget effect is included

in the model in an effort to compensate for the inexact mapping. As in the approaches above, for

each of the components of w, HH use separable power exponential correlation functions as in (5)

and the mean is modeled as a constant (i.e., h(z) = 1). HH implement this particular LMC in

what may be perceived as a full Bayesian perspective, being the choice of priors a crucial aspect

of their approach. To facilitate this aspect of the analysis, HH define priors which are strongly

driven by preliminary data-based transformations of the model-run data. To be more specific, the

mean η is fixed at the sample mean ȳM and, more importantly, the matrix A is obtained from

the singular value decomposition yM
D − ȳM = P 1D1Q

′, defined as being formed by the r columns

of P 1D1/
√
N which correspond to the r largest eigenvalues of D1. This particular choice of A,

based on the observed data, justifies taking priors for the variances 1/λM
i centered at one, which

in the words of the authors “helps stabilize the resulting posterior distribution for the correlation

parameters” (correlation parameters are a one-to-one function of the βM
ij ).
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4.3. Our proposal

A central idea in our development is the combination of univariate emulators into a joint multi-

variate emulator in order to take advantage of the well-known univariate methodology, e.g. strate-

gies and software to compute maximum likelihood estimates for univariate Gaussian processes.

Examples of R packages which can be used to implement these univariate calculations include

Roustant et al. (2011) and Dancik (2011). The main motivation is to construct a multivariate

emulator which is easy to implement and, due to its simplicity, has the potential to scale-up to

more complicated problems.

The model we propose is based on the LMC and, although its origins and motivation are

different, it will in due course become apparent that it is strongly connected with the work of

HH. For the type of problems we have in mind, high dimensionality is not an issue and hence

our base model is (3) with r = p. The question of whether or not to include a nugget effect

when constructing emulators for deterministic models is a topic of current research. Although

traditionally small nuggets have been included in order to stabilize the numerical calculations,

some authors advocate their use based on other considerations. For a recent contribution on this

topic, see Gramacy and Lee (2011). Additionally, Pepelyshev (2010) shows that, contrary to what is

often stated, the inclusion of the nugget may have an important impact on the estimated correlation

structure. However, as will become apparent shortly, our approach is based on an argument that

only applies if the nugget effect is not included in the mode, and hence, in what follows, we have

ǫ = 0. Also, we assume a constant mean µ(z) = η (equivalently h(z) = 1) and we use correlation

functions of the type in (5) with no additional simplifications; in particular, we do not impose

the restriction αM
ij ≡ 0. We consider this to be a distinguishing feature of our methodology when

compared to the other LMC-based emulators described in this section.

In our implementation, the emulator is the predictive model (2) with the unknown parameters

A, η, αM , βM and λM replaced by estimates. What follows is a detailed description of how to

proceed to obtain these estimates.

If the constant matrix A is known, the model (3) can be equivalently written as yM (z) =

Awa(z) where now the components in wa(z) are independent Gaussian processes with variance

1/λM
i , correlation cMi (·, ·) and with mean equal to the corresponding element in ηa = A−1η. Note

that the no-nugget assumption is crucial here. We let wM
D = A−1yM

D denote the transformed model

data. With this reparameterization, the maximum likelihood estimates (λ̂M
i , η̂ai , β̂

M
i , α̂M

i ) can easily

be obtained using the available tools for univariate Gaussian processes (including specific software),

since now the likelihood function factorizes into p separate factors. Obviously, the estimates for

the original parameterization coincide with these except for the mean, that can be easily derived

using η = Aηa. At this point, what is left is the estimation of matrix A. We propose to estimate

A as the orthogonal matrix P appearing in the spectral decomposition (see e.g. Rencher, 1998) of

the observed variance matrix of the columns in yM
D , that is, of the sample yM (z1), . . . ,y

M (zN ).

The reasoning that justifies this choice is straightforward: with this matrix the pairwise observed
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covariance matrix between wa(zi) = A′yM (zi) and wa(zj) = A′yM (zj) (i 6= j) is diagonal.

The fact that the resulting estimated matrix A, which we denote by Â, is orthogonal has several

positive implications. For instance, it can be easily shown that the total variance is conserved in

the transformation, that is, Tr [Var(yM (z))] = Tr [Var(wa(z))], where “Tr” stands for the trace

of a matrix. This seems to be the simplest way of preventing potential identifiability problems

which may appear since in the original parameterization (3) the variance of the process can be

either introduced through the λM
i or through A. For additional attractive consequences of the

orthogonality of Â, see Fricker et al. (2010).

We are now in position to present our proposal for the emulator of a computer model producing

multivariate output. With the estimates described above, it can be easily seen that the conditional

predictive distribution (2) is

yM (z) | yM
D , θ̂

M ∼ Np(Â m̂(z), Â V̂ (z) Â
′
) (6)

where m̂(z) = (m̂i(z)
′, i = 1, . . . , p)′, V̂ (z) = diag(V̂i(z), i = 1, . . . , p), and

m̂i(z) = η̂ai + γ̂i(z)
′(Γ̂i)

−1(wa
i − η̂ai 1) , V̂i(z) =

1

λ̂M
i

− γ̂i(z)
′(Γ̂i)

−1γ̂i(z) ,

with 1 being the vector of ones, Γ̂i being the estimated covariance matrix corresponding to the trans-

formed model-run datawa
i = (wa

i (z1), . . . , w
a
i (zN ))′, and γ̂i(z) = (1/λ̂M

i )(ĉMi (z1,z), . . . , ĉ
M
i (zk,z))

′,

where ĉMi is the estimated correlation function. Recall that Â is obtained as follows: let PDP ′ be

the spectral decomposition of the variance matrix of yM
D ; then, Â = P .

4.4. Comparison with HH

Given the connection between our proposal and the work of HH we now stress the similarities

and advantages of our approach.

The methods developed by HH were motivated by (and tailored to address) high-dimensional

problems. For instance, HH’s prior specification for the parameters of the emulator puts consider-

able mass in areas of the parameter space that are associated with a small effect of the inputs in the

output. That may be true for the large-dimensional problems that motivate their approach, but

is arguably not true in general. Also, HH fix the roughness parameters of the power exponential

correlation function at 2, whereas we estimate these from the data. Apart from these differences,

it is clear that our proposed emulator and that in HH are based on connected arguments.

To understand the connection with the HH approach, first we have to consider their proposal

without the reduction in dimensionality (i.e., when r = p) and without the nugget effect. Recall

that HH estimate A as P 1D1/
√
N where P 1D1Q

′ is the singular value decomposition of yM
D − ȳM ,

which in this context coincides with the spectral decomposition (simply because r = p). The key

fact now is that the spectral decomposition of yM
D − ȳM and that of the observed variance matrix

of yM
D coincide, and hence our estimate of matrix A coincides with P 1 in the HH setting (again
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assuming no reduction in dimensionality). Loosely speaking, it could be said that we make use

of the spectral decomposition to derive a matrix for which independency holds reasonably (as HH

do) but without scaling by the observed variance (that is the difference between using Â = P in

our approach or Â = P 1D1/
√
N in HH’s approach). In our proposal, the marginal variances are

estimated by the maximum likelihood estimates of the independent Gaussian processes.

Having said that, we do not expect the results to substantially differ in practice. For instance,

for the example of Section 2, we have produced predictions of the first and second component of

that computer model using our approach and using the natural adaptation of HH to this setting

and the results essentially coincide.

However, our approach has the appealing of being computationally much simpler: our emulator

is a closed-form MLE plug-in predictive density, not involving a full Bayesian analysis with MCMC

techniques as in HH. Most importantly, as we have already stressed, our approach presents the

important advantage of using software widely available for the univariate case and, additionally,

does not require extensive transformations of the actual data.

4.5. A synthetic example to compare emulators

As we have mentioned, we expect our emulator to produce essentially the same results as the

emulator proposed in HH. Nevertheless, our emulator has the advantage of substantially reducing

the computational burden since it comes given in closed form (a multivariate normal density) while

the HH’s emulator is defined as a posterior distribution with an involved expression (explorable only

with simulation-based methods). This clearly supports our motivation of developing a methodology

that has the potential to scale up to more complicated problems.

To illustrate these arguments, we have compared HH’s emulator and ours in the context of

a mathematical model recently proposed by Guerrero et al (2011) which describes the dynamics

of subpopulations with respect to smoking habits in Spain. It is defined by a system of ordinary

differential equations whose solution gives the proportion of non-smokers, yM1 (z), normal smokers,

yM2 (z), and excessive smokers, yM3 (z) in a specific year t given initial conditions at certain year t0.

For illustrative purposes, we use t0 = 2003 and produce predictions for year t = 2009 and denote

yM (z) = (yM1 (z), yM2 (z), yM3 (z)). The response depends on a number of parameters that were

accurately estimated based on population level data published by the Spanish Statistic Institute

(e.g. like birth and death rate) and z, the transmission rate due to social pressure to adopt smoking

habit. The calibration of z is more difficult as there is no direct data about z, and this was one of

the main challenges this parameter was fitted by minimum least squared errors with some observed

data.

We observed the model responses in the design set DM = {0.1, 0.3, 0.5, 0.7, 0.9} and produce

predictions for yM (z⋆) with the corresponding confidence bands at the unobserved points z∗ =

{0.2, 0.8}. The results are summarized in Table 2
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z⋆ = 0.2 z⋆ = 0.8
Our proposal
yM
1
(u⋆) 0.5327(0.5327, 0.5327) 0.4780(0.4780,0.4780)

yM
2
(u⋆) 0.1563(0.1563, 0.1564) 0.1936(0.1936,0.1937)

yM
2
(u⋆) 0.1116(0.1115, 0.1116) 0.1221(0.1220,0.1221)

HH’s emulator
yM
1
(u⋆) 0.5327(0.5327, 0.5328) 0.4780(0.4780,0.4780)

yM
2
(u⋆) 0.1563(0.1563, 0.1564) 0.1936(0.1936,0.1937)

yM
2
(u⋆) 0.1116(0.1115, 0.1116) 0.1221(0.1220,0.1221)

Table 2: Predictions and 99% confidence bands based on our proposed emulator and HH’s emulator.

5. Calibration of computer models with multivariate response

In this section, we take advantage of the multivariate emulator constructed in the previous

section and construct a Bayesian model that will facilitate the calibration of computer models

producing multivariate output.

5.1. The basic setting

In our approach to the calibration problem, we use (6) as the prior distribution for yM (u) in

(1). This forms the basis of the proposed methodology which we detail below for a simple setting

and which we later show to be easily extendable to slightly more complicated scenarios. In order

to complete the specification of our statistical model, we need to postulate a prior on b, on the

covariance matrix ΣF , and on the unknown input u. It is natural and convenient to place a normal

prior on b. As the data provides information about b only indirectly, we parameterize this prior

parsimoniously: b | T ∼ Np(0,T ), where T = diag(τ2i , i = 1, . . . , p). We can think of the prior

specification as in

π(yM (u), b,T ,ΣF ,u) = π(yM (u), b | T ,ΣF ,u) π(T ,ΣF | u) π(u) ,

where the first factor on the right-hand side has already been specified; the last factor is typically

specified using expert knowledge. We model (T ,ΣF ) as a priori independent of u. Additionally,

the prior π(T ,ΣF ) = π(T | ΣF ) π(ΣF ) is constructed as follows: on ΣF , we place the objective

prior for a covariance matrix of a normal model that is recommended in Chang and Eaves (1990):

π(ΣF ) ∝ |ΣF |−
p+1

2 |I +ΣF ◦ (ΣF )−1|−1/2 (7)

where the symbol “◦” stands for the Hadamard product of matrices. For the τ2i , given the lack of

direct information provided by the data about these parameters, we propose the use of a variation

of a typical noninformative prior for the variance of a random effect:

π(τ2i | σ2
i ) ∝

1

τ2i + σ2
i /K

, (8)
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where we are denoting by σ2
i the elements of the main diagonal of ΣF . Hence, this prior is

appropriately scaled by σ2
i /K, the variance of the average of the replicate observations. We will

establish propriety of the ensuing posterior distribution, in a more general setting, in Theorem 5.1.

5.2. Hierarchical Scenarios

The setup of the previous section fits the example of Section 2. However, that setup can be

naturally extended to accommodate more complex situations. Namely, it is straightforward to

extend the methodology to the situation where the multivariate output is partitioned into groups

that can be argued to be conditionally independent given the value of the common set of calibration

inputs. That is, to the situation where we would perform independent analyses for each of the groups

if it were not for the fact that these need to share the same value of the vector of calibration inputs.

A referee has pointed out that the recent paper by Higdon et al. (2010) describes an application

concerning the calibration of cosmological parameters where this situation holds. The authors

combine two types of observations (namely large structure data of the universe and measures

of the cosmic microwave background) assuming conditional independence given a common set of

calibrating parameters of a cosmological mathematical model. Unlike us, they do not include a

bias term in the analysis.

Formally, we have yM (u) = (yM
1 (u), . . . ,yM

L (u))′ where each yM
ℓ (u) is p-dimensional (the

dimensions could actually differ, but that would only complicate the notation.) Similarly, the field

data are denoted as

yF
k = (yF

1k(u), . . . ,y
F
Lk(u))

′ , k = 1, . . . ,K

and are modeled independently as yF
ℓk(u) | yM

ℓ (u), bℓ ∼ Npℓ(y
M
ℓ (u) + bℓ,Σ

F
ℓ ), k = 1, . . . ,K,

ℓ = 1, . . . , L. Extending the previous notation, the elements on the main diagonal of ΣF
ℓ are

denoted σ2
iℓ, for i = 1, . . . , pℓ.

In terms of prior specification, everything follows through with the obvious modifications: essen-

tially, adding a subscript ℓ and imposing independence across the quantities associated with group

ℓ. Since the setting of the previous section is a particular case of the framework just described with

L = 1, we state here the theorem that guarantees propriety of the resulting posterior:

Theorem 5.1. The posterior distribution associated with our model is proper.

Proof: See Appendix A.

Our application in Section 7 provides an illustration of the hierarchical scenario concerning the

analysis of a vehicle suspension system over time.

6. Implementation strategy

Denote by D the set of observed data, that is, the set of field and computer-model data that has

been recorded. Also, denote by yM = (yM ′

ℓ , ℓ = 1, . . . , L)′ the vector that consists of the output of
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the computer model evaluated at the current value of u. The field data can be summarized with the

independent sufficient statistics ȳF
ℓ =

∑K
k=1 y

F
kℓ/K and Sℓ =

∑K
k=1(y

F
kℓ−ȳF

ℓ )(y
F
kℓ−ȳF

ℓ )
′, which have

sampling densities given by ȳF
ℓ | yM

ℓ , bℓ,Σ
F
ℓ ∼ Np(y

M
ℓ +bℓ,Σ

F
ℓ /K) and Sℓ | ΣF

ℓ ∼ Wp(Σ
F
ℓ ,K−1).

We are denoting by Wp(B, ν) a p-dimensional Wishart distribution with mean νB.

Let τ 2 = (τ 2′
1 , . . . , τ

2′
L )

′, where τ 2
ℓ = (τ21ℓ, . . . , τ

2
pℓ)

′, for ℓ = 1, . . . , L; similarly, ΣF = (ΣF
1 , . . . ,Σ

F
L ).

Then, the posterior distribution of all unknowns can be decomposed in the form

π(yM , b,ΣF , τ 2,u | D) = π(yM | b,ΣF , τ 2,u,D) π(b | ΣF , τ 2,u,D) π(ΣF , τ 2,u | D) (9)

and is proportional to

L∏

ℓ=1

Np(ȳ
F
ℓ | yM

ℓ + bℓ,Σ
F
ℓ /K) Wp(Sℓ | ΣF

ℓ ,K − 1)× (10)

× π(T ℓ | ΣF
ℓ ) Np(y

M
ℓ | Âℓ m̂ℓ(u), Âℓ V̂ ℓ(u) Â

′

ℓ) Np(bℓ | 0,T ℓ) π(Σ
F
ℓ ) π(u) .

We are denoting by π(T ℓ | ΣF
ℓ ) the prior on T ℓ, which is given by the product of (8) (with τ2i

replaced τ2iℓ) from i = 1 to p. Also, π(ΣF
ℓ ) is formally identical to (7). The first two distributions

in (9) can be sampled directly:

π(yM | b,ΣF , τ 2,u,D) =

L∏

ℓ=1

Np(y
M
ℓ | m1

ℓ ,Σ
1
ℓ) ,

π(b | ΣF , τ 2,u,D) =

L∏

ℓ=1

Np(bℓ | m2
ℓ ,Σ

2
ℓ) ,

where Σ
j
ℓ and m

j
ℓ , j = 1, 2, are specified in Appendix B.1. To sample from the last distribution

in (9), one could in principle use a Gibbs sampling algorithm, iteratively sampling from the full-

conditionals [ΣF | τ 2,u,D], [τ 2 | ΣF ,u,D], and [u | τ 2,ΣF ,D]. These would all be sampled from

using a Metropolis-Hastings step.

What complicates matters, and makes the previous approach untenable in practice, is the fact

that some components of our statistical model are potentially confounded. For instance, it is clearly

possible to accommodate a large discrepancy between the computer model and reality by allowing

a large enough field error variance. One possible solution is to estimate ΣF using the replicate

information only. This is dependent of having a reasonable number of replicates, which is the case

in the application of Section 7. Replicates are very much recommended, but it’s true that they will

not be always available. To be more precise, the route we follow in order to sample from the last

distribution in (9) is to take advantage of the decomposition

π(ΣF , τ 2,u | D) = π(ΣF | D) π(τ 2,u | ΣF ,D) . (11)

Sampling from the last distribution in (11) is dealt with by means of a Gibbs sampler: alternately

sample from [τ 2 | ΣF ,u,D] and [u | τ 2,ΣF ,D]. Although these are not available in closed form, it
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is relatively easy to find a suitable proposal for the implementation of a Metropolis-Hastings step,

as we detail in Appendix B.2 and Appendix B.3. In the case of the full conditional of u, the success

of the proposal will depend on the prior on these quantities. In Appendix B.3 we report on the

strategy that we implemented for the application of Section 7. The first distribution in (11) cannot

be obtained in closed form; our approximation is to ignore the integral with respect to (u, τ 2) and

utilize only the replicate information to determine the posterior of the ΣF
ℓ ; that is, we sample from

π̃(ΣF | D) ∝
L∏

ℓ=1

Wp(Sℓ | ΣF
ℓ ,K − 1) π(ΣF

ℓ ) . (12)

We do so by means of a Metropolis-Hastings step, which is described in Appendix B.4. This

strategy to address the issue of confounding between measurement error and computer model bias

was already utilized in Bayarri et al. (2007a) and a full discussion of these ideas can be found in

Liu et al. (2009).

7. An illustrative application

The problem that originally motivated this research is about predicting loads resulting from

stressful events on a vehicle suspension system over time. A prototype vehicle is driven along a

road that has two potholes, and the load history is recorded by sensors located at two different

sites on this vehicle, hereafter referred to as sites 1 and 2. There are K = 7 replicate field data

experiments; the computer model was evaluated at a 65-point design set. More details about the

data and some added insight about the application itself can be found in Bayarri et al. (2007a).

In this application, the vector of calibration parameters is 4-dimensional, where u3 and u4 are

associated with controllable inputs whose value for the vehicle tested in the field is known only up

to manufacturing variability. From a methodological perspective they pose no challenge as they can

simply be perceived as inputs to the computer model which must be estimated, as any calibration

parameter. In Figure 4 we have plotted the first replicate of the field experiment for Site 1 (two top

panels) and Site 2 (two bottom panels) and the two main regions of interest, named regions 1 and

2. These two regions of the load history correspond to the time at which the suspension system

hits the two different potholes. We do not specify a numerical scale on the y-axis for proprietary

reasons, but the scale is the same across all plots. Of particular interest to the engineers is the

(maximum) range of the load history in regions 1 and 2 for both sites, i.e. the distance between

the dashed lines in Figure 4. This is important for design purposes because, for safety reasons, the

suspension system must be able to accommodate the largest load amplitude. In this paper, we will

restrict attention exclusively to that function of the output of the computer model. This problem,

as stated, fits exactly the modeling situation that we have described in Section 5.2: denote by

yM
ℓ (u) = (yMiℓ (u), i = 1, 2)′ the computer model-calculated maximum load range for sites i = 1, 2

at region ℓ = 1, 2. We argue that the ranges at different regions may be treated as independent
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Figure 4: Sections of the field response (first replicate): sites 1 and 2 correspond to two different locations on the
suspension system; regions 1 and 2 correspond to the suspension system hitting each of the two potholes.

(given u), but that within the same region these two quantities are obviously related, because they

are the response to the same impact load but measured at two different sites on the vehicle.
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7.1. Results

The prior on u that we utilized was elicited with the help of experts and is such that the

components are a priori independent with

π(u1) = π(u2) = Uni(0.125, 0.875)

π(u3) = N(0.5, 2.4 × 10−3) restricted to (0.3259, 0.6471)

π(u4) = N(0.5, 1.4 × 10−2) restricted to (0.1471, 0.8529) .

Estimates of the marginal posterior distribution of the uncertain parameters are depicted in Fig-

ure 5, where the dashed and dotted lines correspond to the posteriors obtained by analyzing sepa-

rately the data corresponding to sites 1 and 2, respectively, using the methodology in Bayarri et al.

(2007b). Namely, within each site we are treating the data obtained at each of the two regions as

two independent analysis given the same calibration parameter. The solid lines correspond to the

posteriors obtained using the combined analysis proposed in this paper; the shaded areas represent

the prior distributions.

Clearly, things are not as transparent here as in the example of Section 2, as this is a real

application. However, it is clear that the posterior distribution of the parameters u3 and u4 does

not change much depending on the analysis. This is reassuring, as these are the parameters which

represent manufacturing variability. Regarding the actual calibration parameters u1 and u2, the

results are more interesting. The posteriors of u1 do not seem to have many common features

under the two analyses that use only site 1 or site 2 data. This poses the problem of which cali-

bration strategy to follow. However, the posterior under the combined analysis seems to establish

a compromise between the two differing posteriors, resulting in a single calibration strategy for the

engineer. The situation with u2 is perhaps not as clear, but again we end up with a single posterior

using our approach, which results from combining all the available information. Figure 6 depicts

the resulting bias-corrected prediction of reality using our combined strategy (lower line of each

panel) and the one that results from analyzing each site separately (upper line.) The dashed lines

represent the means of the field data. What stands out is the considerable reduction in uncertainty

under the analysis we propose, in line with what we saw in the context of the example of Section 2.

We take it as evidence that our approach is appropriately combining information.

8. Summary and possible extensions

We have introduced statistical methodology to deal with calibration of computer models pro-

ducing multivariate output. A key component in our proposal is the development of a non-separable

multivariate emulator based on the linear model of coregionalization. Unlike other related propos-

als in the literature, our emulator can be easily implemented and, since it comes expressed in a

closed-form, produces very fast responses.
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Figure 5: Marginal posterior distributions of the components of u; the solid lines correspond to the combined analysis
whereas the dashed and dotted lines are obtained analyzing separately the data for site 1 and 2, respectively. The
shaded areas represent the prior distributions.

With respect to the calibration strategy presented, our method is developed for the situation

where only one value of the controllable input is exercised in the field experiments. This problem

has been usually solved on highly problem-specific basis (see e.g. Higdon et al. (2008)) while our

solution is more general and is motivated by the literature on Objective Bayes methodology and

hence require no additional input from the user.

The reason why we restrict attention to a single value of the controllable input in the field

experiments is simple: in the more general situation we are again confronted with specifying a

multivariate Gaussian Process (GP), in this case for the bias term. To be more precise, we would
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Figure 6: Bias corrected predictions of the range and associated 95% credible intervals under the combined analysis
(lower line) and using only site-specific data (upper line.) The dashed vertical lines correspond to the mean of the
field data.

need to be able to handle a model such as

yF (x) = yM (x,u) + b(x) + ǫ

where ǫ ∼ N(0,ΣF ). Note that although we have not actually implemented it, the situation where

b ≡ 0 is in principle straightforward to handle. Both Bhat et al. (2010) and Habib et al. (2007)

implement this strategy. The interesting problem to consider is when b(x) is a priori modeled as

a multivariate Gaussian process. One can certainly use a coregionalization model and write

b(x) = B W b(x)

where B is a p × h matrix and W b(x) is a vector of h independent Gaussian processes. This is

clearly a model difficult to handle in this full generality. Higdon et al. (2008) addresses it in the

situation where B is a known matrix which arises by fully specifying h basis functions for the

problem at hand using expert information. Bhat et al. (2010) also implements this strategy but

with B being the identity matrix of order p, that is, they consider the components of b to be

independent. Our goal is to find a way of estimating B from the data, perhaps using arguments

similar to the ones we developed for the emulation problem. This is still work in progress.
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Appendix A. Proof of Theorem

Recall that the posterior distribution of all unknowns is proportional to (10) multiplied by

π(u). We will omit the factor π(u) until the end of the proof as it plays no role until then. Also,

to simplify the notation, we write m, V , and A instead of m̂, V̂ and Â. We next show that the

marginal likelihood is finite.

Pick an arbitrary set of indexes M ⊂ {1, . . . , L}×{1, . . . , p}. It suffices to consider the situation

in which if (ℓ, i) ∈ M , then we integrate τ2iℓ over (σ2
ℓi/K,+∞); if (ℓ, i) 6∈ M , then we integrate τ2iℓ

over (0, σ2
ℓi/K). Recall that T ℓ is diagonal, and proceed as follows: if (ℓ, i) ∈ M , bound (up to

a constant) N(biℓ | 0, τ2iℓ) by (τ2iℓ)
−1/2 and then integrate out biℓ for all (ℓ, i) ∈ M . For every

ℓ = 1, . . . , L, define ˜̄yF
ℓ , b̃ℓ, ỹ

M
ℓ and Σ̃

F
ℓ as being equal to the respective quantities without the

tilde but with component i missing if (ℓ, i) ∈ M (meaning column and line i missing in the case of

the covariance matrix). The resulting integrated likelihood is then, up to a constant and omitting

π(u), bounded by above by the product of

L∏

ℓ=1

π(T ℓ | ΣF
ℓ )
{
N(b̃ℓ | ˜̄yF

ℓ − ỹM
ℓ , Σ̃

F
ℓ /K) Wp(Sℓ | ΣF

ℓj,K − 1) Np(y
M
ℓ | Aℓmℓ(u),AℓV ℓ(u)A

′
ℓ) π(Σ

F
ℓ )
}

and

∏

(ℓ,i)∈M

(τ2iℓ)
−1/2

∏

(ℓ,i)6∈M

N(biℓ | 0, τ2iℓ) .

Bound, up to a constant, N(b̃ℓ | ˜̄yF
ℓ − ỹM

ℓ , Σ̃
F
ℓ /K) by |Σ̃F

ℓ |−1/2 and integrate out yM
ℓ , ℓ = 1, . . . , L,

and biℓ, (ℓ, i) 6∈ M , to be left with

L∏

ℓ=1

|Σ̃F
ℓ |−1/2 Wp(Sℓ | ΣF

ℓ ,K − 1) π(ΣF
ℓ )

∏

(ℓ,i)∈M

(τ2iℓ)
−1/2

L∏

ℓ=1

p∏

i=1

1

τ2iℓ + σ2
iℓ/K

In the formula above, τ2iℓ is integrated over (σ2
iℓ/K,+∞) if (ℓ, i) ∈ M , and over (0, σ2

ℓi/K) otherwise.

Using Lemma 1 below, we conclude that the resulting integrated likelihood is bounded by above,

up to a constant, by

L∏

ℓ=1

|Σ̃F
ℓ |−1/2 Wp(Sℓ | ΣF

ℓ ,K − 1) π(ΣF
ℓ )×

∏

(ℓ,i)∈M

(σ2
iℓ)

−1/2 . (A.1)
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Note that the Hadamard product of positive definite matrices is positive definite, and that |I+D| ≥
1 for all D positive definite, so that it’s clear that π(ΣF

ℓj) ≤ |ΣF
ℓj|−(p+1)/2. We can rearrange (A.1)

to obtain that it’s bounded by above, up to a constant, by

L∏

ℓ=1

∏

i:(ℓ,i)∈M

(σ2
iℓ)

−1/2|Σ̃F
ℓ |−1/2 |ΣF

ℓ |−(p+1)/2 Wp(Sℓ | ΣF
ℓ ,K − 1) .

The quantity
∏

i:(ℓ,i)∈M σ2
iℓ is the product of the diagonal elements of the lines/columns that have

been removed from ΣF
ℓ to produce Σ̃

F
ℓj . For that reason, Theorem 13.3.8 of Harville (1997) can be

used to prove that

|ΣF
ℓ | ≤ |Σ̃F

ℓ |
∏

i:(ℓ,i)∈M

σ2
iℓ

so that, up to a constant, we are left with

L∏

ℓ=1

|ΣF
ℓ |−(p+2)/2Wp(Sℓ | ΣF

ℓ ,K − 1) ∝ IWp(Σ
F
ℓ | Sℓ,K)

where we are denoting by IWp(B, ν) the distribution of the inverse of a Wp(B, ν)-distributed

random matrix. Since (,u) is assigned a proper prior, the proof is complete, except for the following

lemma:

Lemma 1. For n positive integer and a > 0, there are c1 and c2, positive constants, such that

∫ +∞

a
x−n/2 1

x+ a
dx ≤ c1a

−n/2

∫ a

0

1

x+ a
dx = c2

Proof: The second statement is trivial. The first will be shown to be true separately for n = 1,

n = 2 and n > 2. If n = 1, we use the fact that
∫
x−1/2/(x + a)dx = 2a−1/2 arctan(ax)1/2 (e.g.

Abramowitz and Stegun (1972), formula 3.3.29). If n = 2, we use the fact that, in the present

circumstances,
∫
[x(x+a)]−1dx = −a−1 ln[(x+a)/x] (e.g. Abramowitz and Stegun (1972), formula

3.3.20). Finally, if n > 2, we start by noting that

∫ +∞

a

1

xn/2
1

x+ a
dx <

1

2a

∫ +∞

a

1

xn/2
dx

and the result follows easily.

Appendix B. Additional details of the sampling algorithm

To simplify the notation, we write m, V , and A instead of m̂, V̂ and Â.
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Appendix B.1. Means and variances of the full conditionals of yM and b

We have

Σ1
ℓ =

{(
ΣF

ℓ

K

)−1

+
[
Aℓ V ℓ(u)A

′
ℓ

]−1

}−1

and

m1
ℓ = Σ1

ℓ

{(
ΣF

ℓ /K
)−1

(ȳF
ℓ − bℓ) +

[
Aℓ V ℓ(u)A

′
ℓ

]−1
Aℓmℓ(u)

}
.

Also,

Σ2
ℓ =

{
(T ℓ)

−1 +
[
ΣF

ℓ /K +Aℓ V ℓ(u)A
′
ℓ

]−1
}−1

and

m2
ℓ = Σ2

ℓ

[
ΣF

ℓ /K +Aℓ V ℓ(u)A
′
ℓ

]−1 [
ȳF
ℓ −Aℓmℓ(u)

]
.

Appendix B.2. Sampling from π(τ 2 | ΣF ,u,D)

First notice that

π(τ 2 | ΣF ,u,D) ∝ (B.1)

L∏

ℓ=1

Np(ȳ
F
ℓ | Aℓmℓ(u),Σ

F
ℓ /K +Aℓ V ℓ(u)A

′
ℓ + T ℓ)

L∏

ℓ=1

p∏

i=1

1

τ2iℓ + σ2
iℓ/K

;

so that, for all ℓ = 1, . . . , L, τ 2
ℓ is conditionally independent of (τ 2

1, . . . , τ
2
ℓ−1, τ

2
ℓ+1, τ

2
L), with con-

ditional density given by

π(τ 2
ℓ | ΣF ,u,D) ∝ Np(ȳ

F
ℓ | Aℓmℓ(u),Σ

F
ℓ /K +Aℓ V ℓ(u)A

′
ℓ + T ℓ)

p∏

i=1

1

τ2iℓ + σ2
iℓ/K

.

We sample each τ 2
ℓ independently using the the following Metropolis-Hastings scheme. Denoting

by (τ 2
ℓ )

old the current value of τ 2
ℓ , we propose the next state (τ 2

ℓ )
prop by sampling from

g(τ 2
ℓ | (τ 2

ℓ)
old) ∝

p∏

i=1

1

τ2iℓ
I(e−E(τ2

iℓ
)old,eE(τ2

iℓ
)old)(τ

2
iℓ) ,

where E = 0.7 and IA(·) stands for the indicator function of the set A. Next, compute

p =
π
(
(τ 2

ℓ )
prop | ΣF ,u,D

)

π
(
(τ 2

ℓ)
old | ΣF ,u,D

) g
(
(τ 2

ℓ)
prop | (τ 2

ℓ )
old
)

g
(
(τ 2

ℓ)
old | (τ 2

ℓ )
prop

) .

Accept the proposal, that is let (τ 2
ℓ )

new = (τ 2
ℓ)

prop, with probability min{1, p} and let (τ 2
ℓ)

new =

(τ 2
ℓ)

old with probability 1−min{1, p}.
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Appendix B.3. Sampling from π(u | τ 2,ΣF ,D)

We detail this sampling algorithm in the situation where the prior for (u) has the same structure

has the one used in the application of Section 7. To be more precise, it is the product of uniform

and normal distributions restricted to ranges given by the experts. In what follows, we denote by

(ai, bi) the support of the prior for the i-th component of u. In the application of Section 7, u has

4 components.

In order to sample from the density

π(u | τ 2,ΣF ,D) ∝
L∏

ℓ=1

Np(ȳ
F
ℓ | Aℓ mℓ(u),Σ

F
ℓ /K +Aℓ V ℓ(u)A

′
ℓ + T ℓ) π(u)

we use a Metropolis-Hastings algorithm. Given the current value of the chain, denoted by uold,

draw uprop from the mixture

g(u | uold) =
4∏

i=1

[
0.5 π(ui | ai, bi) + 0.5 U

(
ui | max{ai, uoldi − 0.05},min{bi, uoldi + 0.05}

)]

where U(· | a, b) represents the density of a uniform distribution in the interval (a, b) and π(ui | ai, bi)
denotes the prior density of ui, which has support (ai, bi). Compute

p =
π(uprop | τ 2,ΣF ,D)

π(uold | τ 2,ΣF ,D)

g(uold | uprop)

g(uprop | uold)

Accept the proposed value, that is, set unew = uprop with probability min{1, p} and let unew = uold

with probability 1−min{1, p}.

Appendix B.4. Sampling from π̃(ΣF | D)

Note that, for ℓ = 1, . . . , L, the ΣF
ℓ are independent under the density in (12), with density

π̃(ΣF
ℓ | D) ∝ Wp(Sℓ | ΣF

ℓ ,K − 1) π(ΣF
ℓ ).

It can easily be shown that, with the prior (7),

π̃(ΣF
ℓ | D) ∝ IWp(Σ

F
ℓ | Sℓ,K − 1) |I +ΣF

ℓ ◦ (ΣF
ℓ )

−1|−(p+1)/2.

We have had good results sampling from the density above using the following Metropolis-Hastings

step. Assume Σold
ℓ is the current value and sample (ΣF

ℓ )
prop from the density IWp(Σ

F
ℓ | Sℓ,K−1).

Accept the sampled value as the next state of the chain with probability

min

{
1,

|I + (ΣF
ℓ )

prop ◦ ((ΣF
ℓ )

prop)−1|−(p+1)/2

|I + (ΣF
ℓ )

old ◦ ((ΣF
ℓ )

old)−1|−(p+1)/2

}

and stay at Σold
ℓ otherwise.
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