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Introduction

1

• Calculus concepts are abstract and difficult for students.

• We have found that some students show very little understanding of the

calculus concepts.

• The Necessity principle (Harel, 1998) states that“…for students to learn,

they must see an intellectual need (as opposed to social or economic) for

what they are intended to be taught”.

• In this study we propose to introduce the concepts starting from applied 

contexts, providing to the students problems related to their studies. 

• Students participate actively and the new concepts involved become 

meaningful for them.

• We respect the process of abstraction, from particular to general.



Calculus I: Derivative

Velocity and Distance Traveled by a Vehicle
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A vehicle moves, on a straight line, at a constant velocity of v= 20 km / h. The distance 

traveled by the vehicle after 1 h is 20 km and after 2 h it is 40 km (Strang, 2010).

Question 1: What is the distance traveled by the vehicle 

after t hours? The students answer that the distance 

traveled is f (t) = v t= 20 t.

Question 2: If we study the displacement of the vehicle

in the time interval t∈ [1,2], we see that at t = 1 h the

vehicle has traveled 20 km and at the instant t = 2 h

the vehicle has traveled 40 km. What is the increase in

time? What is the increase in displacement? The students

answer that the increase in time is 1 h and the increase

in the displacement in that interval is 20 km.

The concept of increasing of a variable and increasing of a real function is introduced.



Calculus I: Definite Integral

Volume of a Water Tank
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We have worked with a water tank

Hipódromo de la Zarzuela, E. Torroja, 1935 (Barrio, 1994)

• The exterior enclosure (Part I) is formed by a hyperboloid of revolution of equation:

𝑥2 + 𝑦2 −
𝑧2

2
= 1, 𝑧 ∈ − 2, 2 .

• The tank bottom (Part II) is formed by a paraboloid of equation:

𝑧 = −
𝑥2 + 𝑦2

2
, 𝑧 ∈ − 2, 0 .

• The water is stored above the paraboloid and inside the hyperboloid.

• The maximum and minimum levels of the tank are,

𝑧𝑚𝑖𝑛 = − 2, 𝑧𝑚𝑎𝑥 = 2



Calculus I: Definite Integral

Volume of a Water Tank
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The teacher explains how we can fill the tank with disks perpendicular to the axis of 

rotation, whose volume is known. These disks are obtained by taking different partitions of 

the interval of variation of the variable. Adding the volumes of all the discs, we can 

approximate the total volumen as σ1=1
𝑛 𝜋 𝑥(𝑐𝑖)2 ∆𝑦𝑖 , where 𝑛 is the number of

subintervals in the partition and 𝑐𝑖 is the middle point and ∆𝑦𝑖 is the length of the 𝑖𝑡ℎ
subinterval.

Question 1: Calculate the volume of the Part I with n=4 and n=10 discs. The students 

answer that for n=4 the volume is 11.8014 and for n=10 the volume is 11.8403.

Question 2: Calculate the volume of the Part II with n=4 and n=10 discs. The students 

answer that for n=4 the volume is 4.4429 and for n=10 the volume is 4.4429.

At this point we introduce the definite integral that will be used to calculate the volume of

a solid of revolution and the teacher solves the above problem. The exact volumen is 

7.4048.

The students work with another applied problem and calculate the capacity of a silo 

answering to different questions.



Calculus II: Partial and Directional Derivatives

Mountain Problem

25

Consider the following function, whose graph represents a mountain (Cooper, 2001) 

𝑧 = 𝑓 𝑥, 𝑦 = 4 𝑥2𝑒−𝑥2−𝑦2
+ 𝑦2𝑒−(𝑥−1)2−(𝑦−1)2

with 𝑥,𝑦∈[−4,4]. 
Question 1: What does f (2, 2) = 0.5467 

mean? The students answer that it is the 

height of the mountain at the point 

(x,y)=(2,2) in the plane.

Question 2: What is the meaning of g = f 

(2,t), for 𝑡 ∈ [−4,4]? The students answer 

that it is a function of t that gives the 

height on the mountain of a mountaineer 

who is at a point lying above (x, y) = (2,-

4) and moves so that his horizontal 

displacement is in the direction j = (0,1) .

At this point the teacher draws the curve 𝑥 = 2, 𝑦 = 𝑡, 𝑧 = 𝑓 2, 𝑡 , 𝑡 ∈ −4,4 , over 

the surface.



Calculus II: Double Integral

Silo Problem
39

We have worked with a metal silo (Barrio, 1994)

The equation of piece I is 𝑥2 + 𝑦2 + 9 𝑧2 = 1, 𝑧 ∈ [0, Τ1 3].
The equation of the intermediate piece II is 𝑥2 + 𝑦2 = 1, 𝑧 ∈ 0,2 .
The equation of piece III (lower part) is 

𝑥2 + 𝑦2 −
𝑧

2
+

1

3

2

= 0, 𝑧 ∈ 0, Τ4 3 .

Question: Calculate the volume of the silo using double integrals.

Piece I

Piece II Piece III



Calculus II: Double Integral

Silo Problem
40

Question 1: Draw schematically each of the pieces, supporting them in the 𝑧 = 0 plane. The 

students draw each piece of the silo.

Question 2: The projection of piece I on the plane 𝑧 = 0 is the integration domain 𝐷𝐼 . 

Draw the projection and write the equation of the curve enclosing the domain 𝐷𝐼 . The 

students work in the question and the teacher shows the solution.

Question 3: The maximum height of the piece I is 1/3, we could calculate the volume of 

that part as the volume of a prism with base 

𝑅 = { 𝑥, 𝑦  / 𝑥 ∈ [−1,1], 𝑦 ∈ [−1,1]}  and height 1/3. 

Calculate the volume of that prism. The students answer that the volume of the prism is 1.33 

and the teacher explains that the real volume of the piece I is 0.70.
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