Instrumentos Matemáticos para la Ingeniería II

Tema 1: Curvas

Cristina Solares

Universidad de Castilla-La Mancha

11 de enero de 2024

1.1 Definición de Curva Plana

Definición (1.1 Línea)

La línea puede definirse como la trayectoria de un punto que se mueve o como el lugar geométrico de las posiciones sucesivas de un punto móvil.

Ejemplo

Un ejemplo de curva plana es la catenaria, en la Figura se muestra una catenaria en el caso a=1/2. Catenaria es la curva que se obtiene cuando una cadena, perfectamente flexible e inextensible y de densidad uniforme, cuelga de dos soportes. La ecuación de la catenaria es:

$$x_2 = a \ Ch(x_1/a), \ a > 0.$$
 (1)

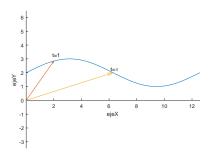
Supongamos que una partícula se mueve en el plano siguiendo la curva $\{x=2t,y=2+\sin(t)\}$, que se puede expresar como

$$\mathbf{r}(t) = \mathbf{x}(t)\,\mathbf{i} + \mathbf{y}(t)\,\mathbf{j}$$

ó

$$\mathbf{r} = x \, \mathbf{i} + y \, \mathbf{j} = 2t \, \mathbf{i} + (2 + \sin(t)) \, \mathbf{j} = (2t, 2 + \sin(t))$$

siendo t el tiempo.



La función $\mathbf{r}:[0,2\pi]\subset R\to R^2$ es una función vectorial con dominio en $[0,2\pi]$. La gráfica es la curva trazada por los extremos de los vectores $\mathbf{r}(t)$.

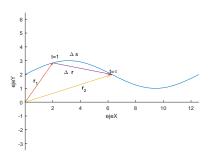
En el instante $t_1=1$ el vector de posición de la partícula es $\mathbf{r}_1=(2,2+\sin(1))$ y en el instante $t_2=\pi$ el vector de posición de la partícula es $\mathbf{r}_2=(2\pi,2)$. El cambio de posición (desplazamiento) es la variación del vector de posición

$$\Delta \mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1.$$

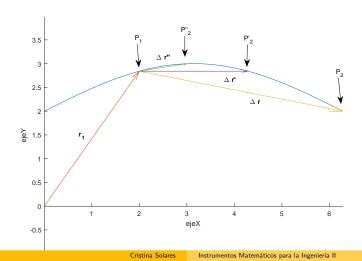
El cociente entre el vector desplazamiento y el incremento del tiempo $\Delta t = t_2 - t_1$, es la velocidad media

$$\mathbf{v}_{med} = rac{\mathbf{r}_2 - \mathbf{r}_1}{t_2 - t_1} = rac{\Delta \mathbf{r}}{\Delta t} = rac{(2\pi - 2, -\sin(1)}{\pi - 1}.$$

Nótese que la magnitud del vector desplazamiento no es igual a la distancia real recorrida Δs , medida a lo largo de la curva. El cociente $\frac{\Delta r}{\Delta t}$ se llama cociente incremental.



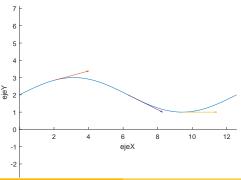
Nótese que la magnitud del vector desplazamiento no es igual a la distancia real recorrida Δs , medida a lo largo de la curva. Si se consideran intervalos de tiempo cada vez más pequeños , la magnitud del desplazamiento se aproxima a la distancia real recorrida por la partícula a lo largo de la curva y la dirección Δr se aproxima a la dirección de la recta tangente a la curva en el punto (x(1),y(1)).



Se define el vector velocidad instantánea como el límite del vector velocidad media cuando el intervalo de tiempo Δt tiende a cero. Supongamos $\mathbf{r}_1=(x_1,y_1)$ (vector posición en $t=t_1$) y $\mathbf{r}_2=(x_2,y_2)$ (vector de posición en $t=t_2$),

$$\mathbf{v} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\mathbf{r}_2 - \mathbf{r}_1}{t_2 - t_1} = \lim_{\Delta t \to 0} \frac{(x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j}}{t_2 - t_1} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} = \frac{d\mathbf{r}}{dt}.$$

La velocidad instantánea es la derivada del vector de posición respecto al tiempo. La dirección de la velocidad instantánea coincide con la dirección de la tangente a la curva recorrida por la partícula en el plano. La magnitud de la velocidad instantánea (la rapidez) es un escalar $v=\sqrt{v_x^2+v_y^2}$, siendo $\mathbf{v}=(v_x,v_y)$.



1.3 Derivada de una función vectorial

Dada una función vectorial $\mathbf{F}: D \subset R \to R^2$, donde $\mathbf{F}(t) = f_1(t)\mathbf{i} + f_2(t)\mathbf{j}$, la derivada de $\mathbf{F}(t)$ en $t = t_0$ se define como

$$\mathbf{F}'(t_0) = \lim_{\Delta t o 0} rac{\mathbf{F}(t_0 + \Delta t) - \mathbf{F}(t_0)}{\Delta t},$$

siempre que exista. La función derivada es la función vectorial definida como

$$\mathsf{F}'(t) = \lim_{\Delta t o 0} rac{\mathsf{F}(t + \Delta t) - \mathsf{F}(t)}{\Delta t}$$

que se denota como $\frac{d\mathbf{F}}{dt}$. Se cumple que

$$\mathbf{F}'(t) = f_1'(t)\mathbf{i} + f_2'(t)\mathbf{j}.$$

1.4 Tangente y Normal a una Curva Plana

Supóngase que la curva está dada en forma paramétrica: $\{x_1=x_1(t), x_2=x_2(t)\}$. Sea $P: t=t_0$ perteneciente a dicha curva. El vector tangente a la curva en P es $(x_1'(t_0), x_2'(t_0))$. La ecuación de la recta tangente en P es:

$$x_1 = x_1(t_0) + \tau x_1'(t_0) x_2 = x_2(t_0) + \tau x_2'(t_0),$$
(2)

donde

$$\tau = \frac{x_1 - x_1(t_0)}{x_1'(t_0)} = \frac{x_2 - x_2(t_0)}{x_2'(t_0)}.$$
 (3)

El vector normal en P es $(x_2'(t_0), -x_1'(t_0))$. La ecuación de la recta normal en P es:

$$x_1 = x_1(t_0) + \tau x_2'(t_0) x_2 = x_2(t_0) - \tau x_1'(t_0),$$
(4)

donde

$$\tau = \frac{x_1 - x_1(t_0)}{x_2'(t_0)} = \frac{x_2 - x_2(t_0)}{-x_1'(t_0)}.$$
 (5)

1.5 Longitud de una curva plana

Nota

```
Dada la curva \{x_1=x_1(t),\ x_2=x_2(t)\} se calcula la longitud de la curva entre t=t_0 y t=t_1 como s=\int_{t_1}^{t_1}\sqrt{(x_1'(t))^2+(x_2'(t))^2}\ dt.
```

```
function longitud=lengthcurve(alpha,t,a,b)
longitud=int(simplify(
sqrt(dot(diff(alpha,t),diff(alpha,t)))),a,b);
end
Por ejemplo,
syms t real
circunferencia=[2*cos(t).2*sin(t)]:
fplot(circunferencia(1),circunferencia(2),[0,2*pi]);
lengthcurve(circunferencia,t,0,2*pi)
Nótese que si calculamos s(t) = \int_{t_0}^t \sqrt{(x_1'(t))^2 + (x_2'(t))^2} dt = \int_{t_0}^t \|\mathbf{r}'(t)\| dt,
obtenemos la distancia recorrida en el intervalo [t_0, t] y por lo tanto la rapidez
(variación de la distancia recorrida respecto al tiempo t) es \frac{ds}{dt} = \|\mathbf{r}'(t)\|.
```

1.6 Versor tangente a una curva

Aunque el tiempo es parámetro más natural para estudiar el movimiento a lo largo de una curva, en algunas ocasiones nos interesará que el parámetro sea la longitud de arco. Supongamos que la curva $\bf r$ está dada en función del parámetro longitud $\bf s$.

Nota

El vector $\frac{d\mathbf{r}}{ds}$ en un punto de la curva (C): $\mathbf{r} = (x(s), y(s))$ es unitario y tangente a la misma, por lo que se le denomina versor tangente y se le denota \mathbf{t} .

Se cumple:

$$\frac{d\mathbf{r}}{ds} = \frac{d\mathbf{r}}{dt}\frac{dt}{ds} = \frac{d\mathbf{r}}{dt}\frac{1}{\frac{ds}{dt}} = \frac{d\mathbf{r}}{dt}\frac{1}{\left|\frac{d\mathbf{r}}{dt}\right|},\tag{6}$$

de donde se obtiene

$$\left|\frac{d\mathbf{r}}{ds}\right| = 1. \tag{7}$$

En el caso anterior, la celeridad (rapidez de cambio) es constante e igual a 1.

Nota

Si la curva está dada en función de t, el versor tangente será $\mathbf{t} = \frac{d\mathbf{r}}{dt} \frac{1}{|\frac{d\mathbf{r}}{dt}|}$

Si consideramos una partícula que se mueve en el plano describiendo una travectoria curva, la aceleración instantánea es

$$\mathbf{a} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{v}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\mathbf{v}_2 - \mathbf{v}_1}{t_2 - t_1} = \frac{d\mathbf{v}}{dt}.$$

La aceleración a es un vector que apunta hacia el interior de la curva descrita por la partícula.

Si (c) [x=x(s), y=y(s)] =) ā y v ortronaler $\bar{n} = \frac{F''(s)}{|F''(s)|} \frac{1}{|F''(s)|} \frac{1}{|F$ F= F(51 3.5 2.5 1.5 0.5 1.5 ejeX

S: (C) F=F(+1)

I'(t) yers noual

1.8 Curvatura de una Curva Plana

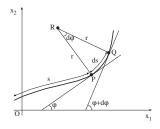
La curvatura es una medida de cuánto se dobla una curva. Si caminamos siguiendo una trayectoria y observando cómo cambia el vector tantente unitario $\frac{d\mathbf{t}}{dt}$, un cambio en dicho vector indica que la trayectoria se está doblando y conforme más rápido cambie dicho vector, más rápido se dobla la trayectoria. Pero no podemos tomar $\|\frac{d\mathbf{t}}{dt}\|$ como medida de la curvatura pues depende de lo rápido que caminamos, cuando más rápido caminamos, más rápido cambia el vector tangente unitario. Se supondrá que caminamos a una celeridad unitaria.

Definición (4.8 Curvatura una curva plana)

Sea C una curva plana dada por $\bar{r}(s)=x_1(s)\bar{l}+x_2(s)\bar{j}$. La curvatura en un punto $(x_1(s),x_2(s))$ es la variación del versor tangente respecto a s.

$$K = \left| \frac{d\overline{t}}{ds} \right|. \tag{8}$$

1.8 Curvatura de una Curva Plana



Definición (4.6 Curvatura una curva plana)

Sea C una curva plana dada por $\overline{r}(s) = x_1(s)\overline{i} + x_2(s)\overline{j}$. Si φ es el ángulo de inclinación del vector tangente unitario \overline{t} en s, siendo s el parámetro longitud de arco. Entonces la curvatura en un punto $(x_1(s), x_2(s))$ es la variación del versor tangente respecto a s.

$$K = \left| \frac{d\bar{t}}{ds} \right|. \tag{9}$$

O bien, la variación del ángulo φ respecto a s

$$K = \left| \frac{d\varphi}{ds} \right|. \tag{10}$$

En la práctica puede ser muy complicado hallar una parametrización de una curva en función del parámetro longitud s, a continuación se muestra una fórmula para calcular la curvatura de una curva dada utilizando otra parametrización $\mathbf{r} = \mathbf{r}(t)$. Si la curva está dada en forma paramétrica: $x_1 = x_1(t), x_2 = x_2(t)$,

$$K = \frac{\left| x_1' x_2'' - x_1'' x_2' \right|}{((x_1')^2 + (x_2')^2)^{3/2}},\tag{11}$$

es la curvatura.

```
function curvatura=curv(alpha,t)
sol=diff(alpha,t);
curvatura=simplify(
dot(diff(alpha,t,2),[-sol(2),sol(1)])/dot(diff(alpha,t),diff(alpha,t))(3/2));
end
```

La curvatura de una curva plana es, salvo el signo, independiente de la parametrización.

1.9 Ejercicios resueltos en clase

Ejemplo

Dada la circunferencia $x^2+y^2=1$, expresarla en forma paramétrica.

Ejemplo

Dada la circunferencia $x^2 + y^2 = 2$, expresarla en forma paramétrica.

Ejemplo

Dada la circunferencia $x^2 + y^2 + 2y = 0$, expresarla en forma paramétrica.

Ejemplo

Dada la elipse $x^2 + 3y^2 = 1$, expresarla en forma paramétrica.

Ejemplo

Hallar la longitud de arco de la curva

$$\overline{x}(t) = (t^3, 2t^2), t \in [0, 1].$$

Ejemplo

Hallar la longitud de arco de la curva

$$\overline{x}(t) = (e^t \cos t, e^t \sin t), \ t \in [0, 2].$$

1.9 Ejercicios resueltos en clase

Ejemplo

Dada la circunferencia $x=\cos t,\ y=\sin t$ para $t\in [0,2\pi]$, obtener la ecuación de las rectas tangente y normal en el punto que se alcanza para $t=\pi/4$.

Ejemplo

Hallar la curvatura de la catenaria $y = a \cosh(x/a)$ en un punto genérico de la misma.

Ejemplo

Hallar la curvatura de la circunferencia $x^2 + y^2 = 1$ en un punto genérico de la misma.

Ejemplo

Hallar la curvatura de la circunferencia $(x - a)^2 + (y - b)^2 - r^2 = 0$ en un punto genérico de la misma.

Ejemplo

Considérese la parábola de ecuación $y = x^2 + 3x$.

- I Escribir la ecuación de la parábola en paramétricas.
- **2** Utilizando la expresión de la curva en paramétricas, calcular el vector tangente unitario \overline{t} , el vector normal unitario \overline{n} y la curvatura K en un punto genérico.

1.9 Ejercicios resueltos en clase

Ejemplo

Hallar la curvatura de la recta

$${x = 1 + 2t, y = t}.$$