

Técnicas de mapeado perceptual: Escalado Multidimensional No-Métrico.

Miguel Ángel Tarancón Morán & Consolación Quintana Rojo

Máster Universitario en Iniciativa Empresarial: Análisis y Estrategias

Universidad de Castilla – La Mancha.

- 1 Introducción.
- 2 Escalado multidimensional no métrico.

- ¿Qué es un mapa perceptual?
- Es la representación gráfica de las percepciones que tienen los consumidores de las relaciones entre casos (objetos, productos, etc.) en un espacio de dos dimensiones o más, con el fin de conocer las estructuras escondidas en los datos.
- Esta representación se puede realizar mediante el empleo de varias técnicas, principalmente las englobadas bajo la denominación de Escalado Multidimensional (EMD).

- Los mapas perceptuales ayudan a responder varias interrogantes:
 - ¿Quiénes son nuestros competidores?
 - ¿Cuál es nuestra **posición en el mercado**?
 - ¿Cómo posicionar o reposicionar nuestra marca?
 - ¿A qué **segmento o grupo** debemos dirigir nuestros esfuerzos?
 - ¿Cuáles son nuestras debilidades y fortalezas?
 - ¿Estamos creando la imagen que deseamos?
 - ¿Qué atributos son los más importantes, tienen mayor preferencia o disparan la compra?
 - ¿Existe algún nicho que podamos explotar o espacio para un nuevo producto?

- Mientras otras técnicas obtienen dimensiones de las respuestas a las características de los casos identificadas por el investigador, el EMD obtiene las dimensiones de los juicios de los encuestados sobre la similitud de los casos.
- Esto supone una ventaja importante pues **los** resultados no dependen de los juicios de los investigadores. No es necesaria una lista de características (factores o variables) que debe ser mostrada a los encuestados. Las dimensiones resultantes vienen de los juicios de los encuestados sobre la similitud de los casos, considerados en su globalidad.
- Así, en muchos problemas la información no aparece como los valores que toman los casos para cada variable de estudio; sino que aparece como una matriz de proximidades entre estos casos (que pueden ser

- Una proximidad es un valor que indica cómo de similares o distintos son dos casos, a juicio de los encuestados.
- El procedimiento más común para obtener datos de proximidad es preguntar directamente a las personas acerca del parecido entre dos casos. Cuando se habla de parecido nos referimos a una "distancia psicológica" entre los casos.
- Es importante a la hora de realizar este cuestionario no hacer referencia a las características en las que deben fijarse los encuestados, para no condicionarlos.

- Por tanto, el Escalado Multidimensional (EMD) es una técnica que permite descubrir estructuras o patrones dentro de la matriz de proximidades y, en concreto:
 - Determinar la dimensión del modelo que proporcione un ajuste satisfactorio.
 - Las coordenadas de los puntos que representan a los casos, de manera que cuanto más cercanos sean dos puntos, más similares serán las opiniones de los encuestados sobre esos casos.
- Si la proximidad entre dos casos es muy precisa (en escala métrica), el EMD será clásico o métrico. Si es menos precisa (en escala no-métrica), el EMD será no-métrico. Es el más utilizado en Ciencias Sociales, y el que estudiaremos.

- Frecuentemente, en el EMD-NM, la información de entrada no es la matriz de proximidades directamente; sino que el modo que tienen los encuestados de establecer la proximidad que perciben entre los casos, es valorándolos en una escala tipo Likert. Un encuestado percibirá a dos casos como muy próximos si les otorga puntuaciones similares.
- A partir de las valoraciones en tal escala que dan los encuestados a los casos se construye la matriz de proximidades entre casos. Esta matriz la podemos representar como:

$$\Delta = \begin{pmatrix} \delta_{11} & \cdots & \delta_{1j} & \cdots & \delta_{1n} \\ \vdots & & \vdots & & \vdots \\ \delta_{i1} & \cdots & \delta_{ij} & \cdots & \delta_{in} \\ \vdots & & \vdots & & \vdots \\ \delta_{n1} & \cdots & \delta_{nj} & \cdots & \delta_{nn} \end{pmatrix}$$

Escalado Multidimensional No-Métrico.

- El objetivo es, partiendo de esta matriz, obtener una serie de variables X (dimensiones) y las puntuaciones obtenidas por cada caso en ellas (coordenadas), que han servido en el proceso mental de los encuestados para establecer su valoración sobre la proximidad de los casos.
- Si consideramos que el número de dimensiones es p, la matriz de dimensiones será:

$$X = \begin{pmatrix} x_{11} & \cdots & x_{1j} & \cdots & x_{1p} \\ \vdots & & \vdots & & \vdots \\ x_{i1} & \cdots & x_{ij} & \cdots & x_{ip} \\ \vdots & & \vdots & & \vdots \\ x_{n1} & \cdots & x_{nj} & \cdots & x_{np} \end{pmatrix}$$

 La fila i recoge las puntuaciones (coordenadas) del caso i obtenidas en cada una de las p dimensiones.

- Para pasar de la matriz de proximidades a la matriz de dimensiones, se han desarrollado diversos algoritmos.
- Uno de los algoritmos más utilizados en EMD-NM es SMACOF.
- SMACOF buscará el número de dimensiones p, y las coordenadas de los casos para cada dimensión que minimiza el Stress.
- El Stress es una medida de bondad del ajuste: a menor Stress, mejor será la representación de la matriz de proximidades entre los casos con las *p* dimensiones.

- Kruskal (1964) sugiere la siguiente interpretación del Stress, como medida de la calidad del ajuste en la representación de la realidad(bondad):
 - Stress mayor que 0,20: representación pobre.
 - Stress entre 0,10 y 0,20: representación razonable.
 - Stress entre 0,05 y 0,10: representación buena.
 - Stress entre 0,025 y 0,05: representación excelente.
 - Stress entre 0 y 0,025: representación perfecta.

Ejemplo. "La salud económico-financiera de la empresa es buena"

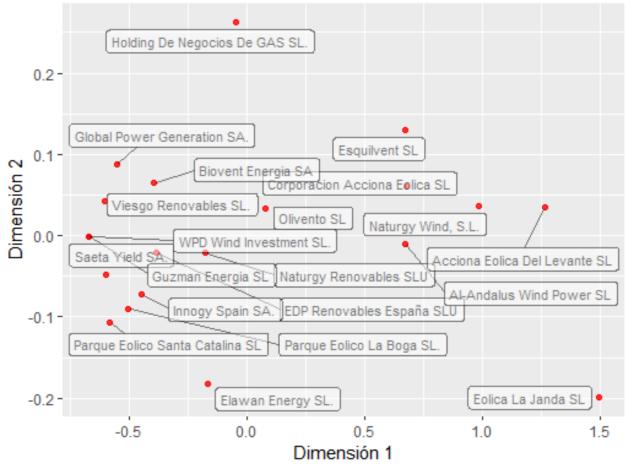
(1: totalmente en desacuerdo"; 2: "bastante en desacuerdo"; 3:

"ligeramente en desacuerdo"; 4: "ni de acuerdo ni en desacuerdo";

5: "ligeramente de acuerdo"; 6: "bastante de acuerdo"; 7:

"totalmente de acuerde")

"totalmente de acuer	(CO). EXPERTO_1	EXPERTO_2	EXPERTO_3	EXPERTO_4	EXPERTO_5	EXPERTO_6
Holding De Negocios De GAS SL.	2	3	2	4	3	2
Global Power Generation SA.	1	2	1	1	2	1
Naturgy Renovables SLU	2	2	3	2	3	2
EDP Renovables España SLU	2	1	2	2	2	2
Corporacion Acciona Eolica SL	4	5	4	4	6	4
Saeta Yield SA.	1	1	1	2	1	2
Elawan Energy SL.	2	3	2	1	3	3
Olivento SL	2	3	3	3	4	3
Parque Eolico La Boga SL.	1	1	2	1	2	2
Naturgy Wind, S.L.	5	6	5	5	6	5
Viesgo Renovables SL.	1	1	1	1	2	1
Al-Andalus Wind Power SL	4	5	4	4	5	5
Innogy Spain SA.	1	2	2	1	2	2
Guzman Energia SL	1	1	1	1	1	1
Acciona Eolica Del Levante SL	6	6	5	6	7	6
Biovent Energia SA	2	2	1	2	2	2
Esquilvent SL	4	5	4	5	5	4
Eolica La Janda SL	7	6	7	6	7	7
Parque Eolico Santa Catalina SL	1	1	2	1	1	2
WPD Wind Investment SL.	1	1	1	1	1	1



Ejemplo.

EMPRESAS EÓLICAS

Configuración de opiniones de expertos

¡Muchas gracias!

This work © 2022 by Miguel Ángel Tarancón and Consolación Quintana is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

