Investigación

ORCID: 0000-0002-4511-9473
RESEARCHER ID: A-9577-2019
SCOPUS ID: 25632849400
MATHSCINET ID: 790214

Artículos

1. P. Pedregal, H. Serrano, Gamma-convergence of quadratic functionals with oscillating linear perturbations, Nonlinear Analysis 70 (2009) 4178-4189.
2. H. Serrano, On Gamma-convergence in divergence-free fields through Young measures, Journal of Mathematical Analysis and Applications 359 (2009) 311-321.
3. H. Serrano, Homogenization of non-linear functionals with laminate-type growth, Journal of Convex Analysis 17 (2010) 509-520.
4. H. Serrano, Reiterated homogenization of the vector potential formulation of a magnetostatic problem in anisotropic composite media, Nonlinear Analysis 74 (2011) 7380-7394.
5. H. Serrano, Homogenization of quadratic complementary energies: a duality example, Mathematica Bohemica 136 (2011) 165-173.
6. R. F. Alvarez-Estrada, G. F. Calvo, H. Serrano, A transfer integral technique for solving a class of linear integral equations: Convergence and applications to DNA, Journal of Computational and Applied Mathematics 236 (2012) 3561-3571.
7. H. Serrano, Gamma-convergence of multiscale periodic functionals depending on the time- derivative and the curl operator, Journal of Mathematical Analysis and Applications 387 (2012) 1024-1032.
8. P. Pedregal, H. Serrano, Non-periodic Gamma-convergence: Application to a main example of a non-finer oscillation operator in higher dimension, Analysis and Applications 10 (2012) 67-90.
9. H. Serrano, A variational approach to the homogenization of laminate metamaterials, Nonlinear Analysis – Real World Applications 18 (2014) 75-85.
10. H. Serrano, On the asymptotic behaviour of a variable exponent power law magnetostatic problem, Applicable Analysis 97 (2018) 2097-2112.
11. H. Serrano, Homogenization of kinetic laminates in linearized elasticity, Mathematical Methods in the Applied Science 41 (2018) 270-280.

Capítulos y Libros

1. P. Pedregal, H. Serrano, Homogenization of periodic non-linear power-law materials through Young measures, Multiscale problems and asymptotic analysis, Gakuto International Ser. Math. Sci. Appl. 24 (2006) 305-310. (ISBN 4-7625- 0433-5)
2. H. Serrano, PhD dissertation, Convergencia-Gamma no periodica, Universidad Complutense de Madrid, Servicio de Publicaciones 2008. (ISBN 978-84-669-3045-1)
3. H. Serrano, Gamma-convergence of multiscale periodic energies depending on the curl of divergence-free fields, Differential and Difference Equations with Applications, Springer Proceedings in Mathematics & Statistics 47 (2013) 579-588. (ISBN 78-1-4614-7332-9)
4. H. Serrano, A variational approach to the homogenization of double phase p_h(x)-curl systems in Magnetism, Progress in Industrial Mathematics at ECMI 2016, Mathematics in Industry 26, P. Quintela et al. (eds.), Springer 2017. (ISBN 978-3-319-63082-3)
5. H. Serrano, A variational technique to the homogenization of Maxwell equations, Studies in Systems, Decision and Control 177 (2020) 233-266. (ISSN 2198-4182)

Estancias

1. Mathematics Section, International School for Advanced Studies (SISSA), Trieste (Italia), febrero-mayo 2006.
2. Centro di Ricerca Matematica Ennio De Giorgi, Scuola Normale Superiore, Pisa (Italia), octubre 2006.
3. Oxford Centre for Nonlinear PDEs, Mathematical Institute, University of Oxford, Oxford (Reino Unido), septiembre 2008.
4. Chair of Mathematical Analysis and Applications, École Polytechnique Fédérale de Lausanne (Suiza), febrero-diciembre 2010.