Hacer agujeros con menos torque en materiales granulares.

Resulta que se ha demostrado experimentalmente que la fuerza ejercida sobre un cilindro rotando sumergido en un medio granular es independiente de la altura del material granular que esté encima del cilindro bajo determinadas condiciones experimentales.

Esto es muy interesante, porque lo que se esperaba es que fuera un fenómeno completamente hidrodinámico, lo que quiere decir que el material granular se comporta casi como si fuera un fluido. si eso es cierto, entonces la cantidad de fluido por encima de cilindro tiene una influencia clara en la presión que se ejerce sobre el cilindro, al «pesar» el material sobre el cilindro sumergido.

Pero resulta que si se hace rotar el cilindro lo suficientemente despacio, el cilindro crea una especie de «cueva», un hueco en el material granular, que provoca que el movimiento del cilindro sea independiente de la altura del medio granular que está por encima. Esto es muy interesante, porque quiere decir que si se desea hacer un agujero en un medio granular, si se rota en taladro lo suficientemente despacio, no hay que hacer tanta fuerza. El motivo es que al no depender la fuerza ejercida sobre el cilindro de la altura de medio por encima, esencialmente se reduce y hace constante el valor de esa fuerza.

Para poder hacer las mediciones utilizaron un sistema muy ingenioso: Mantuvieron fijo el cilindro sumergido en el medio granular y rotaron el contenedor del medio granular, mirar el esquema:

Torque-esquema

Y la siguiente imagen muestra como el torque disminuye mucho si se trabaja lo suficientemente despacio:

Torque-Variacion

Esto es muy interesante no sólo por la física que tiene detrás, sino también porque abre la puerta (de mi imaginación, al menos) a sistemas capaces de taladrar cuerpos celestes compuestos por polvos agregados, al menos superficialmente, con mucha menos potencia y esfuerzo, lo que es importantísimo en misiones espaciales, donde cada gramo de más es muy difícil de justificar.

Enlace al artículo: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.138303

Esferas que flotan ingrávidas en gravedad.

Aunque pueda parecer paradójico, leyendo los artículos científicos que tengo por leer, eso es lo que me encontré.

Resulta que en un artículo publicado en el 2013, Esferas flotantes se les ocurrió un sistema muy interesante para poder observar qué pasa en dos esferas sumergidas en un líquido que no están sujetas a la acción de la gravedad: Usar un campo magnéticoa casi paraleelo y que las esferas sean sensibles a los campos magnéticos.

Con este sistema, pudieron observar el movimiento del fluido alrededor de las esferas, y vieron como su comportamiento dependía exclusivamente de magnitudes hidrodinámicas, sin necesitar para poder entenderlo ningún tipo de campo magnético.

La imagen de abajo es la muestra de una foto tomada con alta exposición y partículas de bismuto, el material de las esferas, para visualizar el flujo. Los colores son un añadido para observar el flujo con más claridad, que según simulaciones realizadas en las mismas condiciones, producen las líneas de flujo negras sobre impuestas sobre las trazas blancas, las líneas experimentales. Las flechas indican las direcciones del flujo.

Esferas-01
Figura 2 del artículo Spontaneous Orbiting of Two Spheres Levitated in a Vibrated Liquid H. A. Pacheco-Martinez, L. Liao, R. J. A. Hill, Michael R. Swift, and R. M. Bowley Phys. Rev. Lett. 110, 154501

Además, como es un movimiento puramente hidrodinámico, pudieron hacer colapsar varios datos del movimiento en una sola gráfica adimensional, que es la siguiente:

Acel. adim. en esferas
Figura 1 del artículo Spontaneous Orbiting of Two Spheres Levitated in a Vibrated Liquid H. A. Pacheco-Martinez, L. Liao, R. J. A. Hill, Michael R. Swift, and R. M. Bowley Phys. Rev. Lett. 110, 154501

Las unidades escogidas son la amplitud respecto al medio en reposo adimensionalizada con el diámetro del contedor, Ar/d,y la longitud de penetración viscosa, otra manera de colocar la viscosidad y relacioanrla con la frecuencia.

Me pareció muy interesante por dos razones:

  • Es un uso claro de números adimensionales adecuados al sistema hidrodinámico y
  • La manera de «eliminar» la gravedad contrarrestándola con una fuerza magnética me parece particularmente elegante.
  • Suavizado de datos no correlativos

    El suavizado de datos experimentales no correlativos es algo bastante difícil. Como siempre que se habla de algo difícil,va a ser mejor empezar por definirlo.«Datos experimentales no correlativos» son series de datos, desde posiciones hasta voltajes, recogidos a lo largo de una dimensión sin que haya una separación contante entre ellos(1). En otras palabras, un conjunto de datos disperso. Con frecuencia, para poder entender algo de los datos y extraer conclusiones hay que representarlos en una gráfica o quizás derivarlos, integrarlos, etc. La representación gráfica en sí no presenta dificultad demasiada dificultad. Pero, ¿qué pasa si la dispersión en los datos y los «huecos» en los datos es demasiado grande para poder obtener una visión de conjunto? Pues que resulta muy conveniente realizar un suavizado de los datos para tener una curva de referencia en la que poder fijarse, y que luego se pueda derivar, integrar o realizarle cualquier «perrada» numérica.

    Para ello, esta curva debe cumplir estos criterios:

    1. Ser equiespaciada
    2. Estar lo más cerca posible de los datos experimentales, pero suavizando las oscilaciones que se deban a errores experimentales.

    Si los datos son equiespaciados, podemos usar métodos basados en transformadas de Fourier y filtrados posteriores o similares, sobre todo si sabemos que los datos son periódicos. En este caso, se trata de filtrar el ruido de una señal y es un problema también muy interesante, pero no lo trato aquí. En el caso que nos ocupa, deben emplearse otras técnicas numéricas. Una pequeña muestra de ellas es:

    Aproximación polinómica de orden n a los datos.
    De manera muy simple, consiste en emplear los puntos experimentales como las posibles soluciones de un polinomio de orden n, siendo n un número entero.
    Spline de los datos.
    En lugar de tener un sólo polinomio, se aproximan regiones de los datos por polinomios de orden fijo, generalmente 2 o 3.(2)
    Suavizado de los datos al resolver una ecuación lineal.
    Se considera a los datos la solución de una ecuación lineal que además introduce una «rugosidad» de los datos experimentales. Esto es, cuanto se separan los valores aproximados de los experimentales.

    Cada método tiene ventajas e inconvenientes, pero de manera muy somera, tanto la aproximación a un sólo polinomio como a las curvas spline poseen varios problemas comunes:

    1. Cuando hay pocos datos experimentales y se trata de aproximar un polinomio de orden alto, cualquier cosa se puede aproximar. Pensemos que tengo 10 datos experimentales y lo aproximo por un polinomio de orden 6. Al estar tan cerca el número de datos experimentales al orden del polinomio, casi cualquier conjunto de valores serán capaces de hacer la aproximación.
    2. Introduce oscilaciones que no tienen porqué tener sentido. Los polinomios tiene cambios de tendencia que se corresponden con acercamientos a máximos y mínimos locales. Y son más cuanto más alto es el orden del polinomio, porque depende de los ceros, que es igual al orden del polinomio.
    3. Con frecuencia, los parámetros que se emplean para decidir si una aproximación se ajusta más o menos al conjunto de datos son muy parecidos entre diversas aproximaciones de muy distinto orden, lo que dificulta mucho el escoger un polinomio u otro. De hecho, en las aproximaciones Spline, para evitar este problema se emplean siempre polinomios de orden fijo.

    Así, cuando no hay un modelo matemático claro que nos permita decir que los datos se ajustan a una función u otra, el mejor método para obtener un conjunto equiespaciado de datos del conjunto original es el tercer método. Este sistema está implementado en la función «regdatasmooth.m» del paquete de Octave «data-smoothing-1.3.0» y funciona muy bien si se tiene cuidado al escoger los parámetros del ajuste. La justificación teórica se encuentra publicada en: «A perfect smoother.» Anal. Chem., 2003, 75 (14), pp 3631–3636

    (1) Pensar en una serie de posiciones de algo tomada a intervalos irregulares.
    (2) Muy buen tutorial sobre splines. Inglés