¿Contagiamos más enfermedades al hablar más alto?

Dados los tiempos que estamos viviendo, se está produciendo una cantidad enorme de publicaciones relacionadas con enfermedades de transmisión aérea. Una que me ha llamado la atención es este artículo de la revista Scientific Reports, perteneciente a la familia de Nature, que explora la posibilidad de contagios simplemente hablando, por contraste con los métodos más conocidos de estornudar y toser.

Comienzan en la introducción comentando que es bien sabido que la transmisión de enfermedades infecciosas a través de toses, estornudos y respiración es un fenómeno ya reconocido, pero en el que la importancia relativa de estos fenómenos en la propagación de enfermedades es un tema que no está claro.

Explica que al hablar y respirar emitimos partículas de un diámetro medio de 1 µm, probablemente formadas por fenómenos de ruptura de película fluida en los bronquiolos pulmonares(1) y vibraciones en la laringe. Aunque parezcan pequeñas, estas partículas son capaces de llevar con ellas bacterias y otros agentes infecciosos, dado que estos últimos tiene unos tamaños aún más pequeños, del orden de 0,050 a 0,500 µm para el virus del sarampión, por ejemplo.

Al ser más pequeñas, estas partículas tiene el potencial de ser aún más infecciosas que las más grandes, por tres razones principales:

  1. Las partículas más pequeñas aguantan más tiempo suspendidas en el aire,
  2. al ser más pequeñas pueden penetrar hasta distancias más grandes dentro del sistema respiratorio de otra persona distinta del que la emitió y
  3. el número de partículas pequeñas generadas al hablar puede ser muy superior a la que se produce al toser.

Según los autores del artículo, es este último punto el más importante. Tiene sentido: para que cualquier enfermedad pueda infectar un cuerpo, es necesario que la cantidad de virus o bacterias sea tan grande que las defensas del cuerpo no sean capaces de evitar su proliferación descontrolada en el mismo.

De hecho, dedican un párrafo a relatar la gran cantidad de evidencias que demuestran que hablar produce muchas más partículas que toser, lo que incrementa la «eficacia» del habla como portador de enfermedades.

Continúan comentando que, sin embargo, quedan varias cuestiones sin resolver: ¿afecta el volumen de lo que se dice a la generación de gotas?, ¿importas los fonemas que emitamos, es decir, la pronunciación de lo que decimos?, ¿hay diferencias significativas entre individuos? Para tratar de resolverlas, en este trabajo emplearon un sistema experimental capaz de contar las partículas desplazadas por el aire y lo emplearon para contar y medir las mismas mientras varios voluntarios hablaban.

Sus principales conclusiones son:

  1. la cantidad de partículas emitidas se incrementa según el volumen de lo que se diga, en los cuatro idiomas que usaron como representativos(inglés, español, mandarín y árabe)(2),
  2. la distribución del tamaño de las partículas es independiente del volumen con que se hable y
  3. hay algunas personas que emiten una cantidad un orden de magnitud superior a la media, diez veces más, de forma que son «superemisores» de partículas al ambiente.

Este último punto sobre todo, explicaría el fenómeno de los supercontagiadores, las personas que por alguna razón son capaces de contagiar a muchas más personas a su alrededor de lo que es habitual.

En la sección siguiente del artículo, donde explicitan los resultados, lo primero que hacen es repetir experimentos anteriores para confirmar que efectivamente, hablar provoca un aumento de emisión de partículas por parte del hablante. Como indica la figura siguiente, donde simultáneamente se presentan los resultados de un micrófono recogiendo a un voluntario diciendo algo así como «a» durante unos segundos, respirando por la nariz después y volviendo a hablar, es totalmente cierto.

Relación entre la emisión de un sonido, panel A y emisión de partículas, panel B, en el tiempo. Los picos de emisión de partículas son claros, con el retraso entre el máximo del pico y el comienzo del sonido atribuido al tiempo que tardan las partículas en llegar al detector. De la figura 1 del artículo citado.

Después, comprobaron que había una relación entre el número de partículas emitidas y el volumen de lo que se habla. Como muestra la siguiente figura, donde se reúnen datos de muchos sujetos, la relación es linealmente proporcional entre el número de partículas emitidas y el volumen de voz, medido mediante la amplitud del sonido recogido por el micrófono.

El número de partículas emitidas respecto a la amplitud empleada, medida como su media cuadrática(3). Como se puede observar, la relación es una línea recta bastante clara. De la figura 3 del artículo citado.

Como además comprobaron que el tamaño de las partículas emitidas no cambiaba con el volumen de lo que se decía, los investigadores concluyen que la cantidad de líquido emitido aumenta con el volumen de voz.

Los resultados obtenidos indican que no hay diferencias significativas entre los diversos participantes a la hora de emitir aerosoles o partículas. Como escogieron un grupo diverso de voluntarios, con diversas características físicas, como el índice de masa corporal u otras, deducen que no hay correlaciones claras entre «tipos» humanos y la capacidad de emisión de partículas. Tampoco se observaron diferencias importantes entre usar diversos idiomas, siempre que se hablen en el mismo tono de voz. Además, las condiciones de temperatura y humedad externas tampoco influencian de manera significativa la emisión de partículas.

Pero, si todos los participante emiten más o menos e mismo números de partículas, ¿cómo es que hay algunos que son «superemisores»? Pues porque sus propios datos indican que hay un grupo pequeño pero importante, en sus experimentos ocho de cuarenta, que emiten siempre un orden de magnitud más de partículas que los demás: esos son los superemisores. De echo, al comprobar la emisión de partículas en función del tipo de respiración o del volumen de lo que se habla, los superemisores se destacan con claridad, como se ve en la figura siguiente.

Número de partículas emitidas según la actividad del sujeto. En blanco, los diversos tipos de respiración (Nose, nariz, Mouth, boca, Deep-Fast, Inspiración lenta, aspiración rápida, Fast-Deep, Inspiración rápida, aspiración lenta) y en el otro color, los diversos tipos de habla (Quiet, bajo, Intermediate, normal, Loud, alto). El incremento de partículas emitidas al hablar es muy claro, como también la presencia de los superemisores, las dos cruces rojas. De la figura 5 del artículo citado.

En su sección de discusión los autores se preguntan porqué obtienen estos resultados. Empiezan diciendo que parece que, dado que al hablar activamos las cuerdas vocales, es debido a ellas que se produce el incremento de partículas, lo que implicaría que al aumentar el volumen de voz, como también aumenta ligeramente la frecuencia del habla, debería por lo tanto incrementarse el número de partículas. El problema es que para aumentar el volumen de voz, también se incrementa el flujo de aire a través del sistema respiratorio, lo que también contribuiría al aumento del número de partículas. Los investigadores concluyen que de sus datos no pueden desacoplarse los dos efectos ni su importancia relativa.

Pasan después a tratar de entender la razón de la presencia de los superemisores, diciendo que si bien pudiera ser que haya diferencias en en las propiedades de los líquidos en sus sistema respiratorio que sean capaces de provocar este aumento, no han podido analizar nada de este tema. Sí comentan que alteraciones en la químicas de las mucosas del sistema respiratorio, por ejemplo con un nebulizador de agua salada, influyen claramente en la cantidad de gotas emitidas en la respiración o el habla. Concluyen ese párrafo formulando la hipótesis de que son estos superemisores la causa de que haya algunas personas capaces de contagiar enfermedades que se propagan por el aire de manera muy superior a la mayoría, fenómeno bien contrastado y comprobado en general, y en particular en la pandemia de COVID actual.

Comentan también que el hecho de que se incremente de manera muy notable la cantidad de partículas al hablar debería tener una influencia clara en la capacidad de contagio de diversas enfermedades según el lugar donde se alojen los patógenos. Así, comentan que hay evidencias de que la tuberculosis alojada en la garganta es más contagiosa que la que se encuentra en los pulmones y que el virus de la gripe puede ser tan contagioso porque ataca preferentemente la garganta, desde donde al hablar se emiten más partículas.

En el último párrafo del artículo explican que dado que el volumen de lo que se diga tiene una influencia tan fuerte en la cantidad de partículas emitidas, ello implica que los lugares más ruidosos serán fuentes más probables de contagios que los lugares más silenciosos. Y a mí no deja de venirme entonces a la cabeza el hecho de que en España gritamos mucho más que casi cualquier otro país al hablar, lo que debería influir de manera muy negativa en la expansión de esta pandemia. ¿Quizás que hablemos más alto que otros y tendamos a tocarnos mucho más podría explicar porqué la pandemia se extiende más en España que en otros países del entorno, como Portugal?

El artículo se publicó en la revista Scientific Reports, en el volumen 9: Scientific Reports, 9, 2348

(1) La ruptura de película fluida es el fenómeno que se produce cuando en una superficie hay un líquido rodeándola y pasa un gas rápidamente. El paso del gas causa deformaciones en la película del líquido que terminan por «romperlo» y extraer gotas de líquido que serán arrastradas por el gas.

(2) Estos cuatro idiomas no sólo cuentan con un porcentaje de hablantes muy representativo del total de la población humana, sino que además poseen tales diferencias sintácticas y de pronunciación que al usarlos como ejemplos permiten generar datos útiles para todas las hablas humanas.

(3) La media cuadrática es la raíz cuadrada de la suma de los cuadrados de unos valores, divididos por el número de valores. En la wikipedia en español lo explican muy bien: Wiki:Media Cuadrática

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *